
Proceeding of Thirty Second Annual Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, California, November 1998

Interaction of Finite State Machines and Concurrency Models

Bilung Lee and Edward A. Lee
{bilung, eal}@eecs.berkeley.edu

University of California at Berkeley

Abstract

Hierarchical concurrent finite state machines (HCFSMs)
dramatically increase the usability of finite state machines
(FSMs). However, most formalisms that support HCFSMs,
such as Statecharts (and its variants), tightly integrate the
concurrency semantics with the FSM semantics. We, in
contrast, allow FSMs to be hierarchically combined with
multiple concurrency models, enabling selection of the
most appropriate concurrency semantics for the problem at
hand. A key issue for the success of this scheme is to define
how FSMs interact with various concurrency models with-
out ambiguities. In this paper, we focus on the interaction
of FSMs and three concurrency models: synchronous data-
flow, discrete-event and synchronous/reactive models.

1. Introduction

Hierarchical concurrent finite state machines (HCF-
SMs) increase their usefulness for the development of con-
trol-oriented systems by extending finite state machines
(FSMs) with structuring and communication mechanisms.
Hierarchy allows a state of the FSM to be refined into
another FSM, i.e. a set of substates. Concurrency allows a
state to be further decomposed into multiple simulta-
neously active FSMs that communicate through messaging
of some sort.

A popular and seminal representative of the HCFSM
model was introduced as the Statecharts formalism [7].
Since then, a number of variants [12] have been explored
and exhibit different concurrency semantics. However, they
tightly integrate the concurrency semantics with the FSM
semantics. For example, the FSM is integrated with a syn-
chronous/reactive concurrency model [1] in the Argos lan-
guage [11], or a discrete-event concurrency model [3] in
the co-design finite state machines (CFSM) model [4].

In fact, we observe that FSM, concurrency and hierar-
chy can be orthogonal semantic properties:

• FSM: This specifies the sequential behavior of a system

in the form of states and transitions.

• Concurrency: This specifies the interaction between
multiple simultaneous components and modules.

• Hierarchy: This specifies the interaction between a
module and the refining components in that module.

In this paper, we advocate decoupling the concurrency
semantics from the FSM semantics. By equipping the basic
FSM with hierarchy and heterogeneity, hierarchical combi-
nations of FSMs with various concurrency models become
feasible. Key to this approach is to clearly define the inter-
action between different models before they can be com-
bined together.

We begin by adding hierarchy and heterogeneity to the
basic FSM, and explaining how FSMs are combined with
concurrency models. Then, in particular, we discuss the
interaction between FSMs and synchronous dataflow, dis-
crete-event and synchronous/reactive concurrency models.
Finally, we use a directed loop of two FSMs as an example
to illustrate different concepts of communication in the
three concurrency models.

2. Finite state machines

An FSM consists of a set of input events, a set of output
events, a set of states, an initial state and a set of transi-
tions. Consider an example of the FSM, shown in figure 1,
with input events {a, b} and output events {u, v}, where an
event is a named variable that is eitherpresentor absent.
Each elliptic node represents a state and each arc repre-
sents a transition. The arc without a source state points to
the initial state, i.e. stateα. Each transition links a source

Figure 1. A basic FSM.

a b¬∨ u⁄

a b v⁄∧¬

α β

state with a destination state, and is labeled by either
“guard/action” or “ guard” (i.e. the action is omitted). A
guard is a boolean expression over the input events. The
evaluation of an event is eithertrue or falsewhen the event
is either present or absent. The operators¬, ∨ and ∧ in
guards correspond to the boolean operatorsnot, or and
and, respectively. An action lists a subset of the output
events.

In onereactionof the FSM, a subset of the input events
are present. One transition is triggered when its guard is
true under the current input events. The FSM goes to the
destination state of the triggered transition, and emits each
output event in the action of the triggered transition, mak-
ing these output events present. If the action is omitted, it
means that no output event is emitted. An action only lists
the output events to be emitted, and thus all other output
events are absent.

2.1. Hierarchy

In a hierarchical FSM, a state may be refined into
another FSM. With respect to the inner FSM called the
slave, the outer FSM is called themaster. Moreover, if a
state is refined, it is called ahierarchical state; otherwise,
the state is called anatomicstate. For example, we can let
the stateβ in figure 1 be refined into another FSM but let
the stateα not be refined, as illustrated in figure 2.

The hierarchy semantics define how the slave reacts rel-
ative to the reaction of its master. A reasonable semantics
defines one reaction of the hierarchical FSM as follows: if
the current state is an atomic state, the hierarchical FSM
behaves just like a basic FSM. If the current state is a hier-
archical state, then first the corresponding slave reacts, and
then the master reacts.

2.2. Heterogeneity

Our hierarchical FSM is easily extended to support het-
erogeneity. The slave of a hierarchical state need not be an

FSM. The key principle is that the slave must have a well-
defined terminating computation that reacts to input events
by (possibly) asserting output events. Therefore, the slave
could be, for example, a Turing machine (that halts), a C
procedure (that eventually returns), a dataflow graph (with
a well-defined iteration), etc. It can even be concurrent. In
this paper, we focus on combinations of FSMs with con-
currency models.

The hierarchy semantics is similarly defined as in the
previous section with one subtle modification: If the cur-
rent state is a hierarchical state, then first the corresponding
slave is invoked and then the master reacts. When the slave
is invoked, it performs a determinate and finite operation,
called astepof the slave, which reacts to input events and
may assert output events. One step of a slave FSM is one
reaction of the FSM.

2.3. Hierarchical combination

With support of hierarchy and heterogeneity, the FSM
can be combined with almost any concurrency model. Our
objective is the hierarchical nesting of the FSM with con-
currency models, as shown in figure 3. We schematically
illustrate the modules of the concurrency model with rect-
angular blocks and the states of the FSM model with ellip-
tic nodes. The depth and order of the nesting is arbitrary.

To achieve the goal, first we need for an FSM to be able
to describe a module in a concurrency model. For example,
in figure 4, two FSMs are embedded inside the modules of
a concurrency model. This can be done as long as that
model provides a way to determine the input events and
when a reaction should occur for each FSM. Most interest-
ingly, the two FSMs are concurrent FSMs based on the
concurrency semantics provided by that model.

On the other hand, a state of an FSM needs to be able to
be refined into a concurrency subsystem, as explained
above in section 2.2.

a b¬∨ u⁄

a b v⁄∧¬

α β Master

Slave

a v⁄

b v⁄

γ δ

Figure 2. A hierarchical FSM.
Figure 3. Hierarchical nesting of FSMs

with concurrency models.

3. Interaction with concurrency models

Different models capture different semantic properties
of a system. When different models are combined together,
differences between them can lead to ambiguities. These
need to be resolved by defining the semantics of interaction
between different models. Models that support concur-
rency are numerous. In this paper, we focus on the interac-
tion semantics of FSMs with synchronous dataflow (SDF),
discrete-event (DE) and synchronous/reactive (SR) concur-
rency models.

3.1. Synchronous dataflow

Under the SDF paradigm [10], a system consists of a set
of blocks interconnected by directed arcs. The blocks rep-
resent computational functions that map input data into
output data when theyfire. The arcs represent streams of
data tokens, and can be implemented as first-in-first-out
queues. Upon firing, a block consumes a fixed number of
tokens from each input arc and produces a fixed number of
tokens on each output arc. The number of tokens consumed
and produced can be used to unambiguously define aniter-
ation, or minimal set of firings that return the queues to
their original size. Thus, the firing schedule for an iteration
can be determined at compile time.

3.1.1. FSM inside SDF

When an FSM describes a block of an SDF graph, it
must externally obey SDF semantics. Hence, it must con-
sume and produce a fixed number of tokens on every input
and every output. We relate one firing of the SDF block to
one reaction of the embedded FSM.

A slight subtlety for the SDF is that absence of a token
is not a well-defined, testable condition. Thus, the absence
of an event in FSM must appear explicitly as a token in
SDF. A simple approach is to encode presence and absence

using boolean-valued tokens. I.e. a true-valued token
means the event is present and a false-valued token means
it is absent.

3.1.2. SDF inside FSM

When an SDF graph refines a state of an FSM, one step
of the slave SDF graph is taken to be one iteration. In other
words, when the refined state is the current state, the hierar-
chical FSM reacts with one iteration of the slave SDF
graph followed by one reaction of the master FSM.

If the slave SDF graph consumes or produces more than
one token on inputs or outputs, the semantics becomes
more subtle. Suppose for example that a system consists of
three-level hierarchy: A slave SDF graph refines a state of
an FSM that describes a block of another SDF graph. In
this case, the FSM needs to inform its outer SDF graph
how many tokens are consumed or produced by its inner
SDF graph because the outer SDF graph requires this
information to compute the firing schedule. Furthermore,
there may be more than one state of the FSM refined into
the SDF graph. Thus, all slave SDF graphs are required to
consume or produce the same number of tokens on each
input or output.

3.2. Discrete events

The DE model [3] carries a notion ofglobal timethat is
known simultaneously throughout the system. An event
occurs at a point in time. In a simulation of such a system,
each event needs to carry atime stampthat indicates the
time at which the event occurs. The time stamp of an event
is typically generated by the block that produces the event,
and is determined by the time stamp of input events and the
latency of the block. The DE simulator needs to maintain a
global event queue that sorts the events by their time
stamps. It defines thecurrent timeof the system to be the
smallest time stamp in the event queue, and chronologi-
cally processes each event by sending it to the appropriate
block, which reacts to the event (fires).

3.2.1. FSM inside DE

An FSM embedded inside a DE block performs one
reaction when the DE block fires, which occurs when there
is an event present at one of its inputs. Unlike SDF, the
notion of presence and absence of an event is the same in
DE and FSM. However, in DE, every event needs a time
stamp, something not provided by the FSM. We choose the
semantics where the FSM appears to the DE as azero-
delayblock. I.e. the event passed to a DE system in a reac-
tion of the FSM is assigned the same time stamp as the
input event that triggers that reaction. Nevertheless, we

Figure 4. Two FSMs are embedded inside
the modules of a concurrency model.

a
u

x
α β

a v⁄
v

v

b

u
y

γ δ

v y⁄

b u⁄

u x⁄

may explicitly connect the FSM-embedding block with a
delay block to simulate the delay occurring inside the FSM
subsystem.

3.2.2. DE inside FSM

When a DE model refines a state of an FSM, one step of
the slave DE subsystem is the simulation of that subsystem
until its current time matches the time stamp of its input
events. In particular, if previous FSM describes a block of
another DE model, the events passed to invoke the inner
DE subsystem by the FSM will have the current time of the
outer DE system as their time stamps. Thus, the notion of
current time keeps consistent throughout all DE models in
the hierarchy. Moreover, the semantics need not impose
other consistency constraint, as we had to do with SDF,
even when more than one state of the FSM is refined into a
DE model.

3.3. Synchronous/Reactive models

An SR system [1] is a set of blocks instantaneously
communicating through unbuffered directed arcs. Execu-
tion of the system occurs at a sequence of discreteinstants.
To ensure that the system is deterministic, i.e. always find-
ing the same behavior given the same inputs, a partial order
relation is imposed on the arc values that is augmented
with a bottom value⊥ interpreted as “unknown”, and the
functions computed by the blocks are required to be mono-
tonic with respect to this partial order relation. Together,
these allow the system behavior at each instant to be
defined as the least fixed point of the composition of all
block functions.

Most familiar functions are strict functions that are
always monotonic. However, a directed loop of all strict
functions always causes causality problem - the least fixed
point is all unknown. The use of non-strict functions allows
directed loops with less trivial solutions.

3.3.1. FSM inside SR

To make best use of directed loops in an SR system, the
FSMs need to be treated as non-strict functions in each
reaction. For example, suppose that there are two outgoing
transitions, labeled as “ ” and “ ”, for a
state of an FSM. We can see that the function mapping the
inputs a and b into the outputx at that state is simply

= = a. In other words, as
long as inputa is known to be present or absent, the output
x can be asserted without knowing inputb. This analysis
can be automated to get a simplified function for each out-
put at each state. Then, these simplified functions indicate
for each state what inputs need to be known to define an

output.

3.3.2. SR inside FSM

Embedding SR systems inside the states of the FSMs is
straightforward. When a state of the FSM is refined into an
SR subsystem, the semantics of SR are simply exported to
the outer model in which the FSM is embedded. Moreover,
one step of the slave SR subsystem is taken to be one
instant.

4. Comparison of communication concepts

In the combination, concurrent FSMs are achieved by
embedding FSMs inside a concurrency model. Most inter-
estingly, they exhibit different communication mechanisms
in different concurrency models. In particular, we use a
directed loop of two FSMs in a concurrency model,
depicted in figure 5, as a comparison.

First, if the concurrency model is SDF, then the FSMA
and the FSMB are both waiting for one token from each
other. This is calleddeadlock[10]. However, this deadlock
can be avoided by adding at least one unit delay (an initial
token) on either arc in the directed loop, allowing one FSM
to fire first. Suppose that a unit delay exists on the arc from
the FSMB to the FSMA. Reacting to a present event (a
true-valued token) on inputa, the FSMA makes transition
from stateα to stateβ and emits the eventv, and then the
FSM B makes transition back to stateγ and emits the event
u. However, due to the unit delay, the eventu will not be
fed back to the FSMA until the next iteration. In other
words, the communication exhibitsdelayed semanticson
the delay arc in an SDF graph.

Unlike in SDF, directed loops with zero-delay are
always permitted in DE and intrinsically exist in SR. How-
ever, they have different interpretations and may exhibit
different behaviors in the two models. When the concur-
rency model in figure 5 is DE, it will start a sequence of fir-
ings (FSM A, FSM B and then FSMA) reacting to a

a b∧ x⁄ a b¬∧ x⁄

f x a b,() a b∧() a b¬∧()∨

Figure 5. A directed loop of two FSMs
in a concurrency model.

B

a v
α β

v

u

u γ

A

B

A

a / v

v / u

u

present event on inputa. The communication between the
two FSMs can be interpreted as a sequence ofmicro steps
within a macro stepdelimited by the occurrence of the
external input eventa. In other words, the transitions of the
FSMs strictly follow each other as micro steps within a
macro step. This interpretation resembles themicro-step
semantics in [8].

Now consider the concurrency model in figure 5 to be
an SR system. When the input event ona is present at a
certain instant, after the least fixed point is found (both
eventsu andv are present), the two FSMs make transition
according to the least fixed point. Under thisfixed-point
semantics, all generated events and triggered transitions are
considered genuinely simultaneous within the same
instant. Note that, unlike in the micro-step semantics, each
FSM in the directed loop can only make a transition once
reacting to an external input eventa.

5. Conclusions

We have explored the combination of FSMs with three
concurrency models, namely synchronous dataflow, dis-
crete-event and synchronous/reactive models. The advan-
tages for this system specification scheme are

• Heterogeneous: Diverse models can coexist and interact
by hierarchical combination.

• Modular: Distinct portions of a system can be sepa-
rately modeled, choosing the best appropriate modeling
technique.

• Extensible: Additional concurrency models can be
included in the combination as long as we provide the
interaction between different models.

The above approach is under implementation in
Ptolemy [2]. We have implemented an FSM domain [9],
and have integrated it with two existing concurrency
domains, the SDF and the DE domains. The next stage of
implementation is to integrate the SR domain [5] with the
FSM domain.

The FSMs discussed are “pure”, in the sense that events
cannot carry values other than presence or absence. In
many applications, non-boolean values are more useful.
We refer reader to [6] for details about supporting valued
FSMs.

Finally, in our scheme, the semantics of FSM, concur-
rency and hierarchy are naturally supported in a manner
similar to HCFSMs. However, in fact, the typical applica-
tions of HCFSMs do not really illustrate the main advan-
tages of our approach. A signal processing system would
be a better illustration, where FSM subsystems are used for
control logic and dataflow subsystems are used for
numeric-intensive signal processing.

Acknowledgments

This research is part of the Ptolemy project, which is
supported by the Defense Advanced Research Projects
Agency (DARPA), the State of California MICRO pro-
gram, and the following companies: Cadence Design Sys-
tems, Hewlett Packard, Hitachi, Hughes Space and
Communications, NEC, and Philips.

References

[1] A. Benveniste and G. Berry, “The Synchronous Approach
to Reactive and Real-Time Systems,”Proceedings of the
IEEE, vol. 79, no. 9, pp. 1270-1282, September 1991.

[2] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt,
“Ptolemy: A Framework for Simulating and Prototyping
Heterogeneous Systems,”Int. Journal of Computer Simula-
tion, special issue on “Simulation Software Development,”
vol. 4, pp. 155-182, April 1994.

[3] C. Cassandras, “Discrete Event Systems, Modeling and
Performance Analysis,” Irwin, Homewood, IL, 1993.

[4] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
and A. Sangiovanni-Vincentelli, “Hardware-Software
Codesign of Embedded Systems,”IEEE Micro, pp. 26-36,
August 1994.

[5] S. A. Edwards, “The Specification and Execution of Heter-
ogeneous Synchronous Reactive Systems,” Ph.D. disserta-
tion, UCB/ERL M97/31, Electronics Research Laboratory,
University of California, Berkeley, May 1997.

[6] A. Girault, B. Lee, and E. A. Lee, “Hierarchical Finite State
Machines with Multiple Concurrency Models,” April 13,
1998 (revised from UCB/ERL M97/57, Electronics
Research Laboratory, University of California, Berkeley,
August 1997).

[7] D. Harel, “Statecharts: A Visual Formalism for Complex
Systems,”Sci. Comput. Program.,vol 8, pp. 231-274, 1987.

[8] D. Harel, A. Pnueli, J. Schmidt, and R. Sherman, “On the
Formal Semantics of Statecharts,”Proc. of the Symposium
on Logic in Computer Science, p. 54-64, June 1987.

[9] B. Lee and E. A. Lee, “Hierarchical Concurrent Finite State
Machines in Ptolemy,” InInt. Conf. on Application of Con-
currency to System Design, Fukushima, Japan, March 1998.

[10] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of
Synchronous Data Flow Programs for Digital Signal Pro-
cessing,”IEEE Trans. on Computers, January 1987.

[11] F. Maraninchi, “Operational and compositional semantics
of synchronous automaton compositions,”Proc. of 3rd Int.
Conf. on Concurrency Theory, pp. 550-564, August 1992.

[12] M. von der Beeck, “A Comparison of Statecharts Variants,”
Proc. of Formal Techniques in Real Time and Fault Tolerant
Systems, pp. 128-148, September 1994.

