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ABSTRACT

The Communicating Sequential Processes (CSP) domain in Ptolemy Il models a system as
a network of processes communicating with messages through unidirectional channels. The
communication between processes is rendezvous based: both the reading and writing pro-
cesses block until the other side is ready to communicate. This model of computation is non-
deterministic and is also highly concurrent due to the nature of the model. This report gives an
overview of the semantics of the model of computation of the CSP domain, the algorithms and
software infrastructure used in implementing the domain, and some applications. In particular,
applications for the CSP domain include resource management and high level system model-
ing early in the design cycle. Resource management is often required when modeling embed-
ded systems, and to further support this, a notion of time has been added to the model of
computation used in the domain.
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1. Introduction

Ptolemy Il is an environment that supports heterogeneous modeling and design of concurrent sys-
tems. Its focus is on embedded systems, particularly those that mix technologies. It offers a unified
infrastructure for modeling systems using a number of models of computatidom&inexecutes a
model of a system with the semantics of a particular model of computation. A model of a system may
be designed using one domain, or it may choose to use several domains, hierarchically composed, to
achieve greater accuracy or efficiency.

The Communicating Sequential Processes (CSP) domain in Ptolemy Il models a system as a net-
work of processes communicating with messages through unidirectional channels. If a process is ready
to send a message, it blocks until the receiving process is ready to accept it. Similarly if a process is
ready to accept a message, it blocks until the sending process is ready to send it. Thus the communica-
tion between processes is rendezvous based as both the reading and writing processes block until the
other side is ready to communicate. This model of computation is non-deterministic as a process can
be blocked waiting to send or receive on any number of channels. It is also highly concurrent due to
the nature of the model.

The applications for the CSP domain include resource management and high level system model-
ing early in the design cycle. Resource management is often required when modeling embedded sys-
tems, and to further support this, a notion of time has been added to the model of computation used in
the domain. This differentiates our CSP model from those more commonly encountered, which do not
typically have any notion of time, although several versions of timed CSP have been proposed[6]. It
might thus be more accurate to refer to the domain using our model of computation as the “Timed
CSP” domain, but since the domain can be used with and without time, it is simply referred to as the
CSP domain.

This report is written to be as self contained as possible, but invariably some details regarding how
it builds upon the infrastructure in the Ptolemy Il kernel and actor packages had to be omitted. For
more details on these aspects, and on Ptolemy Il in general, please refer to [13].
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2. Semantics of the Ptolemy Il CSP Model

The model of computation used in the CSP domain is based on the CSP model first proposed by
Hoare[7] in 1978. In this model, a system is modeled as a network of processes communicating via
messages along unidirectional channels. This in the only way processes can communicate, there is no
shared state. The transfer of message between processes is via rendezvous, which means both the send-
ing and receiving of a messages from a channel are blocking: i.e. the sending or receiving process
stalls until the message is transferred. Some of the notation used here is borrowed from Andrews’ book
on concurrent programming [1], which refers to rendezvous-based message passing as synchronous
message passing.

Process Networks (PN)[9] is a model of computation that has much in common with CSP. It also
consists of a network of processes communicating via message passing along unidirectional channels.
However, in PN, each channel has an unbounded first-in-first-out (FIFO) queue at the receiving end,
so that the sending of messages along a channel is non-blocking. If there are no messages in the FIFO
gueue, then the receiving process stalls until a message is sent to the channel. The two models also dif-
fer in that PN is determinate whereas CSP is non-determinate due to the conditional communication
constructs described below in section 2.2.

2.1 RENDEZVOUS

If a process is ready to send a message, it blocks until the receiving process is ready to accept it.
Similarly if a process is ready to accept a message, it blocks until the sending process is ready to send
it. Thus the communication between processes is rendezvous based as both the reading and writing
processes block until the other side is ready to communicate. Figure 1 shows the case where one pro-
cess is ready to send before the other process is ready to receive. The communication of information in
this way can be viewed as a distributed assignment statement.

The sending process places some data in the message that it wants to send. The receiving process
assigns the data in the message to a local variable. Of course, the receiving process may decide to
ignore the contents of the message and only concern itself with the fact that a message arrived.

| Process A Process B
I
I
I
| progress send(B, msgQ)
I
| blocked
! * -« — — — — — — o lreceive(A, var)
| a transfer of data ;-
I N -
| N ~
\ AN
\ ¥ ¥

FIGURE 1. lllustrating how processes block waiting to rendezvous
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2.2 CONDITIONAL COMMUNICATION CONSTRUCTS

A lot of the expressiveness in the CSP model comes from the being able to perform nondetermin-
istic rendezvous. Nondeterministic rendezvous is basedgurded communication statements.

A guarded communication statement has the form
guard; communication => statements;

Theguardis only allowed to reference local variables, and its evaluation cannot changes the state
of the process. For example it is not allowed to assign to variables, only reference theconieni-
cation must be a simple send or receive, i.e. another conditional communication statement cannot be
placed here. Thstatementpart can contain any arbitrary sequence of statements, including more con-
ditional communications.

If the guard is false, then the communication is not attempted and the statements are not executed.
If the guard is true, then the communication is attempted, and if it succeeds, the following statements
are executed. The guard may be omitted, in which case it is assumed to be true.

There are two conditional communication constructs built upon the guarded communication state-
ments:CIF andCDO. These are analogous to tlieandwhile statements in most programming lan-
guages. They should be read as “conditional if” and “conditional do”. Note that each guarded
communication statement represents brenchof the CIF or CDO. The communication statement in
each branch can be either a send or a receive, and they can be mixed freely.

2.2.1 CIF:
The form of a CIF is

CIF{

G1;C1 => S1;
I
I

}

G2:C2 => S2;

For each branch in the CIF, the guard (G1, G2,...) is evaluated. If it is true (or absent, which
implies true), then the associated communication statement is enabled. If one or more branch is
enabled, then the entire construct blocks until one of the communications succeeds. If more than one
branch is enabled, the choice of which enabled branch succeeds with its communication is made non-
deterministically. The successful communication is carried out, the associated statements are executed
and the process continues. If all of the guards are false, then the process continues executing state-
ments after the end of the CIF.

It is important to note that, although this construct is analogous to the confnpoogramming
construct, its behavior is very different. In particular all guards of the branches are evaluated concur-
rently, and the choice of which one succeeds does not depend on its position in the construct. The nota-
tion “[]” is used to hint at the parallelism in the evaluation of the guards. In a comifrtbe branches
are evaluated sequentially and the first branch that is evaluated to true is executed. The CIF construct
also depends on the semantics of the communication between processes, and can thus stall the progress
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of the thread if none of the enabled branches is able to rendezvous.

2.2.2 CDO:
The form of the CDO is
CDO {
G1;Cl1 =>S1;
I
G2;C2 =>S2;
I
}

The behavior of the CDO is similar to the CIF in that for each branch the guard is evaluated and the
choice of which enabled communication to make is taken nondeterministically. However the CDO
repeats the process of evaluating and executing the branchealuthi# guards return false. When this
happens the process continues executing statements after the CDO construct.

2.2.3 Example using a CDO

An example use of a CDO is in a buffer process which can both accept and send messages, but has
to be ready to do both at any stage. The code for this would look similar to that in figure 2. Note that in
this case both guards can never be simultaneously false so this process will execute the CDO forever.

2.3 DEADLOCK

A deadlock situation is one in which none of the processes can make progress: they are all either
blocked trying to rendezvous or they are delayed (see the next section). Thus two types of deadlock
can be distinguished:

real deadlock all active processes are blocked trying to communicate
time deadlock all active processes are either blocked trying to communicate or are delayed, and
at least one processes is delayed.

2.4 TIME

In the CSP domaintime is centralized. That is, all processes in a model share the same time,

CDO{

(room in buffer?); receive(input, beginningOfBuffer) => update pointer to beginning of buffgr;
I

(messages in buffer?); send(output, endOfBuffer) => update pointer to end of buffer;
}

FIGURE 2. Example of how a CDO might be used in a buffer
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referred to as theurrent model timeEach process can only choosedilayitself relative for some

period from the current model time, or a process can wait for time deadlock to occur at the current
model time. Even though a process can be aware of the current model time, it should not choose to
wait until the current model time reaches some value as the model time could change while it is wait-
ing. It both cases, a process is said tddlayed

When a process delays itself for some length of time from the current model time, it is suspended
until time has sufficiently advanced, at which stage it wakes up and continues. If the process delays
itself for zero time, this will have no effect and the process will continue executing. An example of the
use of time in this manner can be seen below in section 7.2.

A process can also choose to delay its execution until the next occasion a time deadlock is reached.
The process resumes at the same model time at which it delayed, and this is useful as a model can have
several sequences of actions at the same model time. The next occasion time deadlock is reached, any
processes delayed in this manner will continue, and time will not be advanced. An example of using
time in this manner can be found in section 8.2.

Time may beadvancedwhen all the processes are delayed or are blocked trying to rendezvous,
and at least one process is delayed. If one or more processes are delaying until a time deadlock occurs,
these processes are woken up and time is not advanced. Otherwise, the current model time is advanced
just enough to wake up at least one process. Note that there is a semantic difference between a process
delaying for zero time, which will have no effect, and a process delaying until the next occasion a time
deadlock is reached.

Note also that time, as perceived by a single process, cannot change during its normal execution,
only at rendezvous points or when the process delays. A process can be aware of the centralized time,
but it cannot influence the current model time except by delaying itself. One of reasons behind using
this model for time is given in 10.1. The choice for modeling time was in part influenced by Pamela[5],

a run time library that is used to model parallel programs.

2.5 DIFFERENCES FROM ORIGINAL CSP MODEL AS PROPOSED BY HOARE

The model of computation used by the CSP domain differs from the original CSP[7] model in two
ways. First, a notion of time has been added. The original proposal had no notion of time, although
there have been several proposals for timed CSP[6]. Second, as mentioned in section 2.2, it is possible
to use both send and receive in guarded communication statements. The original model only allowed
receives to appear in these statements, though Hoare subsequently extended their scope to allow both
communication primitives]8].

One final thing to note is that in much of the CSP literature, send is denoted using a “!", pro-
nounced “bang”, and receive is denoted using a “?”, pronounced “query”. This syntax was what was
used in the original CSP paper[6] by Hoare. For example, the languages OCCAM[2] and LOTOS][3]
both follow this syntax. In the CSP domain in Ptolemy Il we ssadandget the choice of which is
influenced by the desire to maintain uniformity of syntax across domains in Ptolemy Il that use mes-
sage passing. This supports the heterogeneity principle in Ptolemy Il which enables the construction
and interoperability of executable models that are built under a variety of models of computation. Sim-
ilarly, the notation used in the CSP domain for conditional communication constructs differs from that
commonly found in the CSP literature.
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3. Software infrastructure
3.1 MODELING IN PTOLEMY II

In Ptolemy Il an executable model consists of a top-l&@empositeActowith an instance of
Director and an instance dflanagerassociated with it. The manager provides overall control of the
execution (starting, stopping, pausing). The director implements the semantics of the model of compu-
tation that governs the executionamttorscontained by the CompositeActor.

The actors in the CompositeActor are connecteetationsvia Ports A relation connects one or
more ports together. A particular collection of actors connected to each other through ports and rela-
tions is called dopology The choice of the actors, the director controlling them and how they are con-
nected defines what the model will do.

An actor under control of a director may be eitherdiomicActor which means it is indivisible, or
it may be a CompositeActor, in which case it too can have its own director and contain a new set of
actors. This is illustrated in figure 4(a).

Messages are passed between actors along relations. A relatiowtals, greater than or equal to
one. The width of a relation is the number of datennelsrepresented by it. A port may have any
number of relations connected to it, and the width of the port is defined to be the sum of the widths of
the relations connected to it. If the port is an input port, it contains a set of receivers, one for each input
channel. The receivers contained by a port are determined by the director controlling the model. A dia-
gram illustrating how a message is transferred across a relation with one and two channels is shown in
figure 4(Db).

Obviously what has just been described is a very rough overview of the software infrastructure
provided by Ptolemy II, though hopefully it is enough to allow the reader to understand the CSP mod-
els which are built on top of it. For a much more thorough description of Ptolemy Il in general see [13].

3.2 CSP DOMAIN

In a CSP model, the director is an instanceG8PDirector Since the model is controlled by a
CSPDirector, all the receivers in the ports &8PReceiverd he combination of the CSPDirector and
CSPReceivers in the ports gives a model CSP semantics. The CSP domain associates each channel
with exactly one receiver, located at the receiving end of the channel. Thus any process that sends or
receives to any channel will rendezvous at a CSPReceiver. Figure 5 shows the static structure diagram
of the five main classes in the CSP kernel, and a few of their associations. These are the classes that
provide all the infrastructure needed for a CSP model.

Ptolemy II Syntax OCCAM syntax
send I
get ?
CIF ALT
CDO ALT wrapped in a while loop.

FIGURE 3. Comparison of syntaxes used in CSP domain and in OCCAM
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CSPDirector: gives a model CSP semantics. It takes care of starting all the processes and controls/
responds to both real and time deadlocks. It also maintains and advances the model time when neces-
sary.

CSPReceiverensures that communication of messages between processes is via rendezvous.
CSPActor: adds the notion of time and the ability to perform conditional communication.

ConditionalReceive, ConditionalSendsed to construct the guarded communication statements nec-
essary for the conditional communication constructs.

3.3 MESSAGES

All messages in Ptolemy |l are representedibkens The data carried in a message is defined by

4 EO0 D1: local director )
E2 D2: local director

@

receiver.put(t)

send(0,t)

R1

receiver.put(t0)
receiver.put(tl)

send(0,t0)

El

send(l,tl)j

(b)

FIGURE 4. (a) Example of a topology illustrating the control of a model and how the model may be
hierarchically composed, (b) Detailed view of a relation with one and two channels in Ptolemy II.
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the type of token used. The tokens available are shown in figure 6, though the user is free to develop
new token classes. For more information on the token classes refer to [13]. For most models the tokens
supplied should be sufficient.

CSPActor
-_blocked : boolean
. -_branchesActive : int
ProcessDirector -_branchesBlocked : int
-_branchesDelayed : int
-_branchTrying : int
i -_delayed : boolean
! -_internalLock : Object
| |-_successfulBranch : int
[_threadList : LinkedList
CSPDirector [+CSPActor()
+CSPActor(ws : Workspace)
[ _actorsBlocked : int 0..1 |+CSPActor(cont : CompositeActor, name : String)
-_actorsDelayed : int +chooseBranch(branches : ConditionalBranch[]) : int|
-_currentTime : double +delay()

l-_delayedActorList : LinkedList .
-_mutationsPending : boolean +delay(delta : double)

_simulationUntimed : boolean o.n +terminate()

+CSPDirector() #_branchBlocked() .

+CSPDirector(name : String) controls #_branchFailed(branchNumber : int)

+CSPDirector(name : String, ws : Workspace) ) #_branchSucceeded(branchNumber : int)
i contains _ly hranchUnblocked()

+getCurrentTime() : double — N

+setCurrentTime(newTime : double) #_continue()

+setUntimed(value : boolean) H g_lsBranch_Flrst(branchNumbe_r : int) : boolean
1+ actorBlocked() : releaseFlrst(branchNumber s int)
#_actorDelayed(delta : double, actor : CSPActor) | contained 0..n | creates for conditional rendezvous
# actorUnblocked() ? .
0..n | contains
1.1
performs conditional rendezvous for
CSPReceiver
ConditionalBranch
-_conditionalReceiveWaiting : boolean
-_conditionalSendWaiting : boolean -
-_container : IOPort -_alive : boolean
- _getwaiting : boolean -_branchNumber : int
-_putWaiting : boolean -_guard : boolean
|-_otherParent : CSPActor -_parent : CSPActor
- _rendezvousComplete : boolean j#_receiver : CSPReceiver
L _simulationPaused : boolean #_token : Token
|-_simulationFinished : boolean +ConditionalBranch(guard : boolean, port : IOPort, branchlID : int)
- _token : Toke.n +getiD() : int
+CSPRece!ver() +getGuard() : boolean
[+CSPReceiver(p : I0Port) +getParent() : CSPActor
[+get() : Token +getReceiver() : CSPReceiver
[+put(token : Token) +getToken() : Token
+getContainer() : Nameable +isAlive() : boolean
[+hasRoom() : boolean +setAlive(value : boolean)
[+hasToken() : boolean [#_checkAndwait()

+setContainer(parent : IOPort)
+setFinish()
+setPause(newValue : boolean) |
#_getOtherParent() : CSPActor
#_isConditionalReceiveWaiting() : boolean
#_isConditionalSendWaiting() : boolean
#_isGetWaiting() : boolean
#_isPutWaiting() : boolean
#_setConditionalRecieve(v : boolean, parent : CSPActor) +ConditionalReceive(guard : boolean, port : IOPort, channel : int, id : int)
#_setConditionalSend(v : boolean, parent : CSPActor) [+runQ

E_checkAndwait()

ConditionalReceive

ConditionalSend

+ConditionalSend(guard : boolean, port : IOPort, channel : int, id : int, t : Token)
+run()

FIGURE 5. Static structure diagram for classes in the CSP kernel.
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BooleanMatrixToken
BooleanToken
ComplexMatrixToken
ComplexToken
DoubleMatrixToken
DoubleToken
IntMatrixToken
IntToken
LongMatrixToken
LongToken
ObjectToken
StringToken

FIGURE 6. Tokens available in ptolemy.data package.
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4. Using the CSP domain in Ptolemy Il

For a model to have CSP semantics, it must have a CSPDirector controlling it. This ensures that
the receivers in the ports are CSPReceivers, so all communication of messages between processes is
via rendezvous. Note that eaabtorin the CompositeActor under the control of the CSPDirector rep-
resents a separgteocessn the model.

4.1 RENDEZVOUS

Since the ports contain CSPReceivers, the basic communication statesmedfshannel, token)
and get(channel)will have rendezvous semantics. Thus the fact that a rendezvous is occurring on
every communication is transparent to the actor code.

4.2 CONDITIONAL COMMUNICATION CONSTRUCTS

In order to use the conditional communication constructs, an actor must be derived from CSPAc-
tor. There are three steps involved:

1) Create a ConditionalReceive or ConditionalSend branch for each guarded communication state-
ment, depending on the communication. Pass each branch a unique integer identifier, starting from
zero, when creating it. The identifiers only need to be unigue within the scope of that CDO or CIF.

2) Pass the branches to the chooseBranch() method in CSPActor. This method evaluates the
guards, and decides which branch gets to rendezvous, performs the rendezvous and returns the identi-
fication number of the branch that succeeded. If all of the guards were false, -1 is returned.

3) Execute the statements for the guarded communication that succeeded.

boolean continueCDO = true;
while (continueCDO) {
/I step 1:
ConditionalBranch[] branches = new ConditionalBranch[#branchesRequired];
/I Create a ConditionalReceive or a ConditionalSend for each branch
/I e.g. branches[0] = new ConditionalReceive( (guard), input, 0, 0);

/I step 2:
int result = chooseBranch(branches);

/I step 3:
if (result == 0) {
/I execute statements associated with first branch
} else if (result == 1) {
/I execute statements associated with second branch.
} else if ... // continue for each branch ID

} else if (result == -1) {
/l all guards were false so exit CDO.
continueCDO = false;

}else {

FIGURE 7. Template for executing a CDO construct.
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boolean guard = false;
boolean continueCDO = true;
ConditionalBranch[] branches = new ConditionalBranch[2];
while (continueCDO) {
/I step 1
guard = (_size < depth);
branches[0] = new ConditionalReceive(guard, input, 0, 0);
guard = (_size > 0);
branches[1] = new ConditionalSend(guard, output, 0, 1, _buffer[_readFrom]);

Il step 2
int successfulBranch = chooseBranch(branches);
/I step 3
if (successfulBranch == 0) {
_Size++;

_buffer[_writeTo] = branches[0].getToken();
_writeTo = ++_writeTo % depth;
} else if (successfulBranch == 1) {
_size--;
_readFrom = ++_readFrom % depth;
} else if (successfulBranch == -1) {
// all guards false so exit CDO
/I Note this cannot happen in this case
continueCDO = false;
}else {
throw new TerminateProcessException(getName() + " " +
"branch id returned during execution of CDO.");

FIGURE 8. Code used to implement the buffer process described in figure .

A sample template for executing a CDO is shown in figure 7. The code for the buffer described in
figure 7 is shown in figure 8. In creating the ConditionalSend and ConditionalReceive branches, the
first argument represents the guard. The second and third arguments represent the port and channel to
send or receive the message on. The fourth argument is the identifier assigned to the branch. The
choice of placing the guard in the constructor was made to keep the syntax of using guarded communi-
cation statements to the minimum, and to have the branch classes resemble the guarded communica-
tion statements they represent as closely as possible. This can give rise to the case where the Token
specified in a ConditionalSend branch may not yet exist, but this has no effect as once the guard is
false, the token in a ConditionalSend is never referenced.
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The other option considered was to wrap the creation of each branch as follows:

if (quard) {

/I create branch and place in branches array
}else {

/I branches array entry for this branch is null

}

However this leads to longer actor code and what is happening is not as syntactically obvious.

The code for using a CIF is similar to the that in figure 7 except that the surrounding while loop is
omitted and the case when the identifier returned is -1 does nothing. At some stage the steps involved
in using a CIF or a CDO may be automated using a pre-parser, but for now the user must follow the
approach described above.

It is worth pointing out that if most channels in a model are buffered, it may be worthwhile con-
sidering implementing the model in the PN domain which implicitly has an unbounded buffer on every
channel.

4.3 TIME

If a process wishes to use time, the actor representing it must derive from CSPActor. As explained
in section 2.4, each process in the CSP domain is able to delay itself, either for some period from the
current model time or until the next occasion time deadlock is reached at the current model time. The
two methods to call are delay(double) and waitForDeadlock(). Recall that if a process delays itself for
zero time from the current time, the process will continue immediately. Thus delay(0.0) is not equiva-
lent to waitForDeadlock()

If no processes are delayed, it is also possible to set the model time by calling the method setCur-
rentTime(newTime) on the director. However, this method can only be called when no processes are
delayed, as the state of the model may be rendered meaningless if the model time is advanced to a time
beyond the earliest delayed process. It is primarily for composing CSP with other domains, which is
explained below in section 10.1.

As mentioned in section 2.4, as far as each process is concerned, time can only increase while it is
blocked waiting to rendezvous or when delaying. A process can be aware of the current model time,
but it should only ever affect the model time by delaying its execution, thus forcing time to advance.
The method setCurrentTime(newTime) should never be called from a process.

By default every model in the CSP domain is timed. To use CSP without a notion of time, do not
use the delay(double) method. The infrastructure supporting time does not affect the model execution
if the delay(double) method is not used.
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5. Model setup and control

The job of the CSPDirector in controlling the model is two fold. First, it must create and start a
thread for each actor under its control. Each of these threads represents a process in our model. Second,
it is responsible for detecting and responding to both real and time deadlocks. It can also pause and
resume the model, and terminate all the processes when real deadlock is detected.

5.1 STARTING THE MODEL

The director creates a thread for each actor under its control in its initialize() method. It also
invokes the initialize() method on each actor at this time. The director starts the threads in its prefire()
method, and detects and responds to deadlocks in its fire() method. The thread for each actor is an
instance of ProcessThread, which invokes the prefire(), fire() and postfire() methods for the actor until
it finishes or is terminated. It then invokes the wrapup() method and the thread dies.

director.initialize() => create a thread for each actor
update count of active processes with the director
call initialize() on each actor

director.prefire() => start the process threads => calls actor.prefire()
calls actor.fire()
calls actor.postfire()

repeat.
director.fire() => handle deadlocks until a real deadlock occurs.
director.postfire() => return a boolean indicating if the execution of the model should continug for
another iteration
director.wrapup() => terminate all the processes => calls actor.wrapup()

decrease the count of active processes
with the director

FIGURE 9. Sequence of steps involved in setting up and controlling the model.

Figure 10 shows the code executed by the ProcessThread class. Note that it makes no assumption
about the actor it is executing, so it can execute any domain-polymorphic actor as well as CSP domain-
specific actors. In fact any other domain actor that does not rely on the specifics of its parent domain
can be executed in the CSP domain by the ProcessThread.

5.2 DETECTING DEADLOCKS:

For deadlock detection, the director maintains three counts:
*the number o&ctiveprocesses which are threads that have started but have not yet finished

«the number oblockedprocesses which is the number of processes that are blocked waiting
to rendezvous, and
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«the number oflelayedprocesses which is the number of processes waiting for time to
advance plus the number of processes waiting for time deadlock to occur at the current model
time.

When the number of blocked processes equals the number of active processes, then real deadlock
has occurred and the fire method of the director returns. When the number of blocked plus the number
of delayed processes equals the number of active processes, and at least one process is delayed, then
time deadlock has occurred. If at least one process is delayed waiting for time deadlock to occur at the
current model time, then the director wakes up all such process and does not advance time. Otherwise
the director looks at its list of processes waiting for time to advance, chooses the earliest one and
advances time sufficiently to wake it up. It also wakes up any other processes due to be woken up at
the new time. The director checks for deadlock each occasion a process blocks, delays or dies.

For the director to work correctly, these three counts need to be accurate at all stages of the model
execution, so when they are updated becomes important. Keeping the active count accurate is rela-
tively simple, the director increase it when it starts the thread, and decreases it when the thread dies.
Likewise the count of delayed processes is straightforward: when a process delays, it increases the
count of delayed processes, and the director keeps track of when to wake it up. The count is decreased
when a delayed process resumes.

public void run() {
try {
boolean iterate = true;
while (iterate) {
I/ container is checked for null to detect the termination
/I of the actor.
iterate = false;
if ((Entity)_actor).getContainer() != null && _actor.prefire()) {
_actor.fire();
iterate = _actor.postfire();
}
}

} catch (TerminateProcessException t) {
/I Process was terminated early
} catch (lllegalActionException e) {
_manager.fireExecutionError(e);
} finally {
try {
_actor.wrapup();
} catch (lllegalActionExeption e) {
_manager.fireExecutionError(e);
}

_director.decreaseActiveCount();

FIGURE 10. Code executed by ProcessThread.run()
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However, due to the conditional communication constructs, keeping the blocked count accurate
requires a little more effort. For a basic send or receive, a process is registered as being blocked when
it arrives at the rendezvous point before the matching communication. The blocked count is then
decreased by one when the corresponding communication arrives. However what happens when an
actor is carrying out a conditional communication construct? In this case the process keeps track of all
of the branches for which the guards were true, and when all of those are blocked trying to rendezvous,
it registers the process as being blocked. When one of the branches succeeds with a rendezvous, the
process is registered as being unblocked.

5.3 TERMINATING THE MODEL:

A process can finish in one of two ways: either by returning false in its prefire() or postfire() meth-
ods, in which case it is said to have finishremrmally, or if it is terminatedearly by a TerminateProces-
sException being thrown. For example, if a source process is intended to send ten tokens and then
finish, it would exit its fire() method after sending the tenth token, and return false in its postfire()
method. This causes the ProcessThread, see figure 10, representing the process, to exit the while loop
and execute the finally clause. The finally clause calls wrapup() on the actor it represents, decreases the
count of active processes in the director, and the thread representing the process dies.

A TerminateProcessException is thrown whenever a process tries to communicate via a channel
whose receiver has ifinishedflag set to true. When a TerminateProcessException is caught in Pro-
cessThread, the finally clause is also executed and the thread representing the process dies.

To terminate the model, the director setsfineshedflag in each receiver. The next occasion a pro-

cess tries to send to or receive from the channel associated with that receiver, a TerminateProcessEx-
ception is thrown. This mechanism can also be used in a selective fashion to terminate early any
processes that communicate via a particular channel. When the director controlling the execution of
the model detects real deadlock, it returns from its fire() method. In the absence of hierarchy, this
causes the wrapup() method of the director to be invoked. It is the wrapup() method of the director that
sets the finished flag in each receiver. Note that the TerminateProcessException is a runtime exception
so it does not need to be declared as being thrown.

There is also the option of abruptly terminating all the processes in the model by calling termi-
nate() on the director. This method differs from the approach described in the previous paragraph in
that it stops all the threads immediately and does not give them a chance to update the model state.
After calling this method, the state of the model is unknown and so the model should be recreated after
calling this method. This method is only intended for situations when the execution of the model has
obviously gone wrong, and for it to finish normally would either take too long or could not happen. It
should rarely be called.

5.4 PAUSING/RESUMING THE MODEL

Pausing and resuming a model does not affect the outcome of a particular execution of the model,
only the rate of progress. The execution of a model can be paused at any stage by calling the pause()
method on the director. This method is blocking, and will only return when the model execution has
been successfully paused. To pause the execution of a model, the directopaetedlag in every
receiver, and the next occasion a process tries to send to or receive from the channel associated with
that receiver, it is paused. The whole model is paused when all the active processes are delayed, paused
or blocked. To resume the model, the resume() method can similarly be called on the director This
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method resets the paused flag in every receiver and wakes up every process waiting on a receiver lock.
If a process was paused, it sees that it is no longer paused and continues. The ability to pause and
resume the execution of a model is intended primarily for user interface control.
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6. Controlling communication between Threads
6.1 BRIEF INTRODUCTION TO THREADS IN JAVA

The CSP domain, like the rest of Ptolemy Il, is written entirely in Java and takes advantage of the
features built into the language. In particular, the CSP domain depends heathigadsand onmon-
itors for controlling the interaction between threads. In any multi-threaded environment, care has to be
taken to ensure that the threads do not interact in unintended ways, and that the model does not dead-
lock. Note deadlock in this sense is a bug in thedeling environmenthich is different from the
deadlock talked about before which may or may not be a bug madtielbeing executed.

A monitor is a mechanism for ensuring mutual exclusion between threads. In particular if a thread
has a particular monitor, acquired in order to execute some code, then no other thread can simulta-
neously have that monitor. If another thread tries to acquire that monitor, it stalls until the monitor
becomes available. A monitor is also callddck, and one is associated with every object in Java.

Code that is associated with a lock is defined by shipchronizeckeyword. This keyword can
either be in the signature of a method, in which case the entire method body is associated with that
lock, or it can be used in the body of a method using the syntax:
synchronized(object) {
I/l synchronized code goes here
}
This causes the code inside the brackets to be associated with the lock belonging to the specified
object. In either case, when a thread tries to execute code controlled by a lock, it must either acquire
the lock or stall until the lock becomes available. If a thread stalls when it already has some locks,
those locks are not released, so any other threads waiting on those locks cannot proceed. This can lead
to deadlock when all threads are stalled waiting to acquire some lock they need.
A thread can voluntarily relinquish a lock when stalling by calletgect.wait()whereobjectis the
object to relinquish and wait on.This causes the lock to become available to other threads. A thread can
also wake up any threads waiting on a lock associated with an object by calling notifyAll() on the
object. Note that to issue a notifyAll() on an object it is necessary to own the lock associated with that
object first. By careful use of these methods it is possible to ensure that threads only interact in
intended ways and that deadlock does not occur.

6.1.1 Approaches to locking used in the CSP domain

One of the key coding patterns followed is to wrap each wait() call in a while loop that checks
some flag. Only when the flag is set to false can the thread proceed beyond that point. Thus the code
will often look like

synchronized(object) {

while(flag) {
object.wait();
}

}
The advantage to this is that it is not necessary to worry about what other thread issued the notifyAll()
on the lock; the thread can only continue when the notifyAll() is issaredithe flag has been set to
false.
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Another approach used is to keep the number of locks acquired by a thread as few as possible,
preferably never more than one at a time. If several threads share the same locks, and they must
acquire more than one lock at some stage, then the locks should always be acquired in the same order.
To see how this prevent deadlocks, consider two threahdsadlandthread? that are using two locks
A and B. Ifthreadlobtains A first, then B, anthread2obtains B first then A, then a situation could
arise wherebyhreadlowns lock A and is waiting on B, antiread2owns lock B and is waiting on A.

Neither thread can proceed and so deadlock has occurred. This would be prevented if both threads
obtained lock A first, then lock B. This approach is sufficient, but not necessary to prevent deadlocks,
as other approaches may also prevent deadlocks without imposing this constraint on the program[10].

Finally, deadlock often occurs even when a thread, which already has some lock, tries to acquire
another lock only to issue a notifyAll() on it. To avoid this situation, it is easiest if the notifyAll() is
issued from anew threadvhich has no locks that could be held if it stalls. This is often used in the CSP
domain to wake up any threads waiting on receivers, for example after a pause or when terminating the
model. The class NotifyThread, in the ptolemy.actor.process package, is used for this purpose. This
class takes a list of objects in a linked list, or a single object, and issues a notifyAll() on each of the
objects from within a new thread.

The CSP domain kernel makes extensive use of the above patterns and conventions to ensure the
modeling engine is deadlock free. However for a much more thorough introduction to concurrent pro-
gramming Java, a very good starting point is [10].

6.2 RENDEZVOUS ALGORITHM

In CSP, thdocking pointfor all communication between processes isrdeiver Any occasion a
process wishes to send or receive, it must first acquire the lock for the receiver associated with the
channel it is communicating over. Two key facts to keep in mind when reading the following algo-
rithms are that each channel has exactly one receiver associated with it and that at most one process
can be trying to send to (or receive from) a channel at any stage. The constraint that each channel can
have at most one process trying to send to (or receive from) a channel at any stage is not currently
enforced, but an exception will be thrown if such a model is not constructed.

The rendezvous algorithm éntirely symmetridor the put() and the get(), except for the direction
the token is transferred. This helps reduce the deadlock situations that could arise and also makes the
interaction between processes more understandable and easier to explain. The algorithm controlling
how a get() proceeds is shown in figure 11. The algorithm for a put() is exactly the same except that put
and get are swapped everywhere. Thus it suffices to explain what happens when a get() arrives at a
receiver i.e. when a process tries to receive from the channel associated with the receiver.
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put waiting?
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complete = fals

_checkAndWait

rendezvous
complete?
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FIGURE 11. Rendezvous algorithm

When a get() arrives at a receiver, a put() is either already waiting to rendezvous or it isn’t. Both
the get() and put() methods are entirely synchronized on the receiver so they cannot happen simulta-
neously (only one thread can possess a lock at any given time). Without loss of generality assume a
get() arrives before a put(). The rendezvous mechanism is basically three steps: a get() arrives, a put()
arrives, the rendezvous completes.
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(1) When the get arrives it sees that it is first and sets a flag saying a get is waiting. It then waits on
the receiver lock while the flag is still tru€?) When a put arrives, it sets tlgetWaitingflag to false,
wakes up any threads waiting on the receiver (including the get), setsriiiezvousComplefiag to
false and then waits on the receiver while thadezvousComplefiag is false(3) The thread execut-
ing the get wakes up, sees that a put has arrived, seteitdezvousComplefiag to true, wakes up
any threads waiting on the receiver and returns thus releasing the lock. The thread executing the put
then wakes up, acquires the receiver lock, sees that the rendezvous is complete and returns.

Following the rendezvous, the state of the receiver is exactly the same as before the rendezvous
arrived, and it is ready to mediate another rendezvous. It is worth noting that the final step, of making
sure the second communication to arrive does not return until the rendezvous is complete, is necessary
to ensure that the correct token gets transferred. Consider the case again when a get arrives first, except
now the put returns immediately if a get is already waiting. A put arrives, places a token in the
receiver, sets the get waiting flag to false and returns. Now suppose another put arrives before the get
wakes up, which will happen if the thread the put is in wins the race to obtain the lock on the receiver.
Then the second put places a new token in the receiver and sets the put waiting flag to true. Then the
get wakes up, and returns with the wrong token! This is knownrase condition which will lead to
unintended behavior in the model.

6.3 CONDITIONAL COMMUNICATION ALGORITHM

There are two steps involved in executing a CIF or a CDO: first deciding which enabled branch
succeeds, then carrying out the rendezvous.

6.3.1 Built on top of rendezvous:

When a conditional construct has more than one enabled branch (guard is true or absent), a new
thread is spawned for each enabled branch. The job of the chooseBranch() method is to control these
threads and to determine which branch should be allowed to successfully rendezvous. These threads
and the mechanism controlling them are entirely separate from the rendezvous mechanism described
in section 6.2, with the exception of one special case, which is described in section 6.4. Thus the con-
ditional mechanism can be viewed as being built on top of basic rendezvous: conditional communica-
tion knows about and needs basic rendezvous, but the opposite is not true. Again this is a design
decision which leads to making the interaction between threads easier to understand and is less prone
to deadlock as there are fewer interaction possibilities to consider.

C which branch should succe%?

vy oy
( rendezvous >

FIGURE 12. Conceptual view of how conditional communication is built on top of rendezvous.
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6.3.2 Choosing which branch succeeds

The manner in which the choice of which branch can rendezvous is worth explaining. The choose-
Branch() method in CSPActor takes an array of branches as an argument. If all of the guards are false,
it returns -1, which indicates that all the branches failed. If exactly one of the guards is true, it performs
the rendezvous directly and returns the identification number of the successful branch. The interesting
case is when more than one guard is true. In this case, it creates and starts a new thread for each branch
whose guard is true. It then waits, on an internal lock, for one branch to succeed. At that point it gets
woken up, sets a finished flag in the remaining branches and waits for them to fail. When all the
threads representing the branches are finished, it returns the identification number of the successful
branch. This approach is designed to ensure that exactly one of the branches created successfully per-
forms a rendezvous.

6.3.3 Algorithm used by each branch:

Similar to the approach followed for rendezvous, the algorithm by which a thread representing a
branch determines whether or not it can proceed is entawtymetricafor a ConditionalSend and a
ConditionalReceive. The algorithm followed by a ConditionalReceive is shown figure 13. Again the
locking point is the receiver, and all code concerned with the communication is synchronized on the
receiver. The receiver is also where all necessary flags are stored.

Consider three cases.
(1) a conditionalReceive arrives and a put is waiting.

In this case, the branch checks if it is the first branch to be ready to rendezvous, and if so, it is goes
ahead and executes a get. If it is not the first, it waits on the receiver. When it wakes up, it checks if it
is still alive. If it is not, it registers that it has failed and dies. If it is still alive, it starts again by trying
to be the first branch to rendezvous. Note that a put cannot disappear.

(2) a conditionalReceive arrives and a conditionalSend is waiting

When both sides are conditional branches, it is up to the branch that arrives second to check
whether the rendezvous can proceed. If both branches are the first to try to rendezvous, the condition-
alReceive executes a get(), notifies its parent that it succeeded, issues a notifyAll() on the receiver and
dies. If not, it checks whether it has been terminated by chooseBranch(). If it has, it registers with
chooseBranch() that it has failed and dies. If it has not, it returns to the start of the algorithm and tries
again. This is because a ConditionalSend could disappear. Note that the parent of the first branch to
arrive at the receiver needs to be stored for the purpose of checking if both branches are the first to
arrive.

This part of the algorithm is somewhat subtle. When the second conditional branch arrives at the
rendezvous point it checks thhoth sides are the first to try to rendezvous for their respective pro-
cesses. If so, then the conditionalReceive executes a get(), so that the conditionalSend is never aware
that a conditionalReceive arrived: it only sees the get().

(3) a conditionalReceive arrives first.

It sets a flag in the receiver that it is waiting, then waits on the receiver. When it wakes up, it
checks if it has been killed by chooseBranch. If it has it registers with chooseBranch that it has failed
and dies. Otherwise it checks if a put is waiting. It only needs to check if a put is waiting because if a
conditionalSend arrived, it would have behaved as in case (2) above. If a put is waiting, the branch
checks if it is the first branch to be ready to rendezvous, and if so it is goes ahead and executes a get. If

Masters Report 210f33



it is not the first, it waits on the receiver and tries again.

6.4 MODIFICATION OF RENDEZVOUS ALGORITHM:

Consider the case when a conditional send arrives before a get. If all the branches in the condi-
tional communication which the conditional send is a part of are blocked, then the process will register
itself as blocked with the director. Then the get comes along, and even though a conditional send is
waiting, it too would register itself as blocked. This leads to one too many processes being registered

as blocked, which could lead to premature deadlock detection.

To avoid this, it is necessary to modify the algorithm used for rendezvous slightly. The change to

Case 1

conditional receive
arrives

branchFailed No

Return Yes
put waiting?
a put cannot
dissappear h
. Yes
get!! Yes first branch to
branchSucceeded rendezvous?
Return
No

_checkAndWait
branchFailed No

Return

branchFailed No

Return

get!! -
branchSucceeded Yes

Return

first branch to
endezvous?

Case 3

a conditionalSend

conditional

No‘: end waiting?

CAN dissappear RS

conditional receive
waiting = true

_checkAndWait

Case 2

_checkAndWait

first branch to
rendezvous?

other side
first branch to
endezvou

No notifyAll

get!
branchSucceeded

Return

FIGURE 13. Algorithm used to determine if a conditional rendezvous branch succeeds or fails
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the algorithm is shown in the dashed ellipse in figure 14. It does not affect the algorithm except in the
case when a conditional send is waiting when a get arrives at the receiver. In this case the process that
calls the get should wait on the receiver until the conditional send waiting flag is false. If the condi-
tional send succeeded, and hence executed a put, then the get waiting flag and the conditional send
waiting flag should both be false and the actor proceeds through to the third step of the rendezvous. If
the conditional send failed, it will have reset the conditional send waiting flag and issued a notifyAll()

on the receiver, thus waking up the get and allowing it to properly wait for a put.

The same reasoning also applies to the case when a conditional receive arrives at a receiver before

a put.

get waiting = true

otifyAll

_checkAndWait

conditional
send waiting?

get
waiting?

No
register actor
unblocked

_checkAndWait

FIGURE 14. Modification of rendezvous algorithm, section 6.4, shown in ellipse
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7. Demos and Examples
7.1 DINING PHILOSOPHERS.

This implementation of the Dining Philosophers problem illustrates both time and conditional
communication in the CSP domain. Five philosophers are seated at a table with a large bowl of food in
the middle. Between each pair of philosophers is one chopstick, and to eat, a philosopher needs both
the chopsticks beside him. Each philosopher spends his life in the following cycle: thinks for a while,
gets hungry, picks up one of the chopsticks beside him, then the other, eats for a while and puts the
chopsticks down on the table again. If a philosopher tries to grab a chopstick but it is already being
used by another philosopher, then the philosopher waits until that chopstick becomes available. This
implies that no neighboring philosophers can eat at the same time and at most two philosophers can eat

at a time.
010
/

Q /@\Q O - philosopher

FIGURE 15. lllustration of the Dining Philosophers problem

The Dining Philosophers problem was first dreamt up by Edsger W. Dijkstra in 1965. It is a classic
concurrent programming problem that illustrates the two basic properties of concurrent programming:

Liveness.How can we design the program to avoid deadlock, where none of the philosophers can
make progress because each is waiting for someone else to do something?

Fairness.How can we design the program to avoid starvation, where one of the philosophers
could make progress but does not because others always go first?

This implementation uses an algorithm that lets each philosopher randomly chose which chopstick
to pick up first (via a CDO), and all philosophers eat and think at the same rates. Each philosopher and
each chopstick are represented by a separate process. Each chopstick has to be ready to be used by
either philosopher beside it at any time, hence the use of a CDO. After it is grabbed, it blocks waiting
for a message from the philosopher that is using it. After a philosopher grabs both the chopsticks next
to him, he eats for a random time. This is represented by calling delay(double) with the random inter-
val to eat for. The same approach is used when a philosopher is thinking. Note that because messages
are passed by rendezvous, the blocking of a philosopher when it cannot obtain a chopstick is obtained
for free.

This algorithm is fair, as any time a chopstick is not being used, and both philosophers try to use it,
they both have an equal chance of succeeding. However this algorithm does not guarantee the absence
of deadlock, and if it is let run long enough this will eventually occur. The probability that deadlock
occurs sooner increases as the thinking times are decreased relative to the eating times.
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7.2 M/M/1

This demo illustrates a simple M/M/1 queue. It has three actors, one representing the arrival of
customers, one for the queue holding customers that have arrived and have not yet been served, and the
third representing the server. Both the inter-arrival times of customers and the service times at the
server are exponentially distributed, which of course is what makes this a M/M/1 queue.

custiomers
arriving

buffer

server
~ —

) P

FIGURE 16. Actors involved in M/M/1 demo

This demo makes use of basic rendezvous, conditional rendezvous and time. By varying the rates
for the customer arrivals and service times, and varying the length of the buffer, you can see various
trade-offs. For example if the buffer length is too short, customers may arrive that cannot be stored and
so are missed. Similarly if the service rate is faster than the customer arrival rate, then the server could
spend a lot of time idle.

7.3 PAUSING M/M/1

This example demonstrates how pausing and resumption works. The setup is exactly the same as
in the M/M/1 demo, except that the thread executing the model calls pause() on the director as soon as
the model starts executing. It then waits two seconds, as arbitrary choice, and then calls resume(). The
purpose of this demo is to show that the pausing and resuming of a model does not affect the model
results, only its rate of progress. The ability to pause and resume a model is primarily intended for the
user interface.

7.4 SIEVE OF ERATOSTHENES

This demo illustrates changes to the topology during the execution of a model. It is explained in
detail in the section on topology changes, section 8.2.
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8. Changes to the Topology during the Execution of a Model

For some models it may be necessary to change the topology of the model during the course of
executing the model. This is supported in the CSP domain, but only at specific points of the model exe-
cution. In particular, changes to the topology are only allowed at deadlock points.

When the director detects deadlock, real or timed, it then checks if any topology changes have
been queued with it. If one or more topology change has been queued, it carries them out and contin-
ues. Note that the result of a topology change might remove an otherwise real deadlock by introducing
new processes.

8.1 HOW TO WRITE AN ACTOR THAT USES TOPOLOGY CHANGES

The procedure for making a topology change is relatively straightforward. First the actor must cre-
ate a TopologyChangeRequest object representing the topology change. Second, the request must be
gueued with the director by calling queueTopologyChange(). If the topology change will not affect any
channels or ports the process is communicating with, then the process can proceed. Otherwise the pro-
cess should delay itself until the next occasion a time deadlock occurs by calling waitForDeadlock().
Then, when the process wakes up again, the director will already have performed the mutation. This is
because topology changes get processed when a deadlock is detected, and any queued topology
changes are done before waking up delayed processes or advancing time.

The reason for delaying is that it is important that no process be waiting to rendezvous at a receiver
in a port affected by the topology change. When a port is affected by a topology change, it is likely that
it will abandon its old receivers and create new ones. This will leave the process trying to rendezvous
with a dangling receiver, which will eventually cause the model to terminate early. To get around this
problem, it is necessary to delay the execution of any processes that may be affected by a rendezvous
until the next occasion a time deadlock occurs. For example in the CSPSieve process, each process
calls waitForDeadlock() immediately after queueing the mutation.

To create a TopologyChangeRequest, it is necessary to create a subclass that implements the
abstract method constructEventQueue(). This is most easily done using an inner class, normally in a
private method of the actor. The code in CSPSieve contains an example of this. The reason for using an
inner class with a method that creates the topology change is to avoid potential deadlocks. The idea
behind avoiding the deadlocks is that the topology changes only happen when the request is processed,
which is when the constructEventQueue() method gets invoked. Thus the topology changes are made
from within the thread that the director is running in, and not the thread running the process that
requested the change.

For a more detailed explanation of how changes to the topology are constructed and executed dur-
ing the execution of a model, and the changes that are allowed, try reading the appropriate section in
the Ptolemy Il design document[13].

8.2 SIEVE OF ERATOSTHENES EXAMPLE

This example implements th®ieve of Eratosthene#t is an algorithm for generating a list of
prime numbers. It originally consists of a source generating integers, and one sieve filtering out all
multiples of two. When the end sieve sees a number that it cannot filter, it creates a new sieve to filter
out all multiplies of that number. Thus after the sieve filtering out the number two sees the number
three, it creates a new sieve that filters out the number three. This then continues with the three sieve
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eventually creating a sieve to filter out all multiples of five, and so on. Thus after a while there will be
a chain of sieves each filtering out a different prime number. If any number passes through all the
sieves and reaches the end with no sieve waiting, it must be another prime and so a new sieve is cre-
ated for it.

This demo is an example of how changes to the topology can be made in the CSP domain. Each
topology change here involves creating a new CSPSieve actor and connecting it to the end of the chain
of sieves.
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FIGURE 17. lllustration of Sieve of Eratosthenes for obtaining first six primes.
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9. Composing CSP with other domains

In Ptolemy the mixing of domains is achieved through the use of hierarchy. At any level of the
hierarchy, all the actors obey the same semantics (model of computation), but inside any one of these
actors there may be another domain using a different model of computation. The composition of CSP
with other domains has not yet been fully explored, but a considerable amount of the effort involved in
designing the domain was aimed at ensuring smooth interaction between the CSP domain and other
domains. In this chapter | have placed some of the thoughts that may be useful in composing CSP with
other domains.

9.1 CSP INSIDE ANOTHER DOMAIN

In this case, real deadlock no longer ends the model execution, but instead marks the end of an iter-
ation one level up in the hierarchy. The director transfers any tokens from the inside CSP domain to the
outside domain. Control then returns to the outside domain, which continues its execution. Then when
fire() is called again on the CSPDirector it transfers any inputs from the outside domain inside and
continues until real deadlock is reached again.

The transferring of inputs from the outside domain and inside domain should probably be accom-
plished using a separate TransferThread object. These threads would simply get a Token from the out-
side domain, and send it to the channel inside the CSP model. This would be repeated until the thread
blocks because there are no more Tokens at the outside level, or when “enough” tokens have been
transferred. The director would create one of these threads for each channel that represents an input
from one level up in the hierarchy. The director thread will not block as it is not performing the rendez-
vous directly.

Similarly, when the director is transferring outputs from the CSP model to the model one level up
in the hierarchy, it also creates a TransferThread to perform the transfer. If the CSP model wishes to
transfer more than one message per iteration up the hierarchy, a CSPBuffer should be placed on each
output channel that transfers more than one message. This is to allow the process sending to the output
channel to continue after sending the first message.
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FIGURE 18. Exploded view of what a CSP subsystem might look like inside a composite
actor in another domain.

For example if a CSP domain inside a CompositeActor is represented by figure 18(a), then the
CSP model inside might have the form shown in (b). The dashed arrows show the transfer of inputs
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and outputs between the two levels of the hierarchy.

Each occasion real deadlock occurs, it is guaranteed that no processes are delayed. This allows the
time for the CSP model to be set, by the director one level up in the hierarchy, at the start of each itera-
tion. This should make composing CSP with other timed domains reasonably straightforward.

9.1.1 CSP within CSP

The CSP model of computation is not compositional. This means that composing several pro-
cesses into a single process one level up in the hierarchy may impact the semantics of the model execu-
tion. To see this, consider two processes that each simply read an input, then send it on. This is shown
in figure 19. If a stream of messages is sent along the input channel of process A, then it will output the
same stream of messages on its output channel. No messages are sent along the input channel of pro-
cess B. If the two processes are then composed as shown by the dashed box, and the composed process
reads alternately from the two input channels, then the behavior of the composed process will be to
block waiting for a message on the second channel, which is different from that of the two processes
separately.

9.2 ANOTHER DOMAIN INSIDE CSP

Recall that each actor in a CSP model is executed by a ProcessThread, as shown in figure 10. Due
to the semantics of the CSP model of computation, the inside model is executed in parallel with the
other processes. This has implications for the availability of Tokens at the input ports of the model one
level down in the hierarchy. If the inside model requires a certain set of Tokens in order to fire, it is up
to the director controlling the inside model to ensure this before it executes. This director is also
responsible for obtaining any Tokens at each CSPReceiver so that another Token could be sent to the
receiver if necessary. This is how the inside domain acquires more than one Token on any given input
channel.

FIGURE 19. Example showing how CSP is not compositional

Masters Report 290f 33



10. Design decisions

In designing the CSP domain, many design choices had to be made. Below are some of the key
design decisions that were made and the motivation for the implementation chosen.

10.1 TIME: DISTRIBUTED RELATIVE TIME VERSUS CENTRALIZED ABSOLUTE TIME

One of the key decisions that had to be made was what model of time to use. The model used was
chosen primarily to make composing CSP domains with other timed domains possible. Since each
actor only deals with delays relative to the current model time, or at the current model time, then, if no
actors are delayed, the current model time can be arbitrarily set. This works well with the notion of an
iteration in CSP which is when real deadlock is reached, i.e. when no actors are delayed. Thus the time
of a CSP subsystem could be set at the start of each iteration by the director one level up in the hierar-
chy.

The model also has the added advantage that it is relatively simple and easy to use. The only disad-
vantage is that time is centralized and so all actions involving time must pass through the director.

10.2 CHOICE OF LOCKS USED AND LOCKING POINTS

The receiver is chosen as the locking point for all communications primarily for scalability.
Because the processes involved in a rendezvous lock locally on the receiver involved, the director con-
trolling the model is not directly involved in mediating any rendezvous. If the director were involved,
then as the models became larger the performance would suffer as each rendezvous would have to be
carried out through the director. The receiver is a natural point for storing the flags involved in control-
ling a conditional communication. Note that a rendezvous is completely separate from the notion of
time in the domain.

There are three primary lock types in use in the CSP domain: the director lock, of which there is
only one, a lock for each receiver, and an internal lock hidden inside each actor. The hidden lock sim-
ply takes the place of locking on the actor for internal control mechanisms. The use of each of these
locks should not be visible when using the domain. The decision to use an internal lock for controlling
access to methods of CSPActor was made to avoid using any lock that the code in a user written actor
might use. In particular, the actor code should be abledk on itself.If we had chosen to lock onto
the actor itself, as opposed to a hidden lock, then the model could deadlock if the actor code synchro-
nized on itself.

10.3 MAKING ALL THE COMMUNICATION MECHANISMS SYMMETRIC

Aside from the fact that a Token is transferred or received in a rendezvous, the two actions are
symmetric, so | felt that the locking algorithms should also be. This also has the advantage of making
the algorithm easier to understand and less prone to unintended deadlocks as there are fewer interac-
tions to consider. Similarly the choice of making the algorithm used in the guarded communication
threads symmetric is made to keep it as simple, understandable and as robust as possible.

10.4 CONDITIONAL COMMUNICATION MECHANISMS UPON RENDEZVOUS

The reason for building the conditional communication mechanism upon the rendezvous mecha-
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nism is that it is logically clearer what is happening when it is separated into two steps: first decide
which branch will rendezvous, then do the rendezvous. This also enables tracking down and removing
situations where false deadlocks could arise.

10.5 POINTS IN THE MODEL WHEN CHANGES TO THE TOPOLOGY ARE ALLOWED

The options considered for when to allow changes to the topology are either at deadlock points, or
as soon as the model can be paused. The reason for choosing to allow changes to the topology only at
deadlock points is mainly that these points are intrinsic to the nature of the model. The state of the
model is well defined at these points: all processes are either blocked trying to communicate or are
delayed waiting for time to advance. For any execution of a model, the times at which time deadlocks
occur are the times at which topology changes may occur. This allows for a process to be created when
another process reaches some state, and the two processes will be continuing from the same model
time.

Pausing and resuming a model does not affect the outcome of a particular model run, only the rate
of progress. Thus if changes to the topology were allowed to happen immediately (as soon as the
model is able to pause), this would result in a new nondeterminism being introduced into the model.
For CSP we wish to keep all nondeterminism the result of the conditional communication constructs,
so topology changes are only allowed at deadlocks.
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11. Conclusion and Future Work

The CSP domain in Ptolemy Il has been implemented using the concurrency support built into
Java. It builds upon the low level support Java offers to allow the user to design concurrent systems at
a much higher level of abstraction. A notion of time has been added to the classical CSP model to
enable modeling of systems where time is relevant, in particular embedded systems. Finally, the CSP
domain allows the topology of a model to change during execution while still maintaining a consistent
state.

The composition of CSP with other domains is important for heterogeneous modeling of systems.

In particular it is envisioned that the CSP domain will be hierarchically composed in models where
resource contention is a major concern. Some examples include embedded systems where a number of
functions share the same CPU, or in modeling client/server architectures.

The hierarchical composition of the CSP domain with other domains in Ptolemy Il has not yet
been fully explored. However, much of the effort in designing the CSP domain was devoted to ensur-
ing that the CSP domain could be successfully composed with other domains. It should make for some
very interesting research defining and exploring the semantics of these interactions. It is regrettable
that | did not have enough time to start exploring this area. | believe the design and the algorithms used
in the domain are sufficiently adaptable/clear that the domain should be fairly easy to extend or modify
if necessary.
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