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RESYNCHRONIZATION FOR MULTIPROCESSOR DSP SYSTEMS —

PART 2: LATENCY-CONSTRAINED RESYNCHRONIZATION 1!
|

Shuvra S. Bhattacharyya, Sundararajan Sriram and Edward A. Lee

1. Abstract
|
The companion paper [5] introduced the concept of resynchronization, a post-optimization

for static multiprocessor schedules in which extraneous synchronization operations are introduced
in such a way that the number of original synchronizations that consequently hedomzant
significantly exceeds the number of additional synchronizations. Redundant synchronizations are
synchronization operations whose corresponding sequencing requirements are enforced com-
pletely by other synchronizations in the system. The amount of run-time overhead required for
synchronization can be reduced significantly by eliminating redundant synchronizations [4, 30].
Thus, effective resynchronization reduces the net synchronization overhead in the implementation
of a multiprocessor schedule, and improves the overall throughput.

However, since additional serialization is imposed by the new synchronizations, resyn-
chronization can produce significant increase in latency. The companion paper [5] develops fun-
damental properties of resynchronization and studies the problem of optimal resynchronization
under the assumption that arbitrary increases in latency can be tolerated (“maximum-throughput
resynchronization”). Such an assumption is valid, for example, in a wide variety of simulation
applications. This paper addresses the problem of computing an optimal resynchronization among

all resynchronizations that do not increase the latency beyond a prespecified uppér hgund
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Our study is based in the context of self-timed execution of iterative dataflow specifications,
which is an implementation model that has been applied extensively for digital signal processing
systems.

Latency constraints become important in interactive applications such as video conferenc-
ing, games, and telephony, where beyond a certain point latency becomes annoying to the user.
This paper demonstrates how to obtain the benefits of resynchronization while maintaining a

specified latency constraint.

2. Introduction
|
In a shared-memory multiprocessor system, it is possible that certain synchronization

operations areedundantwhich means that their sequencing requirements are enforced entirely
by other synchronizations in the system. It has been demonstrated that the amount of run-time
overhead required for synchronization can be reduced significantly by detecting and eliminating
redundant synchronizations [4, 30].

The objective of resynchronization is to introduce new synchronizations in such a way that
the number of original synchronizations that consequently become redundant is significantly
greater that the number of new synchronizations. Thus, effective resynchronization improves the
overall throughput of a multiprocessor implementation by decreasing the average rate at which
synchronization operations are performed. However, since additional serialization is imposed by
the new synchronizations, resynchronization can produce significant increase in latency. For some
applications, such an increased latency is tolerable; examples are video and audio playback from
media such as Digital Video Disk (DVD). For other applications, teleconferencing for example,
an increase in latency may not be tolerable. In voice telephony, for example, a round trip delay
greater than 40 milliseconds is perceived as an annoying echo. Such a limit on tolerable latency
sets datency constraint. ... This paper addresses the problem of computing an optimal resyn-
chronization among all resynchronizations that do not increase the latency beyond a specified

upper bound. ., - This enables us to realize some of the benefits of reduced synchronization



overhead due to resynchronization, while maintaining the required latency constraint.

We address this problem in the contexself-timedscheduling ofterative synchronous
dataflow[17] specifications on multiprocessor systems. Please refer to Section 2 of the compan-
ion paper [5] for elaboration of these concepts. Interprocessor communit@@jra6d synchro-
nization are assumed to take place through shared memory, which could be global memory

between all processors, or it could be distributed between pairs of processors.

3. Synchronization redundancy and resynchronization
|

Please refer to Sections 3 of the companion paper [5] for a review of relevant background
(primarily from graph theory) and notation, and to Section 4 of the companion paper [5] for a
description of theynchronization protocold=FS and FBS) assumed in this paper and a review of
our synchronization grapmodeling methodology for analyzing self-timed execution of iterative
dataflow specifications.

Any transformations that we perform on the synchronization graph must respect the syn-
chronization constraints implied by the original synchronization graph. If we ensure this, then we
only need to implement the synchronization edges of the optimized synchronization graph. If
G; = (V, E)) andG, = (V, E,) are synchronization graphs with the same vertex-set and the
same set of intraprocessor edges (edges that are not synchronization edges), w&sgyr¢hat
servesG, if for all e E, such thae E; , we havpel(src(e), snk(e)) < delay(e) . The fol-

lowing theorem, developed in [4], underlies the validity of resynchronization.

Theorem 1: The synchronization constraints@f  imply the constrains.pf G, if pre-

servesG, .

A synchronization edge redundant in a synchronization grap@  if its removal yields a
graph that preserves . If all redundant edges in a synchronization graph are removed, then the
resulting graph preserves the original synchronization graph [4].

Given a synchronization gragh , a synchronization €elgex,) G in , and an ordered
pair of actoryy,, y,) irG , we say théy,, y,) subsumes(x,, X,) in G if
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Pa(X1, Y1) + P2 Xp) < delay((Xy, X,)) -
Thus, intuitively,(y,, y,) subsumes,, X,) if and only if a zero-delay synchronization edge
directed fromy, toy, make§x;, X,) redundant3f is the set of synchronization edGes in
andp is an ordered pair of actorsG , thgp) ={s §p subsumes}

If G = (V, E) is a synchronization graph aid is the set of feedforward eddges in
then aresynchronizationof G is aseR={¢/', &/, ...,e,'} of edges that are not necessarily
contained inE , but whose source and sink vertices ave in , suahy they, ..., e, are feed-
forward edges in the DFGU= (V, (E-F)+R) ,a@ preser@s .Each memiserof that
is notinE is aesynchronization edge GU is called theesynchronized graphassociated with
R, and this graph is denoted B{(R, G)

Our concept of resynchronization considers the rearrangement of synchronizations only
across feedforward edges. We impose this restriction so that the serialization imposed by resyn-

chronization does not degrade the estimated throughput [5].

4. Elimination of synchronization edges

In this section, we introduce a number of useful properties that pertain to the process by
which resynchronization can make certain synchronization edges in the original synchronization

graph become redundant. The following definition is fundamental to these properties.

Definition 1: If G is a synchronization grapls, is a synchronization edde in  that is not
redundantR is a resynchronization@f , a&nd is not containBd in , then we sRyetlnai-
natess. If R eliminatess s' [0 R , and there is a pggth fr@m(s) stk(s) WYWOR, G) such
thatp containg’ an@®elay(p) < delay(9 , then we say tHatontributes to the elimination

of s.

A synchronization edge can be eliminated if a resynchronization createsm path  from
src(s) to snk(s) such thaDelay(p) < delay(9 . In general, the pggh may contain more than

one resynchronization edge, and thus, it is possible that none of the resynchronization edges



allows us to eliminats  “by itself”. In such cases, it is the contribution of all of the resynchroniza-
tion edges within the paftn  that enables the eliminati® of . This motivates our choice of termi-

nology in Definition 1. An example is shown in Figure 1.
The following two facts follow immediately from Definition 1.

Fact 1. Suppose thaG is a synchronization gragh, is a resynchronizaten of r,and isa
resynchronization edge iR .if does not contribute to the elimination of any synchronization
edges, theR—{ r}) is also a resynchronizatioof r.If contributes to the elimination of one

and only one synchronization edge , tl{@{r} +{s}) is a resynchronizati@n of

Fact 2: Suppose thaG is a synchronization gragh, is a resynchronizatbn®of , isasyn-
chronization edge i , angl  is a resynchronization ed@e in  sucHdlafs’') > delay( 9

Thens' does not contribute to the eliminatiorsof

For example, leG denote the synchronization graph in Figure 2(a). Figure 2(b) shows a
resynchronizatiolR o6 . In the resynchronized graph of Figure 2(b), the resynchronization
edge(x,, y3) does not contribute to the elimination of any of the synchronization edges of , and
thus Fact 1 guarantees theit= R—{ (x,, Y3)} , illustrated in Figure 2(c), is also a resynchroniza-
tion of G .. In Figure 2(c), it is easily verified th@t;, y,)  contributes to the elimination of exactly
one synchronization edge — the edgg, ys) , and from Fact 1, we have that

R"=R —{ (X5 Y4)} +{ (X5 ¥5)} , illustrated in Figure 2(d), is a also resynchronizatiofsof

(@)

Figure 1. An illustration of Definition 1. Here each processor executes a single actor. A resyn-
chronization of the synchronization graph in (a) is illustrated in (b). In this resynchronization,
the resynchronization edges (V, X) and (X, W) both contribute to the elimination of (V, W).
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5. Latency-constrained resynchronization

As discussed in Section 3, resynchronization cannot decrease the estimated throughput
since it manipulates only the feedforward edges of a synchronization graph. Frequently in real-
time DSP systems, latency is also an important issue, and although resynchronization does not
degrade the estimated throughput, it generally does increase the latency. In this section we define

thelatency-constrained resynchronization probleanmself-timed multiprocessor systems.

Definition 2: Suppose5,, is an application DFG, is a synchronization graph that results from
a multiprocessor schedule f&; x, is an execution source (an actor that has no input edges or
has nonzero delay on all input edgessin -, mnd  is an ac@®rin  other than . We define the

latency from x toy byLg(x,y)=end y1+ pGO(x, y)) L. We refer tox as thiatency input

Figure 2. Properties of resynchronization.
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associated with this measure of latency, and we refer to  &se¢hey output

Intuitively, the latency is the time required for the first invocation of the latency input to
influence the associated latency output, and thus the latency corresponds to the critical path in the
dataflow implementation to the first output invocation that is influenced by the input. This inter-
pretation of the latency as the critical path is widely used in VLSI signal processing [14, 20].

In general, the latency can be computed by performing a simple simulation of the ASAP
execution forG through thél + pGO(x, y)) th executionyf . Such a simulation can be per-
formed as a functional simulation of a DF&5;,,,  that has the same topology (vertices and edges)
asG , and that maintains the simulation time of each processor in the values of data tokens. Each
initial token (delay) inGgj,, is initialized to have the value 0, since these tokens are all present at
time 0. Then, a data driven simulation@f;,,  is carried out. In this simulation, an actor may exe-
cute whenever it has sufficient data, and the value of the output token produced by the invocation

of any actorz in the simulation is given by
max({Vy, Vs, ..., Va}) + (2, Q)

where{{vy, v,, ..., Vv,}} is the set of token values consumed during the actor execution. In such
a simulation, the th token value produced by an actor gives the completion time of the th
invocation ofz in the ASAP execution & . Thus, the latency can be determined as the value of
the (1 + pGO(x, y)) th output token produced lpy . With careful implementation of the functional
simulator described above, the latency can be determir@@dx max({|V|, $)) time, where
d=1+ pGO(x, y), ands denotes the number of synchronization edg€s in . The simulation
approach described above is similar to approaches described in [32]

For a broad class of synchronization graphs, latency can be analyzed even more efficiently
during resynchronization. This is the class of synchronization graphs in which the first invocation

of the latency output is influenced by the first invocation of the latency input. Equivalently, it is

1. Recall from the companion paper [5] tis#rt(v, K) amdi(v, k) denote the time at which invocation
k of actorv commences and completes execution. Also, notstdrgtx 1) = 0 xsince is an execution
source.



the class of graphs that contain at least one delayless path in the corresponding application DFG
directed from the latency input to the latency output. For transparent synchronization graphs, we

can directly apply well-known longest-path based techniques for computing latency.

Definition 3: Suppose thaG, is an application DEG, is a source acBpin  yand isan
actor inG,, that is not identical to .p‘GO(x, y) = 0 ,then we say tBgt trassparent with
respect to latency input  and latency output GIf is a synchronization graph that corresponds

to a multiprocessor schedule 1Gf, , we also say @at tramsparent.

If a synchronization graph is transparent with respect to a latency input/output pair, then
the latency can be computed efficiently using longest path calculationsaoyciingraph that is
derived from the input synchronization gra@h . This acyclic graph, which we célisthiger-
ation graph of G, denotedi (G) , is constructed by removing all edges f@®m  that have non-
zero-delay; adding a vertex , which represents the beginning of execution; Het)ing 0 ;
and adding delayless edges from  to each source actor (other than ) of the partial construction
until the only source actor that remain®is . Figure 3 illustrates the derivatid pf

Given two verticex ang ii(G) such that there is a pafi{@) ftomy to , we
denote the sum of the execution times along a pathfromy to that has maximum cumulative

execution time byl ; (G)(x, y) . Thatis,

Ti) (% Y) = maxs S t(2)|(pisapath fromx toy in f(G))5 )

p traverses z

If there is no path fromx tg , then we defl‘ﬁfp(G)(x, y) to-Hoe . Note that fog, &l

T; (G)(x, y) < +o0, sincefi (G) is acyclic. The valufs; (G)(x, y) forall paksy  can be com-

(V)
B—DB =0 ® Q)
Iy 0 n‘ n‘ A (E) i
® © ® O, & g

Figure 3. An example used to illustrate the construction of fi(G). The graph on the right is
i(G) if G is the left-side graph.



puted inO(n3) time, wher@ is the number of actor&in , by using a simple adaptation of the

Floyd-Warshall algorithm specified in [10].

Fact 3: Suppose thaG, is a DFG that is transparent with respect to latencxinput  and latency
outputy ,G, is the synchronization graph that results from a multiprocessor schedsje for , and
G is aresynchronizatio®, . The(x,y) =0 , and tH’qﬁG)(x, y)=0 (i. e.

Tic) (X y) #—).

Proof: SinceG, is transparent, there is a delayless pathGyin ~ fronmy to . Let
(U, Uy, ...,u,), wherex = u; and/ = u, , denote the sequence of actors traverged by . From
the semantics of the DFG, , itfollows thatfbci<n ,eitbger apd; execute on the
same processor, witly  scheduled earlier than , or there is a zero-delay synchronization
edge inG directed fromy; to;,; .Thus, féi<n ,wehpe(u,u,,) =0 ,andthus,
thaths(x, y) = 0. SinceG is a resynchronization®f , it follows from Lemma 1 in the com-
panion paper [5] thgp;(x, y) = 0 QED.

The following theorem gives an efficient means for computing the lategcy for trans-

parent synchronization graphs.

Theorem 2: Suppose thaG is a synchronization graph that is transparent with respect to

latency inputx and latency outpyt . Theg(x, y) = Tﬁ(G)(U, Y)

Proof: By induction, we show that for every acter fi(G)
endwl) = Tﬁ(G)(U,W), (3)

which clearly implies the desired result.

First, letmt(w) denote the maximum number of actors that are traversed by a path in
i(G) (over all paths i (G) ) that startsat and terminateg at mi(iv) = 1 , then clearly
w = v . Since both the LHS and RHS of (3) are identically equilup = 0 whenuv , we
have that (3) holds whenevert(w) = 1

Now suppose that (3) holds whenewet(w) <k , for sdmel , and consider the sce-



nariomt(w) = k+ 1. Clearly, in the self-timed (ASAP) execution®f , invocatign |, the first
invocation ofw , commences as soon as all invocations in the set
Z = {zl|(zD P}
have completed execution, where  denotes the first invocation ofzactor P, and  is the set of
predecessors af  ifi(G) .Allmembexs] P, satisfy(2 <k , since othermigsv)
would exceedk + 1) . Thus, from the induction hypothesis, we have
start(w, 1) = max(end z1)[(zO R,)) = max( T (v, z)|(zD Py),

which implies that
end w1) = max(Tg)(0,2)|(z0 R,)) + (W). (4)

But, by definition ofTﬁ(G) , the RHS of (4) is clearly equaﬂ"tp(G)(u, w) , and thus we have that
endwl) = Tﬁ(G)(U,w).
We have shown that (3) holds fort((w) = 1 , and that whenever it holds for

mt(w) = k=1, it must hold fomt(w) = (k+ 1) . Thus, (3) holds for all valuesmof(w) QED.

In the context of resynchronization, the main benefit of transparent synchronization graphs
is that the change in latency induced by adding a new synchronization edge (a “resynchronization
operation”) can be computed @(1) time, givﬁﬂe)(a, b) for all actor pair®) . We will

discuss this further in Section 9.

Since many practical application graphs contain delayless paths from input to output and
these graphs admit a particularly efficient means for computing latency, we have targeted our
implementation of latency-constrained resynchronization to the class of transparent synchroniza-
tion graphs. However, the overall resynchronization framework described in this paper does not
depend on any particular method for computing latency, and thus, it can be fully applied to gen-
eral graphs (with a moderate increase in complexity) using the ASAP simulation approach men-
tioned above. Our framework can also be applied to subclasses of synchronization graphs other

than transparent graphs for which efficient techniques for computing latency are discovered.
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Definition 4: An instance of théatency-constrained resynchronization problenconsists of a
synchronization grapls  with latency input  and latency owput , deigrcy constraint
Lnax2 Le(X y) . A solution to such an instance is a resynchronizdtion  such that 1)

Ly(r, G)(x, Y) < Lhax @nd 2) no resynchronization Gf  that results in a latency less than or

equal toL has smaller cardinality thEn

max

Given a synchronization gragh  with latency ingut  and latency oytput , and a latency

constraintL we say that a resynchronizafton Gof |&ency-constrained resynchroni-

max ?

zation (LCR) if Ly(r, G)(x, y)<L Thus, the latency-constrained resynchronization problem

max®

is the problem of determining a minimal LCR.

6. Related work
|
In [4], an efficient algorithm, calle@onvert-to-SC-graphis described for introducing

new synchronization edges so that the synchronization graph becomes strongly connected, which
allows all synchronization edges to be implemented with the more efficient FBS protocol. A sup-
plementary algorithm is also given for determining an optimal placement of delays on the new
edges so that the estimated throughput is not degraded and the increase in shared memory buffer
sizes is minimized. It is shown that the overhead required to implement the new edges that are
added byConvert-to-SC-graplkan be significantly less than the net overhead that is eliminated
by converting all uses of FFS to FBS. However, this technique may increase the latency.
Generally, resynchronization can be viewed as complementary @otivert-to-SC-
graphoptimization: resynchronization is performed first, followeddonvert-to-SC-graph
Under severe latency constraints, it may not be possible to accept the solution com@ded by
vert-to-SC-graphin which case the feedforward edges that emerge from the resynchronized solu-
tion must be implemented with FFS. In such a situattmmvert-to-SC-graplkan be attempted
on the original (before resynchronization) graph to see if it achieves a better result than resynchro-
nization withoutConvert-to-SC-grapiHowever, for transparent synchronization graphs that have

only one source SCa@ndonly one sink SCC, the latency is not affectecCloyvert-to-SC-graph
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and thus, for such systems resynchronizationGomnert-to-SC-graplare fully complementary.
This is fortunate since such systems arise frequently in practice.

Trade-offs between latency and throughput have been studied by Potkonjac and Srivastava
in the context of transformations for dedicated implementation of linear computations [26].
Because this work is based on synchronous implementations, it does not address the synchroniza-

tion issues and opportunities that we encounter in our self-timed dataflow context.

7. Intractability of LCR
|
In this section we show that the latency-constrained resynchronization problem is NP-hard

even for the very restricted subclass of synchronization graphs in which each SCC corresponds to
a single actor, and all synchronization edges have zero delay.

As with the maximum-throughput resynchronization problem [5], the intractability of this
special case of latency-constrained resynchronization can be established by a reduction from set
covering. To illustrate this reduction, we suppose that we are given tike sef X, X5, X3, X4} ,
and the family of subset® = {t;,t,,t3} ,wherge= {Xx;, X3} t,,= {X;,X,} ,and
t3 = {X,, X4} . Figure 4 illustrates the instance of latency-constrained resynchronization that we
derive from the instance of set covering specifiedXyT) . Here, each actor corresponds to a
single processor and the self loop edge for each actor is not shown. The numbers beside the actors
specify the actor execution times, and the latency constrdinf.is = 103 . In the graph of Fig-
ure 4, which we denote b§ , the edges labelgdex,, ex;, ex, correspond respectively to the
membersx;, X,, X3, X, of the sé in the set covering instance, and the vertex pairs (resynchroni-
zation candidates), st;), (v, st,), (v, st;)  correspond to the membefs of . For each relation
x; O tj, an edge exists that is directed freltp sto . The latency input and latency output are
defined to ben andut respectively, and it is assumed3hat is transparent.

The synchronization graph that results from an optimal resynchronizat®n of  is shown
in Figure 6, with redundant resynchronization edges removed. Since the resynchronization candi-

dates(v, st;), (v, st;) were chosen to obtain the solution shown in Figure 6, this solution corre-
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sponds to the solution ¢, T)  that consists of the subfafiilyt,}
A correspondence between the set covering insteXceE) and the instance of latency-

constrained resynchronization defined by Figure 4 arises from two properties of our construction:
Observation 1: (x; O't; in the set covering instange= ((v, st;) subsumex in G).

Observation 2: If Ris an optimal LCR ofG , then each resynchronization edge in  is of the

form
(v,st),i0{1, 2 3}, orof the form(stj, s%), x, U t . 5)

The first observation is immediately apparent from inspection of Figure 4. A proof of the

second observation follows.

Proof of Observation Ve must show that no other resynchronization edges can be contained in

an optimal LCR ofG . Figure 6 specifies arguments with which we can discard all possibilities

in 1

100
1
ex,
exn\ EX>™_ex3
Lmax = 103

Figure 4. An instance of latency-constrained resynchronization that is derived from an
instance of the set covering problem.
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L, = 103

Figure 5.  The synchronization graph that results from a solution to the instance of
latency-constrained resynchronization shown in Figure 4.

vV |w /| z |in |out]st | sx
Vv 5 3 1 2 4 | okl 1 1. Exists inG .
W 3 5 6 2 4 1 4 2. Introduces a cycle.
z 2 3 5 2 1 3 3 3. Increases the latency beyong,,
in 1 1 4 5 4 4 4 4. pg(a, @) = 0 (Lemma 2 in [5]).
outf| 2 2 2 2 5 2 2 5. Introduces a delayless self loop.
st || 3 2 3 2 | 4| 35 OR 6. Proof is given below.
sX || 2 2 3 2 1| 213 355

a. Assuming thax; Ut; ;otherwise 1 applies.

Figure 6. Arguments that support Observation 2.
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other than those given in (5). In the matrix shown in Figure 6, the entry correspondingrto row
and columnc specifies an index into the list of arguments on the right side of the figure. For each
of the six categories of arguments, except for #6, the reasoning is either obvious or easily under-
stood from inspection of Figure 4. A proof of argument #6 follows shortly within this same sec-
tion.

For example, edgév, 2 cannot be a resynchronization edge in  because the edge
already exists in the original synchronization graph; an edge of the(fofjnw) cannd® be in
because there is a path@  fream to eagh (z W) OR since otherwise there would be a
path fromin toout thattraversesz w st,sx , and thus, the latency would be increased to at
least204 ;(in, z) O R from Lemma 2 in the companion paper [5] sing@in, z) = 0 ; and
(v, v) O R since otherwise there would be a delayless self loop. Three of the entries in Figure 6
point to multiple argument categories. For exampleej il t, , (hrxp st) introduces a cycle,
and if x; O't; then(sx;, st) cannot be contained?n  because it would increase the latency
beyondL .y -

The entries in Figure 6 mark€K are simply those that correspond to (5), and thus we
have justified Observation QED.

In the proof of Observation 2, we deferred the proof of Argument #6 for Figure 1. We now

present the proof of this argument.

Proof of Argument #6 in Figure By contraposition, we show thétv, z)  cannot contribute to the
elimination of any synchronization edge®f , and thus from Fact 1, it follows from the optimal-
ity of R that(w, z) 0 R. Suppose thdtv, z)  contributes to the elimination of some synchroniza-

tion edges . Then

pg(sre(s), W) = ps(z snk(s) = 0, (6)
where
G=¥(R G). (7)
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From the matrix in Figure 6, we see that no resynchronization edge cam have as the source ver-
tex. Thus,snk(s) 0{ z ou} . Now, ifsnk(s) = z,thes = (v, 2 , and thus from (6), there is a
zero delay path from to i . However, the existence of such a péh in  implies the exist-
ence of a path frorm  tout that traverses actors, st, sx , Which in turn implies that
Ls(in, out) 2104, and thus thaR  is not a valid LCR.

On the other hand, Bnk(s) = out , thesrc(s) O{ z sX,SX, S, SX} . Now from (6),
src(s) = zimplies the existence of a zero delay path from wto Gin , which implies the exist-
ence of a path frorm  tout that traversesy, z st,sx , which in turn implies that
L nax= 204. On the other hand, Brc(s) = sx  for some |, then since from Figure 6, there are
no resynchronization edges that havesan as the source, it follows from (6) that there must be a

zero delay path i froout te . The existence of such a path, however, implies the existence

of a cycle inG sincgg(w, out) = 0 . Thusnk(s) = out impliestHat is notan LQED.

The following observation states that a resynchronization edge of the{sﬁgrrmg) con-

tributes to the elimination of exactly one synchronization edge, which is theegdge

Observation 3: Suppose thaR is an optimal LCR@Gf and supposeethat(sg, SX%) isa
resynchronization edge R, forsome{1,2 3 4,j0{1, 2 3} such that t . Tehen

contributes to the elimination of one and only one synchronization edgg —

Proof: SinceR is an optimal LCR, we know that must contribute to the elimination of at least
one synchronization edge (from Fact 1). ket be some synchronization edge s&ch that contrib-

utes to the elimination & . Then
Pr(c)(Src(s), src(€)) = pgr(g(snk(e), snk(9) = 0. (8)

Now from Figure 6, it is apparent that there are no resynchronization edges in  thsi have or
out as their source actor. Thus, from (8)k(s) = sx sok(s) = out . Now, if
snk(s) = out thensrc(s) = sx forsom&#i ,osrc(s) = z . However, since no resynchro-

nization edge has a member{afX;, SX,, SX3, SX,} as its source, we must (from 8) rule out
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src(s) = sx. Similarly, if src(s) = z, then from (8) there exists a zero delay patR(i®)
from z to st; , which in turn implies thdtg ) (in, out) >140 . But this is not possible since our
assumption thaR is an LCR guarantees U}g(\b)(in, out) <103 . Thus, we conclude that
snk(s) # out and thus, thasnk(s) = sx .

Now (snk(s) = sx) implies that (a = ex or (b} = (si,sx) forsome such that
x; Ot (recall thatx; O tj and thus, thlt# j ).df= (s{,sx) , then from (8),
pR(G)(stk, stj) = 0. It follows that for any member; [ t there is a zero delay paR( @)
that traversest, st; amsy . Thus= (s{,sx) does not hold since otherwise
LR(G)(in, out) = 140.

Thus, we are left only with possibility (a) s-== ex QED.

Now, suppose that we are given an optimal LERR Gof . From Observation 3 and Fact 1,
we have that for each resynchronization e(:Bg:g sx) Rin , we can replace this resynchroniza-
tion edge withex and obtain another optimal LCR. Thus from Observation 2, we can efficiently
obtain an optimal LCAR'  such that all resynchronization edg& in  are of th§\iosiy)

For eachx; 0 X such that

Etj|((xi Ot;) and ((v, stj) OR')), 9
we have thaex OO R" . This is becauBe  is assumed to be optimal, an8{(R)G) contains
no redundant synchronization edges. For eachX for which (9) does not hold, we can replace

ex with any (v, stj) that satisfies; [ t and since such a replacement does not affect the
latency, we know that the result will be another optimal LCRJor . In this manner, if we repeat-

edly replace eachx that does not satisfy (9) then we obtain an optimeRL'CR such that

each resynchronization edgeRY is of the f@umst) , and (20)
for eachx; O X , there exists a resynchronization e(dgej) R"in sucb(itlilail- . (11)
It is easily verified that the set of synchronization edges eliminat&i by{ e>gip<i 0 X} . Thus,
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the sefl’ ={ t; | (v, t,) is a resynchronization edgeRi'} is a cover foX , and the cost (number
of synchronization edges) of the resynchronizaBRSn (Nis-|X| + |T'|) , WNere is the number
of synchronization edges in the original synchronization graph. Now, it is also easily verified

(from Figure 4) that given an arbitrary covey  ¥r , the resynchronization defined by
Ry= (R —{ (v, t))|(t; DT)}) +{(v. t))|(t; D T)} (12)

is also a valid LCR oG, and that the associated cdstis|X| +|T,|) . Thus, it follows from

the optimality ofR” thafl’ must be a minimal cover ¥r , given the family of sulisets

To summarize, we have shown how from the particular insteXce) of set covering,
we can construct a synchronization gr&ph  such that from a solution to the latency-constrained
resynchronization problem instance defineddy , we can efficiently derive a solutdnTip
This example of the reduction from set covering to latency-constrained resynchronization is easily
generalized to an arbitrary set covering instaf¥eT') . The generalized construction of the ini-
tial synchronization grapts is specified by the steps listed in Figure 7.

The main task in establishing our general correspondence between latency-constrained

resynchronization and set covering is generalizing Observation 2 to apply to all constructions that

* Instantiate actors v, w, z in out, with execution times 1, 1, 100, 1, and 1, respectively,

and instantiate all of the edges in Figure 4 that are contained in the subgraph associated
with these five actors.

* Foreach t O T', instantiate an actor labeled st that has execution time 40.
e Foreach xO X

Instantiate an actor labeled sx that has execution time 60.

Instantiate the edge ex= dy(v, sX) .

Instantiate the edge d,(sx oud .
eForeachtO T’

Instantiate the edge dy(w, st) .

For each x O t, instantiate the edge dg(st, sX .

* Set L,,,, = 103.

Figure 7. A procedure for constructing an instance |, of latency-constrained resynchroniza-
tion from an instance | . of set covering such that a solution to I, yields a solution to I.
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follow the steps in Figure 7. This generalization is not conceptually difficult (although it is rather
tedious) since it is easily verified that all of the arguments in Figure 7 hold for the general con-
struction. Similarly, the reasoning that justifies converting an optimal LCR for the construction
into an optimal LCR of the form implied by (10) and (11) extends in a straightforward fashion to

the general construction.

8. Two-processor systems
|
In this section, we show that although latency-constrained resynchronization for transpar-

ent synchronization graphs is NP-hard, the problem becomes tractable for systems that consist of
only two processors — that is, synchronization graphs in which there are two SCCs and each SCC
is a simple cycle. This reveals a pattern of complexity that is analogous to the classic nonpreemp-
tive processor scheduling problem with deterministic execution times, in which the problem is
also intractable for general systems, but an efficient greedy algorithm suffices to yield optimal
solutions for two-processor systems in which the execution times of all tasks are identical [9, 13].
However, for latency-constrained resynchronization, the tractability for two-processor systems
does not depend on any constraints on the task (actor) execution times. Two processor optimality
results in multiprocessor scheduling have also been reported in the context of a stochastic model
for parallel computation in which tasks have random execution times and communication patterns
[21].

In an instance of thievo-processor latency-constrained resynchronization (2LCR)
problem, we are given a set sburce processor actors;, X, ..., Xp with associated execution
times{t(x,)} , suchthateach isthe th actor scheduled on the processor that corresponds to
the source SCC of the synchronization graph; a s&hkfprocessor actorg,, y,, ..., Yq: with
associated execution timés(y;)} , such that gach  is the th actor scheduled on the processor
that corresponds to the sink SCC of the synchronization graph; a set of non-redundant synchroni-
zation edges = { s, s,, ..., s,}  such that for eagh srG(s;) U { X, X5, ..., X} and

snk(s)) U{ %, Y, .-, yq} ; and a latency constraiht,,,, , which is a positive integer. A solution
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to such an instance is a minimal resynchronizaffon  that satisfi@sc) (X1, Yq) < Lmax . Inthe
remainder of this section, we denote the synchronization graph corresponding to our generic
instance of 2LCR bﬁa

We assume thalelay(s;)) = 0 forad| , and we refer to the subproblem that results from
this restriction aslelayless 2LCR In this section we present an algorithm that solves the delay-
less 2LCR problem i|®(N2) time, whei¢  is the number of vertica in . We also give an

extension of this algorithm to the general 2LCR problem (arbitrary delays can be present).

8.1 Interval covering

An efficient polynomial-time solution to delayless 2LCR can be derived by reducing the
problem to a special case of set covering catieggtval covering, in which we are given an
orderingw,, W, ..., Wy, of the members &  (the set that must be covered), such that the collec-

tion of subsetd consists entirely of subsets of the fory w S Wpt,1<a<bs N

a+l
Thus, while general set covering involves covering a set from a collection of subsets, interval cov-
ering amounts to covering an interval from a collection of subintervals.
Interval covering can be solved@(|X||T|)  time by a simple procedure that first selects
the subsefw,, wy, ..., w;, } , where
b, = max({b|(wy, w,t) forsomet O T});

then selects any subset of the fofm, , w Wy} 8;sb;+1 , where

a,+1 -

b, = max({b|(wbl+1, w, Ot) forsomet O T});

then selects any subset of the fofm, , w oWy} agsb,+1  where

ag+ 1+
by = max({b|(wb2+1, w, Ot) forsomet O T});

and so on untib, = N

8.2 Two-processor latency-constrained resynchronization
To reduce delayless 2LCR to interval covering, we start with the following observations.

Observation 4: Suppose thaR is a resynchronizatiorf;‘ofr OR , and  contributes to the
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elimination of synchronization edge . Then subsumes . Thus, the set of synchronization
edges that contributes to the elimination of is simply the set of synchronization edges that are

subsumed by

Proof: This follows immediately from the restriction that there can be no resynchronization edges
directed from & toaw, (feedforward resynchronization), and thid/g ity é) , there can be at

most one synchronization edge in any path directed Bags) snkts) QED.

Observation 5: If R is a resynchronization o |, then

Lw(R, ~G)(x1, Yg) = max({tyeq(sre(s')) +tsucc(snk(s’))|s' OR}), where
tored(X) = Zt(xj) fori = 1,2 ..., p,andtg, . (y;) = Zt(yj) fori = 1,2 ...,q .

=i i

Proof. Given a synchronization edd&,, y,) O R , there is exactly one delayless pa(lé)n
from x; to Yq that containgx,, y,,) and the set of vertices traversed by this path is
{ X1, X0, s Xas Y Yo + 15 -5 Yt - The desired result follows immediateyED.

Now, corresponding to each of the source processor actors  that satisfies

tpred(xi) + t(yq) < L,ax We define an ordered pair of actors (a “resynchronization candidate”) by

Vi = (X, y;), wherej = min({k|(tpeq(%i) * tsycd Vi) < Lmax}) - (13)
Consider the example shown in Figure 8. Here, we assumigzhat 1 for each actor
andL,,, = 10 . From (13), we have

Vi = (X0, Y1) Vo = (X9, Y1)i V3 = (X3, Y5), Vi = (X4, Y3) S
V5 = (X51 y4)’ V6 = (X61 y5)’ V7 = (X7’ y6)’ V8 = (X8’ y7) ' (14)
If v, exists for a giverx; , thed,(v;) can be viewed as the best resynchronization edge
that hasx, as the source actor, and thus, to construct an optimal LCR, we can select the set of

resynchronization edges entirely from amongwhe s. This is established by the following two

observations.
Observation 6: Suppose thaR is an LCR & ,and suppose (tkaty,) is a delayless syn-
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chronization edge iR such th@at,, y,) #v, . ThER—{(x, y,)} +{dy(v)}) is an LCR of
R.

Proof: Letv, = (X, Y.) andR'" = (R—={(X, Yp)} +{dy(v,)}) ,and observe tha;  exists,
since

((Xa Yb) O R) O (thred(Xa) + tsucdYb) S Lmax U (tpred(Xa) +1(Yg) < Lmay -
From Observation 4 and the assumption {xaty,) is delayless, the set of synchronization
edges tha(x,, y,) contributes to the elimination of is simply the set of synchronization edges
that are subsumed K{x,, y,) . Nowsf is a synchronization edge that is subsurtreg 3y

then
pé(src(s), X)) + pé(yb, snk(s)) < delay(s). (15)

From the definition of7, , we have thak b , and thus, pg;(tyc, Yp) = 0 . It follows from (15)

X
%)
X3
Xy
X5
Xs)
X
&)

Lyax = 10 (a) (b)

Figure 8. An instance of delayless, two-processor latency-constrained resynchronization.
In this example, the execution times of all actors are identically equal to unity.
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that
pg(sre(s), x;) + pg(Ye snk(s)) < delay(s), (16)

and thus, thav, subsumses .Henege, subsumes all synchronization edges that con-
tributes to the elimination of, and we can conclude Riat  is a valid resynchronizafﬁon of
From the definition o/, , we know thaf, .4(X,) +tg,cdYc) S Lmax »andthus siRce s

an LCR, we have from Observation 5 tiRat  is an LQRD.

From Fact 2 and the assumption that the membe®8s of are all delayless, an optimal LCR
of G consists only of delayless synchronization edges. Thus from Observation 6, we know that
there exists an optimal LCR that consists only of members of thedg(ivy) . Furthermore, from
Observation 5, we know that a collection wf sis an LCR if and only if

vgvx(v) = {S}, Sy - So}
wherex(v) is the set of synchronization edges that are subsumed by . The following observa-

tion completes the correspondence between 2LCR and interval covering.

Observation 7: Lets,’, s,’, ..., s," be the ordering id;, s,, ..., s, specified by

n

(X4 = sre(s'), Xp = src(sj'), a<b)O (i<j). a7)

That is thes;' 's are ordered according to the order in which their respective source actors execute
on the source processor. Suppose that for some€l, 2, ..., p} , soFe , and some
i0{12 ...,n—m}, we haves' x(vj) and, ' O x(vj) . Then
Si+15Si42 1 Siam—1 I X))
In Figure 8(a), the ordering specified by (17) is

Sl' = (X11 y2)! 82' = (XZ’ y4)! 53' = (X3! yﬁ)’ 54' = (X51 y7)l S5’ = (X7’ y8)! (18)
and thus from (14), we have

X(Vl) = {S]_'}! X(VZ) = {81'! S2'}! X(VS) = {81'! 82" S3'}’ X(V4) = {32" S3'}
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X(VS) = {82'! 53" S4'}’ X(VG) = {53" S4'}’ X(V7) = {53" S4'! 35'}, X(VS) = {34'1 S5'} ’ (19)
which is clearly consistent with Observation 7.

Proof of Observation 7-et v; = (xj, y;) » and supposk is a positive integer such that
i <k <i+m. Then from (17), we know thqné(src(sk’), src(S§,,)) = 0 . Thus, since

S 4+m U x(vj) , we have that
pé(src(sk'), x) = 0. (20)
Now clearly
pg(snk(s’), snk(g')) = 0, (21)

since otherwise)é(snk(sk’), snk(s,")) = 0 and thus (from 1)) subsumes , which contra-
dicts the assumption that the memberSof are not redundant. FinallysISige(vj) , we

know thatpé(y,, snk(s;")) = 0 . Combining this with (21) yields
pé()’p Snk(sk')) = O! (22)

and (20) and (22) together yield trst [ x(vj) QED.

From Observation 7 and the preceding discussion, we conclude that an optimal GCR of
can be obtained by the following steps.
(a) Construct the ordering}’, s,’, ..., s,”  specified by (17).
(b) Fori = 1,2 ..., p, determine whether or ngt  exists, and if it exists, compute
(c) Computex(vj) for each value pf such tlugt exists.
(d) Find a minimal cove€ fo% given the family of subs{a'}(ivj)|vj existg

(e) Define the resynchronizatiéh = { v; |x(vj) 0C}

Steps (a), (b), and (e) can clearly be performed(iN) time, wiere is the number of
vertices inG . If the algorithm outlined in Section 8.1 is employed for step (d), then from the dis-

cussion in Section 8.1 and Observation 8(e) in Section 8.3, it can be easily verified that the time
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complexity of step (d) iQ(NZ) . Step (c) can also be perform@l(iNz) time using the obser-
vation that ifv, = (x;, yj) therk(v)) ={(x,, yp) D Slasiandb> j} ,where

S={s,s, ...,s,} isthe set of synchronization edgeﬁn . Thus, we have the following result.

Theorem 3: Polynomial-time solutions (quadratic in the number of synchronization graph ver-

tices) exist for the delayless, two-processor latency-constrained resynchronization problem.

Note that solutions more efficient than tD(aNZ) approach described above may exist.

From (19), we see that there are two possible solutions that can result if we apply Steps
(a)-(e) to Figure 8(a) and use the technique described earlier for interval covering. These solutions
correspond to the interval covels = {X(v3), X(v7)} angl = {x(v3), X(vg)} . The synchro-

nization graph that results from the interval colgr is shown in Figure 8(b).

8.3 Taking delays into account

If delays exist on one or more edges of the original synchronization graph, then the corre-
spondence defined in the previous subsection between 2LCR and interval covering does not nec-
essarily hold. For example, consider the synchronization graph in Figure 9. Here, the numbers
beside the actors specify execution times; a “D” on top of an edge specifies a unit delay; the
latency input and latency output are respectivgly y;qnd ; and the latency constraint is

Lnax = 12. Itis easily verified that; exists for= 1,2, ...,6 , and from (13), we obtain

m
Vi = (X3 Y3)i Vo = (X2 Ya)s V3 = (X3, Ye)s Va = (X4 Yg)s V5 = (X5, Yg), V6 = (X6 Yg) - (23)

Now if we order the synchronization edges as specified by (17), then

S' = (X, Yj+q) fori =1,2 3 4,ands’ = (x;,y;_,) fori =5,6,7 8, (24)

and if the correspondence between delayless 2LCR and interval covering defined in the previous

section were to hold for general 2LCR, then we would have that

each subset(v;) isofthe for{is,',s,,,",.... 8}, 1<a<b<8 . (25)
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However, computing the subsetév;) , we obtain

X(V1) ={s;", 57,85} X (Vo) = {51, S, S5}y X(V3) ={sy', 85}
X(Va) ={s4'}, X(v5) ={s,' s5'}, X(Ve) ={S4'. S5 S6'} (26)

and these subsets are clearly not all consistent with the form specified in (25). Thus, the algorithm
developed in Subsection does not apply directly to handle delays.

However, the technique developed in the previous section can be extended to solve the
general 2LCR problem in polynomial time. This extension is based on separating the subsumption

relationships between the ‘s and the synchronization edges into two categeyies(i;, y;)

Lax = 12

Figure 9. A synchronization graph with unit delays on some of the synchronization
edges.
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subsumes the synchronization edge (%, Y,) then we sayitdasubsumess if i <k, and

we say thaw; 2-subsumess if i 2k. For example in Figure 9(ay, = (X;,Y¥3) 1-subsumes
both (x4, y3) and(xg, y,) , ands; = (X5 Yg) 2-subsumes,, y;) andg, y,)

Observation 8: Assuming the same notation for a generic instance of 2LRC that was defined in
the previous subsection, the initial synchronization gléph satisfies the following conditions:

(a) Each synchronization edge has at most one unit of dedday(s,) [ { O, 1} ).

(b) If (xi, yj) is a zero-delay synchronization edge érgd y,) is a unit-delay synchroni-
zation edge, then<k and>|

(c) If v; 1-subsumes a unit-delay synchronization e@geyj) ,then also 1-subsumes
all unit-delay synchronization edgss that satsfy(s) = % ,,,,n>0

(d) If v; 2-subsumes a unit-delay synchronization e(dgeyj) ,then  also 2-subsumes
all unit-delay synchronization edgss that satsiy(s) = x _,,n>0

(e) If (x;, y;) and(xy, y,) are both distinct zero-delay synchronization edges or they are
both distinct unit-delay synchronization edges, th#ik (@rk) = (j<I)

() 1f (x;, yj) 1-subsumes a unit delay synchronization e@iggy,) , ten

Proof outline:From Fact 3, we know that(x,, yq) = 0 . Thus, there exists at least one delayless
synchronization edge iG .Let be one such delayless synchronization edge. Then it is easily
verified from the structure & that for ally; ,there exists a path Gin directedxrom
toy; such thaipi,j contains P j contains no other synchronization edges, and
Delay(p; ;) < 2. It follows that any synchronization edge  whose delay exceeds unity would be
redundant irG . Thus, part (a) follows from the assumption that none of the synchronization
edges inG are redundant.

The other parts can be verified easily from the structu@® of including the assumption

that no synchronization edgeél is redundant. We omit the details.

Resynchronizations for instances of general 2LCR can be partitioned into two categories

— category Aconsists of all resynchronizations that contain at least one synchronization edge
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having nonzero delay, amdtegory Bconsists of all resynchronizations that consist entirely of
delayless synchronization edges. An optimal category A solution (a category A solution whose
cost is less than or equal to the cost of all category A solutions) can be derived by simply applying
the optimal solution described in Subsection to “rearrange” the delayless resynchronization
edges, and then replacing all synchronization edges that have nonzero delay with a single unit
delay synchronization edge directed fragn , the last actor scheduled on the source processor to
Yy, , the first actor scheduled on the sink processor. We refer to this appra@dgbrabm A .

An example is shown in Figure 10. Figure 10(a) shows an example where for general
2LCR, the constraint that all synchronization edges have zero delay is too restrictive to permit a
globally optimal solution. Here, the latency constraint is assumedltg he= 2 . Under this
constraint, it is easily seen that no zero-delay resynchronization edges can be added without vio-
lating the latency constraint. However, if we allow resynchronization edges that have delay, then
we can apply Algorithm A to achieve a cost of two synchronization edges. The resulting synchro-
nization graph, with redundant synchronization edges removed, is shown in Figure 10(b). Observe

that this resynchronization is an LCR since only delayless synchronization edges affect the

Lmax = 2
(@) (b)

Figure 10. An example in which constraining all resynchronization edges to
be delayless precludes the ability to derive an optimal resynchronization.
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latency of a transparent synchronization graph.

Now suppose the® (our generic instance of 2LCR) contains at least one unit-delay syn-
chronization edge, suppose tl@} Is an optimal category B soluti for , ajd let  denote
the set of resynchronization edgesdp . Ud(é) denote the set of synchronization edges in
G that have unit delay, and Ietkl, y|1), (xkz, y|2), (ka, y|M) denote the ordering of the mem-
bers ofud(é) that corresponds to the order in which the source actors execute on the source pro-
cessor —thatig(i <j) O (k< kj) . Note from Observation 8(a) tma(té) is the set of all
synchronization edges @ that are not delayless. Alsdslabg ~GG,O) denote the set of unit-
delay synchronization edgesﬁh that are 1-subsumed by resynchronization dges in . That s,

1subg GG,) ={s0 ud G|(X(zy, z,) O Ry)) st((z,, z,) 1-subsumesinG)} .

If 1subg NGGb) is not empty, define

r= min({j|(xkj,y|j) O 1sub$~GGb)}). (27)

SupposE X, Yy) 0 1subg ~GGb) . Then by definition of m’ =1, , and thus
pé(y,r, Yny) = 0. Furthermore, since,, and execute onthe same procpgsé%, X)) <1
Hencepé(xm, Xq) + pé(yh, Yor) €1 = delay(X,, Yy) ,» SO We have that,, y,r) subsumes

(X Yiy) N G. Since(X,, Yy) is an arbitrary membermﬂ(é) , we conclude that
Every member ofisubg ~C;}Gb) is subsumed (¥, ylr) . (28)
Now, if ' = (ud(é) —1subg ~C;}Gb)) is not empty, then define
u = max({ j|(4, )0}, (29)

and suppos€X, Y,y) O . By definition of m<k,  and thus(x., ) = 0 . Furthermore,
sincey,, ancxyq execute on the same proceﬁ%quq, Yoy) <1 . Hence,
pé(xm! Xku) + pé(yq’ ym’) <1= delay(xm’ ym’) )

and we have that
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Every member of is subsumed by(u, yq) . (30)

Observe also that from the definitionsrof and , and from Observation 8(c),

((1sub$~GGb)¢D)and(F¢D)) O (u=r-1); (31)
(1subg GG,) = 0) 0 (u=M); (32)
and
(r=m0)d(r=1). (33)
Now we define the synchronization grab(‘é) Zm[}) = (V,(E- ud(é)) +P) ,
whereV ancE are the sets of vertices and edgés iR =;{dy(xg, y|r), do(xku, yq)} , if both

1subg ~C;EGb) andl" are non-empty = { dy(Xy, y,r)} I is empty; aRd= {do(xku, yq)}
if 1subg ~GGb) is empty.

Theorem 4: G, is a resynchronization (ﬂ(é)

Proof: The set of synchronization edgesZ(lé) Eig+ P , Whege Is the set of delayless syn-

chronization edges ic . Sin€g, isa resynchronizatioé of , it suffices to show that for each

el P,
pr(src(e), snk(e)) = 0. (34)
If 1subg ~C;‘,Gb) is non-empty then from (27) (the definitioniof ) and Observation 8(f),
there must be a delayless synchronization elge G in suchrtk@t) =y, fomsore
Thus,

P, (X1 Y1) < Pg, (Xq, src(€')) +pg (snk(e'), y) = 0+pg (VY1) = 0,
and we have that (34) is satisfied éorF (X, y|r)
Similarly if " is non-empty, then from (29) (the definitionwf ) and from the definition of

2-subsumedhere exists a delayless synchronization eglge G,in sucls(at) = x, for
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somew >k, . Thus,
Pe,(Xk, Yg) S Pg, (X, Src(€')) + pg (snk(e'), ¥) = Pg (X, Xy) +0 = 0;
hence, we have that (34) is satisfieddor (xku, yq)

From the definition oP , it follows that (34) is satisfied forevefy P . n

Corollary 1: The latency oZ(G) is no greater thap,,, - Thaﬂ_i§(é)(x1, Yg) < Lmax

Proof: From Theorem 4, we know th&, presenZe(ﬁNS) . Thus, from Lemma 1 in the compan-
ion paper [5], it follows thaLZ(é)(xl, yq) < LGb(xl, yq) . Furthermore, from the assumption that

max - We conclude that

G, is an optimal category B LCR, we haugb(xl, yq) <L
Lz(é)(xl, Yg) S Lmax- N
Theorem 4, along with (31)-(33), tells us that an optimal category B L@R of s always a

resynchronization of

(1) a synchronization graph of the form

(V. ((E-ud(8)) + {dg(xy, ¥).). g% Y1) L<a <M, (35)
or

(2) of the graph(V, ((E - ud(G)) + {dg(x;, 1)})) (36)
or

(3) of the graph(V, ((E - ud(5)) + {dg(X . Y)})) - (37)

Thus, from Corollary 1, an optimal resynchronization can be computed by examining each
ofthe(M +1) = (|ud(é)| + 1) synchronization graphs defined by (35)-(37), computing an opti-
mal LCR for each of these graphs whose latency is no greatelk than , and returning one of the
optimal LCRs that has the fewest number of synchronization edges. This is straightforward since

these graphs contain only delayless synchronization edges, and thus the algorithm of Section can
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be used.

Recall the example of Figure 9(a). Here,
ud(G) = {(Xs Y1): (Xg: ¥2)s (%7, ¥a), (X, Ya)?
and the set of synchronization graphs that correspond to (35)-(37) are shown in Figure 11(a)-(e).
The latencies of the graphs in Figure 11(a)-(e) are respectively 14, 13, 12, 13, and 14. Since
Lhax = 12, we only need to compute an optimal LCR for the graph of Figure 11(c) (from Corol-

lary 1). This is done by first removing redundant edges from the graph (yielding the graph in Fig-

Figure 11. The synchronization graphs considered in Algorithm B for the example in Figure 9.
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ure 12(b)) and then applying the algorithm developed in Section . For the synchronization graph

of Figure 12(b), and. = 12 ,itis easily verified that the set,of sis

max
Vi = (X1s Y3)s Vo = (X5, Ya)i V3 = (X3, Ye)s Va = (X4: Yg), Vs = (X5, Yg), Vg = (Xg, Yg) -

If we let
S; = (X1, Ya): S5 = (X2 Yg): 83 = (X3, ¥7), 84 = (Xg: Ye) (38)

then we have,
X(v1) ={s1}, X(V2) = { S}, X(Va) = {5 S3}, X(V4) = X(vs5) = U, X(Ve) ={ss}. (39)

From (39), the algorithm outlined in Subsection for interval covering can be applied to
obtain an optimal resynchronization. This results in the resynchronizatrorq v;, v, Vg} . The
resulting synchronization graph is shown in Figure 12(c). Observe that the number of synchroni-
zation edges has been reduced fi®m 3 to , while the latency has increaséd®from  to

Lhax = 12. Also, none of the original synchronization edgeéin are retained in the resynchro-

m

nization.

We say thaAlgorithm B for general 2LCR is the approach of constructing the

()
()
&)
5,
()
G
)
&)

(@) (b) (€)

Figure 12. Derivation of an optimal LCR for the synchronization graph of Figure 11(c).
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(|ud(é)| + 1) synchronization graphs corresponding to (35)-(37), computing an optimal LCR for
each of these graphs whose latency is no greateithap , and returning one of the optimal
LCRs that has the fewest number of synchronization edges. We have shown above that Algorithm
B leads to an optimal LCRnder the constraint that all resynchronization edges have zero delay
Thus, given an instance of a general 2LCR, a globally optimal solution can be derived by
applying Algorithm A and Algorithm B and retaining the best of the resulting two solutions. The
time complexity of this two phased approach is dominated by the complexity of Algorithm B,
which is O(Jud(G)| N%) (a factor ofud(G)| greater than the complexity of the technique for
delayless 2LCR that was developed in Section ), wNere is the number of ver@esin . Since

lud(G)| < N from Observation 8(e), the complexity@{ N°)

Theorem 5: Polynomial-time solutions exist for the general two-processor latency-constrained

resynchronization problem.

The example in Figure 10 shows how it is possible for Algorithm A to produce a better
result than Algorithm B. Conversely, the ability of Algorithm B to outperform Algorithm A can
be demonstrated through the example of Figure 9. From Figure 12(c), we know that the result
computed by Algorithm B has a cost®f synchronization edges. The result computed by Algo-
rithm A can be derived by applying interval covering to the subsets specified in (26) with all of the

unit-delay edgesst’, sg', s;’, sg' ) removed:
X(v1) ={s/'} X(v2) = {8/, '}, X(v3) = {$y', 85}
X(Va) = X(vs5) = X(vg) = {s,'}. (40)

A minimal cover for (40) is achieved Hy (Vv,), X(v3), X(v,)} ., and the corresponding synchro-
nization graph computed by Algorithm A is shown in Figure 13. This solution has a dost of  syn-
chronization edges, which is one greater than that of the result computed by Algorithm B for this

example.
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9. A heuristic for general synchronization graphs
|
The companion paper [5] presents a heuristic called Global-resynchronize for the maxi-

mum-throughput resynchronization problem, which is the problem of determining an optimal
resynchronization under the assumption that arbitrary increases in latency can be tolerated. In this
section, we extend Algorithm Global-resynchronize to derive an efficient heuristic that addresses
the latency-constrained resynchronization problem for general synchronization graphs. Given an
input synchronization grap@ , Algorithm Global-resynchronize operates by first computing the

family of subsets

Figure 13. The solution derived by Algorithm A when it is applied to the
example of Figure 9.
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T ={X(vy, v2)|(((vy, vo) ODE) and (pg(vy, v4) = ))} . (41)

After computing the family of subsets specified by (41), Algorithm Global-resynchronize
chooses a member of this family that has maximum cardinality, inserts the corresponding delay-
less resynchronization edge, and removes all synchronization edges that become redundant as a
result of inserting this resynchronization edge.

To extend this technique for maximum-throughput resynchronization to the latency-con-

strained resynchronization problem, we simply replace the subset computation in (41) with
T ={X(Vy, V)| (((vy, V) DE) and (pg(vy vy) = @) and (L' (vy, Vo) SLypay )}, (42)

whereL" is the latency of the synchronization gréyh{ E+ { (v;, v,)}}) that results from add-
ing the resynchronization edge,,v,) @&
A pseudocode specification of our extension of Global-resynchronize to the latency-con-

strained resynchronization problem, called AlgoritBiobal-LCR is shown in Figure 14.

9.1 Customization to transparent synchronization graphs

In Section 5, we mentioned that transparent synchronization graphs are advantageous for
performing latency-constrained resynchronization. If the input synchronization graph is transpar-
ent, then assuming that (G)(x, y) has been determined far@llV L' , in Algorithm Glo-

bal-LCR can be computed @(1) time from
L'(vq, Vo) = max({(Tgg)(V, Vq) + Tj ) (V2 01)), Lg}), (43)

whereu is the source actorffG) o, is the latency outputLand is the late@cy of
Furthermore,T; (G)(x, y) can be updated in the same mannggas . That is once the

resynchronization edgéest is chosen, we have that forleash O (V O {v}) ,
Thea% ¥) = Max({ Ty()(% V), Ty(e)(x Sc(bes)) + Ty (snkbesy, Y}),  (44)
whereT ., denotes the maximum cumulative execution time between actors in the first iteration
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graph after the insertion of the edgest Gn . The computations in (44) can be performed by
inserting the simplér loop shown in Figure 15 at the end of gse block in Algorithm Global-
LCR. Thus, as with the computationmf , the cubic-time Bellman-Ford algorithm need only be

invoked once, at the beginning of the LCR Algorithm, to initialf%ge)(x, y) . This loop can be

function Global-LCR
input : a reduced synchronization graph G = (V, E)
output : an alternative reduced synchronization graph that preserves G.

compute pg(x,y) for all actor pairs x, yOO'V

complete= FALSE
while not (completé
best= NULL M =0
for x, ydVv
if ((ps(y, X) = =) and ((x, y) DE))and (L'(X, y) < Lpa
X* = x((xy)
it (Ix*l>M)
M = [x*|
best= (xy
end if

end if
end for

if (best= NULLD
complete= TRUE

else
E = E—x(bes) +{dy(bes)}
G =(V, b
for x, yOlv [* update pg */
Prew(X Y) = min({ pg(X, ¥), p(X, src(bes)) + pg(snk(bes), Y})
end for
pG = pnew
end if
end while
return G

end function

Figure 14. A heuristic for latency-constrained resynchronization.
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inserted immediately before or after the loop that updatep

9.2 Complexity

In the companion paper [5], we showed that Algorithm Global-resynchronize has
O(s¢ n4) time-complexity, whera is the number of actors in the input synchronization graph,
andsy; is the number of feedforward synchronization edges. Since the longest path quantities
T; (G)(*,* ) can be computed initially iﬁ)(ns) time and updatedDi(*nz) time, it is easily ver-
ified that theO(s;; n4) bound also applies to our customization of Algorithm Global-LCR to
transparent synchronization graphs.

In general, whenever the nestedloops in Figure 14 dominate the computation of the
while loop, theO( sy n4) complexity is maintained as long(BY(X, y) < L, ;25 can be evaluated
in O(1) time. For general (not necessarily transparent) synchronization graphs, we can use the
functional simulation approach described in Section 5 to determxey) in
O(dxmax({n g)) time, whered = 1+ pGO(x, y) ,and denotes the number of synchroniza-
tion edges inG . This yields a running time©fds; n4max({ n, st)) for general synchroniza-
tion graphs.

The complexity bounds derived above are based on a general upper badind of , Which is
derived in the companion paper [5], on the total number of resynchronizationvgtégddop
iterations). However, this® bound can be viewed as a very conservative estimate since in prac-
tice, constraints on the introduction of cycles severely limit the number of possible resynchroniza-
tion steps [5]. Thus, on practical graphs, we can expect significantly lower average-case

complexity than the worst-case boundsOgfs;; n4) ardis; n4max({ n, st))

for x, yO (V O {v}) [* update Tg gy */
ThewX ¥) = max({Tsg)(X ¥), Tjc)(X src(bes)) + Ty g)(snk(bes), Y})
end for
Tﬁ(G) = Tnew

Figure 15. Pseudocode to update Tj g, for use in the customization of Algorithm Global-
LCR to transparent synchronization graphs.
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9.3 Example

Figure 16 shows the synchronization graph that results from a six-processor schedule of a
synthesizer for plucked-string musical instruments in 11 voices based on the Karplus-Strong tech-
nique, as shown in the companion paper [5]. In this exaregle, owand are respectively the
latency input and latency output, and the latency7id . There are ten synchronization edges
shown, and none of these are redundant.

Figure 17 shows how the number of synchronization edges in the result computed by our
heuristic changes as the latency constraint varies. If justs@ver  units of latency can be tolerated
beyond the original latency of 170, then the heuristic is able to eliminate a single synchronization
edge. No further improvement can be obtained unless roughly a@her  units are allowed, at
which point the number of synchronization edges drofs to , and then déwn to  for an addi-

tional 8 time units of allowable latency. If the latency constraint is weaken@&gto , just over

execution time
32
51
16
04

Figure 16. The synchronization graph that results from a six processor schedule of a
music synthesizer based on the Karplus-Strong technique.
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Figure 17. Performance of the heuristic on the example of Figure 16.
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twice the original latency, then the heuristic is able to reduce the number of synchronization edges
to 6. No further improvement is achieved over the relatively long ran@@83— 644 . When
L hax2 645, the minimal cost 06 synchronization edges for this system is attained, which is half
that of the original synchronization graph.

Figure 18 and Table 1 show how the average iteration period (the reciprocal of the aver-

Table 1. Performance results for the resynchronization of Figure 16. The first column gives the memory
access time; “IP” stands for “average iteration period” (the reciprocal of the average throughput); and
“A/P” stands for “memory accesses per graph iteration.”

Mem A F B c D I E

Acc

Time | P | ar] P | aP] P ] AP IPI arl p| ad IPI AR
0 210 | 66 | 184| 47 | 214 50 18I! 6 20 5 146 af
1 250 | 67 | 195| 43 | 274 58 22} 58| 2p 54 2f P
2 202 | 66 | 216| 43 | 304 58 26|¢ 52| 25|9 s 24s 4}
3 335 | 64 | 249| 43| 334 s8 29} 54| 243 5 2fs 4
4 368 | 63 | 273| 40| 37d 59 33|; 53| 33*3 44 311 4f
5 408 | 63 | 318| 43 | 414 ss8 37} 53| 3P A 317 af
6 459 | 63 | 350| 43 | 454 58 39f 53| 4 sq 396 4|7
7 496 | 63 | 385| 43 | 50 s8 44|t 53| s 5] 4f1 4|7
8 540 | 63 | 420| 43| 55 59 48|> 54| ap 5] 44 4|7
9 584 | 63 | 455| 43 | 594 s8 52Iz 53| 52|3 5 5o 4|7
10 655 | 65 | 496| 43 | 64 62| s5p 54 sp 5] sp1 4

age throughput) varies with different memory access times for various resynchronizations of Fig-
ure 16. Here, the column of Table 1 and the plot of Figure 18 laBeled represent the original
synchronization graph (before resynchronization); column/plot Bbel represents the resynchro-
nized result corresponding to the first break-point of FigureL1Z(= 221 9 , synchronization
edges); labeC corresponds to the second break-point of Figutg, 17 € 268 8 ,  synchroni-
zation edges); and so on for labBISE , &nhd , whose associated synchronization graphs have
6 and5 synchronization edges, respectively. Thus, as we go fronAabel t&label ,the number
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of synchronization edges in resynchronized solution decreases monotonically. However, as seen
in Figure 18, the average iteration period need not exactly follow this trend. For example, even
though synchronization graph  has one synchronization edge more tharBgraph , the iteration
period curve for grapB lies slightly above thattof . This is because the simulations shown in
the figure model a shared bus, and take bus contention into account. Thus, even though graph
has one less synchronization edge than ghaph , it entails higher bus contention, and hence results
in a higher average iteration period. A similar anomaly is seen between@raph anDgraph
where graplD has one less synchronization edge than Graph , but still has a higher average
iteration period. However, we observe such anomalies only within highly localized neighbor-
hoods in which the number of synchronization edges differs by only one. Overall, in a global
sense, the figure shows a clear trend of decreasing iteration period with loosening of the latency
constraint, and reduction of the number of synchronization edges.

It is difficult to model bus contention analytically, and for precise performance data we

must resort to a detailed simulation of the shared bus system. We propose using such a simulation

700

600

a
o
o

Iteration period
ey
o
o

300

0 1 2 3 4 5 6 7 8 9 10
Memory access time

Figure 18. Average iteration period (reciprocal of average throughput) vs. memory access time for various
latency-constrained resynchronizations of the music synthesis example in Figure 16.
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as a means of verifying that the resynchronization optimization does not result in a performance
degradation due to higher bus contention. Our experiments suggest that this needs to be done only
for cases where the number of synchronization edges removed by resynchronization is small com-
pared to the total number of synchronization edges (i.e. when the resynchronized solution is
within a localized neighborhood of the original synchronization graph).

Figure 19 shows that the average number of shared memory accesses per graph iteration
decreases consistently with loosening of the latency constraint. As mentioned in the companion
paper, such reduction in shared memory accesses is relevant when power consumption is an
important issue, since accesses to shared memory often require significant amounts of energy.

Figure 20 illustrates how the placement of synchronization edges changes as the heuristic
is able to attain lower synchronization costs.

Note that synchronization graphs computed by the heuristic are not necessarily identical

over any of the ranges in Figure 17 in which the number of synchronization edges is con-

max
stant. In fact, they can be significantly different. This is because even when there are no resyn-
chronization candidates available that can reduce the net synchronization cost (that is, no

resynchronization candidates for whidlg(*)| >1) ), the heuristic attempts to insert resynchroni-

70

60

40

30

20

Number of Shared Memory Accesses per Iteration

10

A B C D E F

Figure 19. Average number of shared memory accesses per iteration for various latency-constrained
resynchronizations of the music synthesis example.
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zation edges for the purpose of increasing the connectivity; this increases the chance that subse-

quent resynchronization candidates will be generated for Wii¢h| > 1

Figure 21, shows the synchronization graph computed Whgn

[5]. For example,

is just below the amount

needed to permit the minimal solution, which requires only five synchronization edges (solution

F). Comparison with the graph shown in Figure 20(d) shows that even though these solutions

Lonax = 268
(a) (b)
®
\ \ \ \ \
\
\
\
Lonax = 276 @ Lnax = 382
() (d)

Figure 20. Synchronization graphs computed by the heuristic for different valueg gf
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have the same synchronization cost, the heuristic had much more room to pursue further resyn-

chronization opportunities with = 644 , and thus, the graph of Figure 21 is more similar to

max
the minimal solution than it is to the solution of Figure 20(d).

Earlier, we mentioned that o@( s n4) a@( ds; n4max({ n, s})) complexity expres-
sions are conservative since they are based @ian  bound on the number of iterations of the
while loop in Figure 14, while in practice, the actual numbewlafe loop iterations can be
expected to be much less thah . This claim is supported by our music synthesis example, as
shown in the graph of Figure 22. Here, ¥ie -axis corresponds to the latency cobsfraint , and
the Y -coordinates give the numbedtiile loop iterations that were executed by the heuristic.

We see that betwedn a8  iterations were required for each execution of the algorithm, which

is not only much less thamt = 484 , Itis even less than . This suggests that perhaps a signifi-

cantly tighter bound on the number of while loop iterations can be derived.

10. Conclusions

This paper has addressed the problem of latency-constrained resynchronization for self-
timed implementation of iterative dataflow specifications.

Given an upper bound,,,,  on the allowable latency, the objective of latency-constrained

Lax = 644

Figure 21. The synchronization graph computed by the heuristit for, = 644
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Figure 22. Number of resynchronization iterations vers$us, , for the example of Figure 16.
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resynchronization is to insert extraneous synchronization operations in such a way that a) the
number of original synchronizations that consequently become redundant significant exceeds the
number of new synchronizations, and b) the serialization imposed by the new synchronizations
does not increase the latency beybnd . To ensure that the serialization imposed by resynchro-
nization does not degrade the throughput, the new synchronizations are restricted to lie outside of
all cycles in the final synchronization graph.

We have established that optimal latency-constrained resynchronization is NP-hard even
for a very restricted class of synchronization graphs; we have derived an efficient, polynomial-
time algorithm that computes optimal latency-constrained resynchronizations for two-processor
systems; and we have extended the heuristic presented in the companion paper [5] for maximum-
throughput resynchronization to address the problem of latency-constrained resynchronization for
generah-processor systems. Through an example of a music synthesis system, we have illus-
trated the ability of this extended heuristic to systematically trade-off between synchronization
overhead and latency.

The techniques developed in this paper and the companion paper [5] can be used as a post-
processing step to improve the performance of any of the large number of static multiprocessor
scheduling techniques for iterative dataflow specifications, such as those described in [1, 2, 8, 11,

12, 19, 24, 27, 31, 33].

11. Glossary
|
|9 : The number of members in the finite Set

p(x, y): Same apg with the DFG  understood from context.

Pa(X y): If there is no path i from  tg , the@(X, y) = © ; otherwise,

pg(X y) = Delay(p), wherep is any minimum-delay path from yo

delay(e): The delay on a DFG edge

Delay(p): The sum of the edge delays over all edges in thepath

d,(u, v): An edge whose source and sink verticesuare vand , respectively, and

whose delay is equal to
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X(p):

2LCR

The set of synchronization edges that are subsumed by the ordered pair of
actorsp .

Two-processor latency-constrained resynchronization.

contributes to the elimination

eliminates

execution source

If G is a synchronization grapls, is a synchronization eddge iR , isa
resynchronization o6 s 0R §' #s , and there is a ppth  frem(s)

to snk(s) in W(R, G) suchthap contains aridelay(p)<delayy ,
then we say that’ contributes to the eliminatiors of

If G is a synchronization grapi® is a resynchronizatio®of ,sand isa
synchronization edge i , we say tliat  eliminatess[if R

In a synchronization graph, any actor that has no input edges or has non-
zero delay on all input edges is called an execution source.

estimated throughput:

FBS

feedback edge
feedforward edge

FFS

LCR

The maximum over all cycleS ina DFGDElay(C)/ T ,whdre isthe
sum of the execution times of all vertices traverse@by

Feedback synchronization. A synchronization protocol that may be used
for feedback edges in a synchronization graph.

An edge that is contained in at least one cycle.
An edge that is not contained in a cycle.

Feedforward synchronization. A synchronization protocol that may be used
for feedforward edges in a synchronization graph.

Latency-constrained resynchronization. Given a synchronization @aph
a resynchronizatioR db is an LCR if the latencydéfR, G) is less
than or equal to the latency constrdinf,,

resynchronization edge

Y(R, G):

SCC
self loop:

subsumes

Given a synchronization gragh  and a resynchroniz&ion , a resynchro-
nization edge oR is any memberiRf that is not containggl in

If G is a synchronization graph aml is a resynchronizatid@ of , then
W(R, G) denotes the graph that results from the resynchronizRtion

Strongly connected component.
An edge whose source and sink vertices are identical.

Given a synchronization edd&,;, Xx,)  and an ordered pair of actors
(Y1, ¥2) s (Y1, Yo) subsumegx,, x,) if

P(Xq, Y1) + P(Yo X5) < delay((Xy, X5)) -
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t(v): The execution time or estimated execution time of actor

T; (G)(x, y): The sum of the actor execution times along a path fomy to in the first
iteration graph of5 that has maximum cumulative execution time.
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