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RESYNCHRONIZATION FOR MULTIPROCESSOR DSP SYSTEMS —

PART 2: LATENCY-CONSTRAINED RESYNCHRONIZATION 1

Shuvra S. Bhattacharyya, Sundararajan Sriram and Edward A. Lee

1.  Abstract

The companion paper [5] introduced the concept of resynchronization, a post-optimization

for static multiprocessor schedules in which extraneous synchronization operations are introduced

in such a way that the number of original synchronizations that consequently becomeredundant

significantly exceeds the number of additional synchronizations. Redundant synchronizations are

synchronization operations whose corresponding sequencing requirements are enforced com-

pletely by other synchronizations in the system. The amount of run-time overhead required for

synchronization can be reduced significantly by eliminating redundant synchronizations [4, 30].

Thus, effective resynchronization reduces the net synchronization overhead in the implementation

of a multiprocessor schedule, and improves the overall throughput.

However, since additional serialization is imposed by the new synchronizations, resyn-

chronization can produce significant increase in latency. The companion paper [5] develops fun-

damental properties of resynchronization and studies the problem of optimal resynchronization

under the assumption that arbitrary increases in latency can be tolerated (“maximum-throughput

resynchronization”). Such an assumption is valid, for example, in a wide variety of simulation

applications. This paper addresses the problem of computing an optimal resynchronization among

all resynchronizations that do not increase the latency beyond a prespecified upper bound .
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Our study is based in the context of self-timed execution of iterative dataflow specifications,

which is an implementation model that has been applied extensively for digital signal processing

systems.

Latency constraints become important in interactive applications such as video conferenc-

ing, games, and telephony, where beyond a certain point latency becomes annoying to the user.

This paper demonstrates how to obtain the benefits of resynchronization while maintaining a

specified latency constraint.

2.  Introduction

In a shared-memory multiprocessor system, it is possible that certain synchronization

operations areredundant,which means that their sequencing requirements are enforced entirely

by other synchronizations in the system. It has been demonstrated that the amount of run-time

overhead required for synchronization can be reduced significantly by detecting and eliminating

redundant synchronizations [4, 30].

The objective of resynchronization is to introduce new synchronizations in such a way that

the number of original synchronizations that consequently become redundant is significantly

greater that the number of new synchronizations. Thus, effective resynchronization improves the

overall throughput of a multiprocessor implementation by decreasing the average rate at which

synchronization operations are performed. However, since additional serialization is imposed by

the new synchronizations, resynchronization can produce significant increase in latency. For some

applications, such an increased latency is tolerable; examples are video and audio playback from

media such as Digital Video Disk (DVD). For other applications, teleconferencing for example,

an increase in latency may not be tolerable. In voice telephony, for example, a round trip delay

greater than 40 milliseconds is perceived as an annoying echo. Such a limit on tolerable latency

sets alatency constraint . This paper addresses the problem of computing an optimal resyn-

chronization among all resynchronizations that do not increase the latency beyond a specified

upper bound . This enables us to realize some of the benefits of reduced synchronization
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overhead due to resynchronization, while maintaining the required latency constraint.

We address this problem in the context ofself-timed scheduling ofiterative synchronous

dataflow[17] specifications on multiprocessor systems. Please refer to Section 2 of the compan-

ion paper [5] for elaboration of these concepts. Interprocessor communication (IPC) and synchro-

nization are assumed to take place through shared memory, which could be global memory

between all processors, or it could be distributed between pairs of processors.

3.  Synchronization redundancy and resynchronization

Please refer to Sections 3 of the companion paper [5] for a review of relevant background

(primarily from graph theory) and notation, and to Section 4 of the companion paper [5] for a

description of thesynchronization protocols (FFS and FBS) assumed in this paper and a review of

oursynchronization graph modeling methodology for analyzing self-timed execution of iterative

dataflow specifications.

Any transformations that we perform on the synchronization graph must respect the syn-

chronization constraints implied by the original synchronization graph. If we ensure this, then we

only need to implement the synchronization edges of the optimized synchronization graph. If

 and  are synchronization graphs with the same vertex-set and the

same set of intraprocessor edges (edges that are not synchronization edges), we say that pre-

serves  if for all  such that , we have . The fol-

lowing theorem, developed in [4], underlies the validity of resynchronization.

Theorem 1: The synchronization constraints of  imply the constraints of  if  pre-

serves .

A synchronization edge is redundant in a synchronization graph  if its removal yields a

graph that preserves . If all redundant edges in a synchronization graph are removed, then the

resulting graph preserves the original synchronization graph [4].

Given a synchronization graph , a synchronization edge  in , and an ordered

pair of actors  in , we say that subsumes  in  if

G1 V E1,( )= G2 V E2,( )=

G1

G2 e E2∈ e E1∉ ρG1
e( )src e( )snk,( ) e( )delay≤

G1 G2 G1

G2

G

G

G x1 x2,( ) G

y1 y2,( ) G y1 y2,( ) x1 x2,( ) G
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.

Thus, intuitively,  subsumes  if and only if a zero-delay synchronization edge

directed from  to  makes  redundant. If  is the set of synchronization edges in ,

and  is an ordered pair of actors in , then .

If  is a synchronization graph and  is the set of feedforward edges in ,

then aresynchronization of  is a set  of edges that are not necessarily

contained in , but whose source and sink vertices are in , such that  are feed-

forward edges in the DFG , and  preserves . Each member of  that

is not in  is aresynchronization edge,  is called theresynchronized graph associated with

, and this graph is denoted by .

Our concept of resynchronization considers the rearrangement of synchronizations only

across feedforward edges. We impose this restriction so that the serialization imposed by resyn-

chronization does not degrade the estimated throughput [5].

4.  Elimination of synchronization edges

In this section, we introduce a number of useful properties that pertain to the process by

which resynchronization can make certain synchronization edges in the original synchronization

graph become redundant. The following definition is fundamental to these properties.

Definition 1: If  is a synchronization graph,  is a synchronization edge in  that is not

redundant,  is a resynchronization of , and  is not contained in , then we say thatelimi-

nates . If  eliminates , , and there is a path  from  to  in  such

that  contains  and , then we say thatcontributes to the elimination

of .

A synchronization edge  can be eliminated if a resynchronization creates a path  from

 to  such that . In general, the path  may contain more than

one resynchronization edge, and thus, it is possible that none of the resynchronization edges

ρG x1 y1,( ) ρG y2 x2,( )+ x1 x2,( )( )delay≤

y1 y2,( ) x1 x2,( )

y1 y2 x1 x2,( ) S G

p G χ p( ) s S∈ p subsumess{ }≡

G V E,( )= F G

G R e1′ e2′ … em′, , ,{ }≡

E V e1′ e2′ … em′, , ,

G∗ V E F–( ) R+,( )≡ G∗ G R

E G∗

R Ψ R G,( )

G s G

R G s R R

s R s s′ R∈ p s( )src s( )snk Ψ R G,( )

p s′ p( )Delay s( )delay≤ s′

s

s p

s( )src s( )snk p( )Delay s( )delay≤ p
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allows us to eliminate  “by itself”. In such cases, it is the contribution of all of the resynchroniza-

tion edges within the path  that enables the elimination of . This motivates our choice of termi-

nology in Definition 1. An example is shown in Figure 1.

The following two facts follow immediately from Definition 1.

Fact 1: Suppose that  is a synchronization graph,  is a resynchronization of , and  is a

resynchronization edge in . If  does not contribute to the elimination of any synchronization

edges, then  is also a resynchronization of . If  contributes to the elimination of one

and only one synchronization edge , then  is a resynchronization of .

Fact 2: Suppose that  is a synchronization graph,  is a resynchronization of ,  is a syn-

chronization edge in , and  is a resynchronization edge in  such that .

Then  does not contribute to the elimination of .

For example, let  denote the synchronization graph in Figure 2(a). Figure 2(b) shows a

resynchronization  of . In the resynchronized graph of Figure 2(b), the resynchronization

edge  does not contribute to the elimination of any of the synchronization edges of , and

thus Fact 1 guarantees that , illustrated in Figure 2(c), is also a resynchroniza-

tion of . In Figure 2(c), it is easily verified that  contributes to the elimination of exactly

one synchronization edge — the edge , and from Fact 1, we have that

, illustrated in Figure 2(d), is a also resynchronization of .

s

p s

D D

D D

D

V

W

X

Y

Z

D D

D D

D

V

W

X

Y

Z

Figure 1. An illustration of Definition 1. Here each processor executes a single actor. A resyn-
chronization of the synchronization graph in (a) is illustrated in (b). In this resynchronization,
the resynchronization edges  and  both contribute to the elimination of .V X,( ) X W,( ) V W,( )

(a) (b)

G R G r

R r

R r{ }–( ) G r

s R r{ }– s{ }+( ) G

G R G s

G s′ R s′( )delay s( )delay>

s′ s

G

R G

x4 y3,( ) G

R′ R x4 y3,( ){ }–≡

G x5 y4,( )

x5 y5,( )

R″ R′ x5 y4,( ){ }– x5 y5,( ){ }+≡ G
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5.  Latency-constrained resynchronization

As discussed in Section 3, resynchronization cannot decrease the estimated throughput

since it manipulates only the feedforward edges of a synchronization graph. Frequently in real-

time DSP systems, latency is also an important issue, and although resynchronization does not

degrade the estimated throughput, it generally does increase the latency. In this section we define

the latency-constrained resynchronization problem for self-timed multiprocessor systems.

Definition 2: Suppose  is an application DFG,  is a synchronization graph that results from

a multiprocessor schedule for ,  is an execution source (an actor that has no input edges or

has nonzero delay on all input edges) in , and  is an actor in  other than . We define the

latency from  to  by 1. We refer to  as thelatency input

Figure 2. Properties of resynchronization.
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associated with this measure of latency, and we refer to  as thelatency output.

Intuitively, the latency is the time required for the first invocation of the latency input to

influence the associated latency output, and thus the latency corresponds to the critical path in the

dataflow implementation to the first output invocation that is influenced by the input. This inter-

pretation of the latency as the critical path is widely used in VLSI signal processing [14, 20].

In general, the latency can be computed by performing a simple simulation of the ASAP

execution for  through the th execution of . Such a simulation can be per-

formed as a functional simulation of a DFG  that has the same topology (vertices and edges)

as , and that maintains the simulation time of each processor in the values of data tokens. Each

initial token (delay) in  is initialized to have the value 0, since these tokens are all present at

time 0. Then, a data driven simulation of  is carried out. In this simulation, an actor may exe-

cute whenever it has sufficient data, and the value of the output token produced by the invocation

of any actor  in the simulation is given by

, (1)

where  is the set of token values consumed during the actor execution. In such

a simulation, the th token value produced by an actor  gives the completion time of the th

invocation of  in the ASAP execution of . Thus, the latency can be determined as the value of

the th output token produced by . With careful implementation of the functional

simulator described above, the latency can be determined in  time, where

, and  denotes the number of synchronization edges in . The simulation

approach described above is similar to approaches described in [32]

For a broad class of synchronization graphs, latency can be analyzed even more efficiently

during resynchronization. This is the class of synchronization graphs in which the first invocation

of the latency output is influenced by the first invocation of the latency input. Equivalently, it is

1. Recall from the companion paper [5] that  and  denote the time at which invocation
 of actor  commences and completes execution. Also, note that  since  is an execution

source.

start ν k,( ) end ν k,( )
k ν start x 1,( ) 0= x

y

G 1 ρG0
x y,( )+( ) y

Gsim

G

Gsim

Gsim

z

v1 v2 … vn, , ,{ }( )max t z( )+

v1 v2 … vn, , ,{ }{ }

i z i

z G

1 ρG0
x y,( )+( ) y

O d V s,{ }( )max×( )

d 1 ρG0
x y,( )+= s G
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the class of graphs that contain at least one delayless path in the corresponding application DFG

directed from the latency input to the latency output. For transparent synchronization graphs, we

can directly apply well-known longest-path based techniques for computing latency.

Definition 3: Suppose that  is an application DFG,  is a source actor in , and  is an

actor in  that is not identical to . If , then we say that  istransparent with

respect to latency input  and latency output . If  is a synchronization graph that corresponds

to a multiprocessor schedule for , we also say that  istransparent.

If a synchronization graph is transparent with respect to a latency input/output pair, then

the latency can be computed efficiently using longest path calculations on anacyclicgraph that is

derived from the input synchronization graph . This acyclic graph, which we call thefirst-iter-

ation graph of , denoted , is constructed by removing all edges from  that have non-

zero-delay; adding a vertex , which represents the beginning of execution; setting ;

and adding delayless edges from  to each source actor (other than ) of the partial construction

until the only source actor that remains is . Figure 3 illustrates the derivation of .

Given two vertices  and  in  such that there is a path in  from  to , we

denote the sum of the execution times along a path from  to  that has maximum cumulative

execution time by . That is,

. (2)

If there is no path from  to , then we define  to be . Note that for all

, since  is acyclic. The values  for all pairs  can be com-

G0 x G0 y

G0 x ρG0
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Figure 3. An example used to illustrate the construction of . The graph on the right is
 if  is the left-side graph.

fi G( )
fi G( ) G

x y fi G( ) fi G( ) x y

x y

Tfi G( ) x y,( )

Tfi G( ) x y,( ) t z( )
p traverses z

∑ p is a path fromx to y in fi G( )( ) 
 max=

x y Tfi G( ) x y,( ) ∞– x y,

Tfi G( ) x y,( ) ∞+< fi G( ) Tfi G( ) x y,( ) x y,
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puted in  time, where  is the number of actors in , by using a simple adaptation of the

Floyd-Warshall algorithm specified in [10].

Fact 3: Suppose that  is a DFG that is transparent with respect to latency input  and latency

output ,  is the synchronization graph that results from a multiprocessor schedule for , and

 is a resynchronization . Then , and thus  (i. e.

).

Proof: Since  is transparent, there is a delayless path  in  from  to . Let

, where  and , denote the sequence of actors traversed by . From

the semantics of the DFG , it follows that for , either  and  execute on the

same processor, with  scheduled earlier than , or there is a zero-delay synchronization

edge in  directed from  to . Thus, for , we have , and thus,

that . Since  is a resynchronization of , it follows from Lemma 1 in the com-

panion paper [5] that .QED.

The following theorem gives an efficient means for computing the latency  for trans-

parent synchronization graphs.

Theorem 2: Suppose that  is a synchronization graph that is transparent with respect to

latency input  and latency output . Then .

Proof: By induction, we show that for every actor  in ,

, (3)

which clearly implies the desired result.

First, let  denote the maximum number of actors that are traversed by a path in

 (over all paths in ) that starts at  and terminates at . If , then clearly

. Since both the LHS and RHS of (3) are identically equal to  when , we

have that (3) holds whenever .

Now suppose that (3) holds whenever , for some , and consider the sce-

O n
3( ) n G

G0 x

y Gs G0

G Gs ρG x y,( ) 0= Tfi G( ) x y,( ) 0≥

Tfi G( ) x y,( ) ∞–≠

G0 p G0 x y

u1 u2 … un, , ,( ) x u1= y un= p

G0 1 i n<≤ ui ui 1+

ui ui 1+

Gs ui ui 1+ 1 i n<≤ ρGs
ui ui 1+,( ) 0=

ρGs
x y,( ) 0= G Gs

ρG x y,( ) 0=

LG

G

x y LG x y,( ) Tfi G( ) υ y,( )=

w fi G( )

end w 1,( ) Tfi G( ) υ w,( )=

mt w( )

fi G( ) fi G( ) υ w mt w( ) 1=

w υ= t υ( ) 0= w υ=

mt w( ) 1=

mt w( ) k≤ k 1≥
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nario . Clearly, in the self-timed (ASAP) execution of , invocation , the first

invocation of , commences as soon as all invocations in the set

have completed execution, where  denotes the first invocation of actor , and  is the set of

predecessors of  in . All members  satisfy , since otherwise

would exceed . Thus, from the induction hypothesis, we have

,

which implies that

. (4)

But, by definition of , the RHS of (4) is clearly equal to , and thus we have that

.

We have shown that (3) holds for , and that whenever it holds for

, it must hold for . Thus, (3) holds for all values of .QED.

In the context of resynchronization, the main benefit of transparent synchronization graphs

is that the change in latency induced by adding a new synchronization edge (a “resynchronization

operation”) can be computed in  time, given  for all actor pairs . We will

discuss this further in Section 9.

Since many practical application graphs contain delayless paths from input to output and

these graphs admit a particularly efficient means for computing latency, we have targeted our

implementation of latency-constrained resynchronization to the class of transparent synchroniza-

tion graphs. However, the overall resynchronization framework described in this paper does not

depend on any particular method for computing latency, and thus, it can be fully applied to gen-

eral graphs (with a moderate increase in complexity) using the ASAP simulation approach men-

tioned above. Our framework can also be applied to subclasses of synchronization graphs other

than transparent graphs for which efficient techniques for computing latency are discovered.

mt w( ) k 1+= G w1

w

Z z1 z Pw∈( ){ }=

z1 z Pw

w fi G( ) z Pw∈ mt z( ) k≤ mt w( )

k 1+( )

start w 1,( ) end z 1,( ) z Pw∈( )( )max Tfi G( ) υ z,( ) z Pw∈( )( )max= =

end w 1,( ) Tfi G( ) υ z,( ) z Pw∈( )( )max t w( )+=

Tfi G( ) Tfi G( ) υ w,( )

end w 1,( ) Tfi G( ) υ w,( )=

mt w( ) 1=

mt w( ) k= 1≥ mt w( ) k 1+( )= mt w( )

O 1( ) Tfi G( ) a b,( ) a b,( )
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Definition 4: An instance of thelatency-constrained resynchronization problem consists of a

synchronization graph  with latency input  and latency output , and alatency constraint

. A solution to such an instance is a resynchronization  such that 1)

, and 2) no resynchronization of  that results in a latency less than or

equal to  has smaller cardinality than .

Given a synchronization graph  with latency input  and latency output , and a latency

constraint , we say that a resynchronization  of  is alatency-constrained resynchroni-

zation (LCR) if . Thus, the latency-constrained resynchronization problem

is the problem of determining a minimal LCR.

6.  Related work

In [4], an efficient algorithm, calledConvert-to-SC-graph, is described for introducing

new synchronization edges so that the synchronization graph becomes strongly connected, which

allows all synchronization edges to be implemented with the more efficient FBS protocol. A sup-

plementary algorithm is also given for determining an optimal placement of delays on the new

edges so that the estimated throughput is not degraded and the increase in shared memory buffer

sizes is minimized. It is shown that the overhead required to implement the new edges that are

added byConvert-to-SC-graphcan be significantly less than the net overhead that is eliminated

by converting all uses of FFS to FBS. However, this technique may increase the latency.

Generally, resynchronization can be viewed as complementary to theConvert-to-SC-

graph optimization: resynchronization is performed first, followed byConvert-to-SC-graph.

Under severe latency constraints, it may not be possible to accept the solution computed byCon-

vert-to-SC-graph, in which case the feedforward edges that emerge from the resynchronized solu-

tion must be implemented with FFS. In such a situation,Convert-to-SC-graphcan be attempted

on the original (before resynchronization) graph to see if it achieves a better result than resynchro-

nization withoutConvert-to-SC-graph. However, for transparent synchronization graphs that have

only one source SCCand only one sink SCC, the latency is not affected byConvert-to-SC-graph,

G x y

Lmax LG x y,( )≥ R

LΨ R G,( ) x y,( ) Lmax≤ G

Lmax R

G x y

Lmax R G

LΨ R G,( ) x y,( ) Lmax≤
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and thus, for such systems resynchronization andConvert-to-SC-graph are fully complementary.

This is fortunate since such systems arise frequently in practice.

Trade-offs between latency and throughput have been studied by Potkonjac and Srivastava

in the context of transformations for dedicated implementation of linear computations [26].

Because this work is based on synchronous implementations, it does not address the synchroniza-

tion issues and opportunities that we encounter in our self-timed dataflow context.

7.  Intractability of LCR

In this section we show that the latency-constrained resynchronization problem is NP-hard

even for the very restricted subclass of synchronization graphs in which each SCC corresponds to

a single actor, and all synchronization edges have zero delay.

As with the maximum-throughput resynchronization problem [5], the intractability of this

special case of latency-constrained resynchronization can be established by a reduction from set

covering. To illustrate this reduction, we suppose that we are given the set ,

and the family of subsets , where , , and

. Figure 4 illustrates the instance of latency-constrained resynchronization that we

derive from the instance of set covering specified by . Here, each actor corresponds to a

single processor and the self loop edge for each actor is not shown. The numbers beside the actors

specify the actor execution times, and the latency constraint is . In the graph of Fig-

ure 4, which we denote by , the edges labeled  correspond respectively to the

members  of the set  in the set covering instance, and the vertex pairs (resynchroni-

zation candidates)  correspond to the members of . For each relation

, an edge exists that is directed from  to . The latency input and latency output are

defined to be  and  respectively, and it is assumed that  is transparent.

The synchronization graph that results from an optimal resynchronization of  is shown

in Figure 6, with redundant resynchronization edges removed. Since the resynchronization candi-

dates  were chosen to obtain the solution shown in Figure 6, this solution corre-

X x1 x2 x3 x4, , ,{ }=

T t1 t2 t3, ,{ }= t1 x1 x3,{ }= t2 x1 x2,{ }=

t3 x2 x4,{ }=

X T,( )

Lmax 103=

G ex1 ex2 ex3 ex4, , ,

x1 x2 x3 x4, , , X

v st1,( ) v st2,( ) v st3,( ), , T

xi t j∈ stj sxi

in out G

G

v st1,( ) v st3,( ),
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sponds to the solution of  that consists of the subfamily .

A correspondence between the set covering instance  and the instance of latency-

constrained resynchronization defined by Figure 4 arises from two properties of our construction:

Observation 1: .

Observation 2: If  is an optimal LCR of , then each resynchronization edge in  is of the

form

, or of the form . (5)

The first observation is immediately apparent from inspection of Figure 4. A proof of the

second observation follows.

Proof of Observation 2 We must show that no other resynchronization edges can be contained in

an optimal LCR of . Figure 6 specifies arguments with which we can discard all possibilities

Figure 4. An instance of latency-constrained resynchronization that is derived from an
instance of the set covering problem.

v
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ex4
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z
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1

100

40 40
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1

Lmax = 103

in
1

X T,( ) t1 t3,{ }

X T,( )

xi t j∈ in the set covering instance( ) v stj,( ) subsumesexi in G( )⇔

R G R

v sti,( ) i 1 2 3, ,{ }∈, stj sxi,( ) xi t j∉,

G
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Figure 5. The synchronization graph that results from a solution to the instance of
latency-constrained resynchronization shown in Figure 4.
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other than those given in (5). In the matrix shown in Figure 6, the entry corresponding to row

and column  specifies an index into the list of arguments on the right side of the figure. For each

of the six categories of arguments, except for #6, the reasoning is either obvious or easily under-

stood from inspection of Figure 4. A proof of argument #6 follows shortly within this same sec-

tion.

For example, edge  cannot be a resynchronization edge in  because the edge

already exists in the original synchronization graph; an edge of the form  cannot be in

because there is a path in  from  to each ;  since otherwise there would be a

path from  to  that traverses , and thus, the latency would be increased to at

least ;  from Lemma 2 in the companion paper [5] since ; and

 since otherwise there would be a delayless self loop. Three of the entries in Figure 6

point to multiple argument categories. For example, if , then  introduces a cycle,

and if  then  cannot be contained in  because it would increase the latency

beyond .

The entries in Figure 6 markedOK are simply those that correspond to (5), and thus we

have justified Observation 2.QED.

In the proof of Observation 2, we deferred the proof of Argument #6 for Figure 1. We now

present the proof of this argument.

Proof of Argument #6 in Figure 1.By contraposition, we show that  cannot contribute to the

elimination of any synchronization edge of , and thus from Fact 1, it follows from the optimal-

ity of  that . Suppose that  contributes to the elimination of some synchroniza-

tion edge . Then

, (6)

where

. (7)

r

c

v z,( ) R

sxj w,( ) R

G w sxi z w,( ) R∉

in out v z w st1 sx1, , , ,

204 in z,( ) R∉ ρG in z,( ) 0=

v v,( ) R∉

xj ti∈ sxj sti,( )

xj ti∉ sxj sti,( ) R

Lmax

w z,( )

G

R w z,( ) R∉ w z,( )

s

ρ
G̃

s( )src w,( ) ρ
G̃

z s( )snk,( ) 0= =

G̃ Ψ R G,( )≡
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From the matrix in Figure 6, we see that no resynchronization edge can have  as the source ver-

tex. Thus, . Now, if , then , and thus from (6), there is a

zero delay path from  to  in . However, the existence of such a path in  implies the exist-

ence of a path from  to  that traverses actors , which in turn implies that

, and thus that  is not a valid LCR.

On the other hand, if , then . Now from (6),

 implies the existence of a zero delay path from  to  in , which implies the exist-

ence of a path from  to  that traverses , which in turn implies that

. On the other hand, if  for some , then since from Figure 6, there are

no resynchronization edges that have an  as the source, it follows from (6) that there must be a

zero delay path in  from  to . The existence of such a path, however, implies the existence

of a cycle in  since . Thus,  implies that  is not an LCR.QED.

The following observation states that a resynchronization edge of the form  con-

tributes to the elimination of exactly one synchronization edge, which is the edge .

Observation 3: Suppose that  is an optimal LCR of  and suppose that  is a

resynchronization edge in , for some  such that . Then

contributes to the elimination of one and only one synchronization edge — .

Proof: Since  is an optimal LCR, we know that  must contribute to the elimination of at least

one synchronization edge (from Fact 1). Let  be some synchronization edge such that  contrib-

utes to the elimination of . Then

. (8)

Now from Figure 6, it is apparent that there are no resynchronization edges in  that have  or

 as their source actor. Thus, from (8),  or . Now, if

, then  for some , or . However, since no resynchro-

nization edge has a member of  as its source, we must (from 8) rule out

z

s( )snk z out,{ }∈ s( )snk z= s v z,( )=

v w G̃ G̃

in out v w st1 sx1, , ,

L
G̃

in out,( ) 104≥ R

s( )snk out= s( )src z sx1 sx2 sx3 sx4, , , ,{ }∈

s( )src z= z w G̃

in out v w z st1 sx1, , , ,

Lmax 204≥ s( )src sxi= i

sxi

G̃ out w

G̃ ρG w out,( ) 0= s( )snk out= R

stj sxi,( )

exi

R G e stj sxi,( )=

R i 1 2 3 4, , ,{ }∈ j 1 2 3, ,{ }∈, xi t j∉ e

exi

R e

s e

s

ρR G( ) s( )src e( )src,( ) ρR G( ) e( )snk s( )snk,( ) 0= =

R sxi

out s( )snk sxi= s( )snk out=

s( )snk out= s( )src sxk= k i≠ s( )src z=

sx1 sx2 sx3 sx4, , ,{ }
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. Similarly, if , then from (8) there exists a zero delay path in

from  to , which in turn implies that . But this is not possible since our

assumption that  is an LCR guarantees that . Thus, we conclude that

, and thus, that .

Now  implies that (a)  or (b)  for some  such that

 (recall that , and thus, that ). If , then from (8),

. It follows that for any member , there is a zero delay path in

that traverses ,  and . Thus,  does not hold since otherwise

.

Thus, we are left only with possibility (a) — .QED.

Now, suppose that we are given an optimal LCR  of . From Observation 3 and Fact 1,

we have that for each resynchronization edge  in , we can replace this resynchroniza-

tion edge with  and obtain another optimal LCR. Thus from Observation 2, we can efficiently

obtain an optimal LCR  such that all resynchronization edges in  are of the form .

For each  such that

, (9)

we have that . This is because  is assumed to be optimal, and thus,  contains

no redundant synchronization edges. For each  for which (9) does not hold, we can replace

 with any  that satisfies , and since such a replacement does not affect the

latency, we know that the result will be another optimal LCR for . In this manner, if we repeat-

edly replace each  that does not satisfy (9) then we obtain an optimal LCR  such that

each resynchronization edge in  is of the form , and (10)

for each , there exists a resynchronization edge  in  such that . (11)

It is easily verified that the set of synchronization edges eliminated by  is . Thus,

s( )src sxk= s( )src z= R G( )

z stj LR G( ) in out,( ) 140>

R LR G( ) in out,( ) 103≤

s( )snk out≠ s( )snk sxi=

s( )snk sxi=( ) s exi= s stk sxi,( )= k

xi tk∈ xi t j∉ k j≠ s stk sxi,( )=

ρR G( ) stk stj,( ) 0= xl t j∈ R G( )

stk stj sxl s stk sxi,( )=

LR G( ) in out,( ) 140≥

s exi=

R G

stj sxi,( ) R

exi

R′ R′ v sti,( )

xi X∈

t j∃ xi t j∈( ) v stj,( ) R′∈( )and( )

exi R′∉ R′ Ψ R G,( )

xi X∈

exi v stj,( ) xi t j∈

G

exi R′′

R′′ v sti,( )

xi X∈ v t j,( ) R′′ xi t j∈

R″ exi xi X∈{ }
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the set  is a cover for , and the cost (number

of synchronization edges) of the resynchronization  is , where  is the number

of synchronization edges in the original synchronization graph. Now, it is also easily verified

(from Figure 4) that given an arbitrary cover  for , the resynchronization defined by

(12)

is also a valid LCR of , and that the associated cost is . Thus, it follows from

the optimality of  that  must be a minimal cover for , given the family of subsets .

To summarize, we have shown how from the particular instance  of set covering,

we can construct a synchronization graph  such that from a solution to the latency-constrained

resynchronization problem instance defined by , we can efficiently derive a solution to .

This example of the reduction from set covering to latency-constrained resynchronization is easily

generalized to an arbitrary set covering instance . The generalized construction of the ini-

tial synchronization graph  is specified by the steps listed in Figure 7.

The main task in establishing our general correspondence between latency-constrained

resynchronization and set covering is generalizing Observation 2 to apply to all constructions that

T ′ t j v t j,( ) is a resynchronization edge inR′′{ }≡ X

R″ N X– T′+( ) N

Ta X

Ra R″ v t j,( ) t j T′∈( ){ }–( ) v t j,( ) t j Ta∈( ){ }+≡

G N X– Ta+( )

R″ T′ X T

X T,( )

G

G X T,( )

X′ T′,( )

G

Figure 6.
Figure 7. A procedure for constructing an instance  of latency-constrained resynchroniza-
tion from an instance  of set covering such that a solution to  yields a solution to .

I lr

I sc I lr I sc

• Instantiate actors , with execution times , , , , and , respectively,
and instantiate all of the edges in Figure 4 that are contained in the subgraph associated
with these five actors.
• For each , instantiate an actor labeled  that has execution time .

• For each

Instantiate an actor labeled  that has execution time .

Instantiate the edge .

Instantiate the edge .

•For each

Instantiate the edge .

For each , instantiate the edge .

• Set .

v w z in out, , , , 1 1 100 1 1

t T′∈ st 40

x X′∈
sx 60

ex d0 v sx,( )≡

d0 sx out,( )

t T′∈
d0 w st,( )

x t∈ d0 st sx,( )

Lmax 103=
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follow the steps in Figure 7. This generalization is not conceptually difficult (although it is rather

tedious) since it is easily verified that all of the arguments in Figure 7 hold for the general con-

struction. Similarly, the reasoning that justifies converting an optimal LCR for the construction

into an optimal LCR of the form implied by (10) and (11) extends in a straightforward fashion to

the general construction.

8.  Two-processor systems

In this section, we show that although latency-constrained resynchronization for transpar-

ent synchronization graphs is NP-hard, the problem becomes tractable for systems that consist of

only two processors — that is, synchronization graphs in which there are two SCCs and each SCC

is a simple cycle. This reveals a pattern of complexity that is analogous to the classic nonpreemp-

tive processor scheduling problem with deterministic execution times, in which the problem is

also intractable for general systems, but an efficient greedy algorithm suffices to yield optimal

solutions for two-processor systems in which the execution times of all tasks are identical [9, 13].

However, for latency-constrained resynchronization, the tractability for two-processor systems

does not depend on any constraints on the task (actor) execution times. Two processor optimality

results in multiprocessor scheduling have also been reported in the context of a stochastic model

for parallel computation in which tasks have random execution times and communication patterns

[21].

In an instance of thetwo-processor latency-constrained resynchronization (2LCR)

problem, we are given a set ofsource processor actors , with associated execution

times , such that each  is the th actor scheduled on the processor that corresponds to

the source SCC of the synchronization graph; a set ofsink processor actors , with

associated execution times , such that each  is the th actor scheduled on the processor

that corresponds to the sink SCC of the synchronization graph; a set of non-redundant synchroni-

zation edges  such that for each ,  and

; and a latency constraint , which is a positive integer. A solution

x1 x2 … xp, , ,

t xi( ){ } xi i

y1 y2 … yq, , ,

t yi( ){ } yi i

S s1 s2 … sn, , ,{ }= si si( )src x1 x2 … xp, , ,{ }∈

si( )snk y1 y2 … yq, , ,{ }∈ Lmax
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to such an instance is a minimal resynchronization  that satisfies . In the

remainder of this section, we denote the synchronization graph corresponding to our generic

instance of 2LCR by .

We assume that  for all , and we refer to the subproblem that results from

this restriction asdelayless 2LCR. In this section we present an algorithm that solves the delay-

less 2LCR problem in time, where  is the number of vertices in . We also give an

extension of this algorithm to the general 2LCR problem (arbitrary delays can be present).

8.1 Interval covering

An efficient polynomial-time solution to delayless 2LCR can be derived by reducing the

problem to a special case of set covering calledinterval covering, in which we are given an

ordering  of the members of  (the set that must be covered), such that the collec-

tion of subsets  consists entirely of subsets of the form .

Thus, while general set covering involves covering a set from a collection of subsets, interval cov-

ering amounts to covering an interval from a collection of subintervals.

Interval covering can be solved in  time by a simple procedure that first selects

the subset , where

;

then selects any subset of the form , , where

;

then selects any subset of the form , , where

;

and so on until .

8.2 Two-processor latency-constrained resynchronization

To reduce delayless 2LCR to interval covering, we start with the following observations.

Observation 4: Suppose that  is a resynchronization of , , and  contributes to the

R LΨ R G,( ) x1 yq,( ) Lmax≤

G̃

si( )delay 0= si

O N
2( ) N G̃

w1 w2 … wN, , , X

T wa wa 1+ … wb, , ,{ } 1 a b N≤ ≤ ≤,

O X T( )

w1 w2 … wb1
, , ,{ }

b1 b w1 wb, t∈( ) for somet T∈{ }( )max=

wa2
wa2 1+ … wb2

, , ,{ } a2 b1 1+≤

b2 b wb1 1+ wb, t∈( ) for somet T∈{ }( )max=

wa3
wa3 1+ … wb3

, , ,{ } a3 b2 1+≤

b3 b wb2 1+ wb, t∈( ) for somet T∈{ }( )max=

bn N=

R G̃ r R∈ r
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elimination of synchronization edge . Then  subsumes . Thus, the set of synchronization

edges that  contributes to the elimination of is simply the set of synchronization edges that are

subsumed by .

Proof: This follows immediately from the restriction that there can be no resynchronization edges

directed from a  to an  (feedforward resynchronization), and thus in , there can be at

most one synchronization edge in any path directed from  to .QED.

Observation 5: If  is a resynchronization of , then

, where

 for , and  for .

Proof: Given a synchronization edge , there is exactly one delayless path in

from  to  that contains  and the set of vertices traversed by this path is

. The desired result follows immediately.QED.

Now, corresponding to each of the source processor actors  that satisfies

 we define an ordered pair of actors (a “resynchronization candidate”) by

, where . (13)

Consider the example shown in Figure 8. Here, we assume that  for each actor ,

and . From (13), we have

,

. (14)

If  exists for a given , then  can be viewed as the best resynchronization edge

that has  as the source actor, and thus, to construct an optimal LCR, we can select the set of

resynchronization edges entirely from among the s. This is established by the following two

observations.

Observation 6: Suppose that  is an LCR of , and suppose that  is a delayless syn-

s r s

r

r

yj xi Ψ R G̃,( )

s( )src s( )snk

R G̃

LΨ R G̃,( ) x1 yq,( ) t pred s′( )src( ) tsucc s′( )snk( )+ s′ R∈{ }( )max=

t pred xi( ) t xj( )
j i≤
∑≡ i 1 2 … p, , ,= tsucc yi( ) t yj( )

j i≥
∑≡ i 1 2 … q, , ,=

xa yb,( ) R∈ R G̃( )

x1 yq xa yb,( )

x1 x2 … xa yb yb 1+ … yq, , , , , , ,{ }

xi

t pred xi( ) t yq( )+ Lmax≤

vi xi yj,( )≡ j k t pred xi( ) tsucc yk( )+ Lmax≤( ){ }( )min=

t z( ) 1= z

Lmax 10=

v1 x1 y1,( )= v2 x2 y1,( )= v3 x3 y2,( )= v4 x4 y3,( )=, , ,

v5 x5 y4,( )= v6 x6 y5,( )= v7 x7 y6,( )= v8 x8 y7,( )=, , ,

vi xi d0 vi( )

xi

vi

R G̃ xa yb,( )
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chronization edge in  such that . Then  is an LCR of

.

Proof: Let  and , and observe that  exists,

since

.

From Observation 4 and the assumption that  is delayless, the set of synchronization

edges that  contributes to the elimination of is simply the set of synchronization edges

that are subsumed by . Now, if  is a synchronization edge that is subsumed by ,

then

. (15)

From the definition of , we have that , and thus, that . It follows from (15)
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Figure 8. An instance of delayless, two-processor latency-constrained resynchronization.
In this example, the execution times of all actors are identically equal to unity.

R xa yb,( ) va≠ R xa yb,( ){ }– d0 va( ){ }+( )

R

va xa yc,( )= R′ R xa yb,( ){ }– d0 va( ){ }+( )= va

xa yb,( ) R∈( ) t pred xa( ) tsucc yb( )+ Lmax≤( ) t pred xa( ) t yq( )+ Lmax≤( )⇒ ⇒

xa yb,( )

xa yb,( )

xa yb,( ) s xa yb,( )

ρ
G̃

s( )src xa,( ) ρ
G̃

yb s( )snk,( )+ s( )delay≤

va c b≤ ρ
G̃

yc yb,( ) 0=
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that

, (16)

and thus, that  subsumes . Hence,  subsumes all synchronization edges that  con-

tributes to the elimination of, and we can conclude that  is a valid resynchronization of .

From the definition of , we know that , and thus since  is

an LCR, we have from Observation 5 that  is an LCR.QED.

From Fact 2 and the assumption that the members of  are all delayless, an optimal LCR

of  consists only of delayless synchronization edges. Thus from Observation 6, we know that

there exists an optimal LCR that consists only of members of the form . Furthermore, from

Observation 5, we know that a collection  of s is an LCR if and only if

,

where  is the set of synchronization edges that are subsumed by . The following observa-

tion completes the correspondence between 2LCR and interval covering.

Observation 7: Let  be the ordering of  specified by

. (17)

That is the 's are ordered according to the order in which their respective source actors execute

on the source processor. Suppose that for some , some , and some

, we have  and . Then

.

In Figure 8(a), the ordering specified by (17) is

, (18)

and thus from (14), we have

ρ
G̃

s( )src xa,( ) ρ
G̃

yc s( )snk,( )+ s( )delay≤

va s va xa yb,( )

R′ G̃

va tpred xa( ) tsucc yc( )+ Lmax≤ R

R′

S

G̃

d0 vi( )

V vi

χ v( )
v V∈
∪ s1 s2 … sn, , ,{ }=

χ v( ) v

s1′ s2′ … sn′, , , s1 s2 … sn, , ,

xa si ′( )src= xb sj ′( )src= a b<, ,( ) i j<( )⇒

si ′

j 1 2 … p, , ,{ }∈ m 1>

i 1 2 … n m–, , ,{ }∈ si ′ χ vj( )∈ si m+ ′ χ vj( )∈

si 1+ ′ si 2+ ′ … si m 1–+ ′, , , χ vj( )∈

s1′ x1 y2,( )= s2′ x2 y4,( )= s3′ x3 y6,( )= s4′ x5 y7,( )= s5′ x7 y8,( )=, , , ,

χ v1( ) s1′{ }= χ v2( ) s1′ s2′,{ }= χ v3( ) s1′ s2′ s3′, ,{ }= χ v4( ) s2′ s3′,{ }=, , ,
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, (19)

which is clearly consistent with Observation 7.

Proof of Observation 7:Let , and suppose  is a positive integer such that

. Then from (17), we know that . Thus, since

, we have that

. (20)

Now clearly

, (21)

since otherwise  and thus (from 17)  subsumes , which contra-

dicts the assumption that the members of  are not redundant. Finally, since , we

know that . Combining this with (21) yields

, (22)

and (20) and (22) together yield that .QED.

From Observation 7 and the preceding discussion, we conclude that an optimal LCR of

can be obtained by the following steps.

(a) Construct the ordering  specified by (17).

(b) For , determine whether or not  exists, and if it exists, compute .

(c) Compute  for each value of  such that  exists.

(d) Find a minimal cover  for  given the family of subsets .

(e) Define the resynchronization .

Steps (a), (b), and (e) can clearly be performed in  time, where  is the number of

vertices in . If the algorithm outlined in Section 8.1 is employed for step (d), then from the dis-

cussion in Section 8.1 and Observation 8(e) in Section 8.3, it can be easily verified that the time

χ v5( ) s2′ s3′ s4′, ,{ }= χ, v6( ) s3′ s4′,{ }= χ v7( ) s3′ s4′ s5′, ,{ }= χ v8( ) s4′ s5′,{ }=, ,

vj xj yl,( )= k
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ρ
G̃

sk′( )src xj,( ) 0=

ρ
G̃

si ′( )snk sk′( )snk,( ) 0=

ρ
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sk′( ) si ′( )snk,snk( ) 0= sk′ si ′

S si ′ χ vj( )∈

ρ
G̃

yl si ′( )snk,( ) 0=

ρ
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yl sk′( )snk,( ) 0=

sk′ χ vj( )∈
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i 1 2 … p, , ,= vi vi
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R vj χ vj( ) C∈{ }=

O N( ) N
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complexity of step (d) is . Step (c) can also be performed in  time using the obser-

vation that if , then , where

 is the set of synchronization edges in . Thus, we have the following result.

Theorem 3: Polynomial-time solutions (quadratic in the number of synchronization graph ver-

tices) exist for the delayless, two-processor latency-constrained resynchronization problem.

Note that solutions more efficient than the  approach described above may exist.

From (19), we see that there are two possible solutions that can result if we apply Steps

(a)-(e) to Figure 8(a) and use the technique described earlier for interval covering. These solutions

correspond to the interval covers  and . The synchro-

nization graph that results from the interval cover  is shown in Figure 8(b).

8.3 Taking delays into account

If delays exist on one or more edges of the original synchronization graph, then the corre-

spondence defined in the previous subsection between 2LCR and interval covering does not nec-

essarily hold. For example, consider the synchronization graph in Figure 9. Here, the numbers

beside the actors specify execution times; a “D” on top of an edge specifies a unit delay; the

latency input and latency output are respectively  and ; and the latency constraint is

. It is easily verified that  exists for , and from (13), we obtain

. (23)

Now if we order the synchronization edges as specified by (17), then

 for , and  for , (24)

and if the correspondence between delayless 2LCR and interval covering defined in the previous

section were to hold for general 2LCR, then we would have that

each subset  is of the form . (25)

O N
2( ) O N

2( )

vi xi yj,( )= χ vi( ) xa yb,( ) S∈ a i≤ b j≥and{ }≡

S s1 s2 … sn, , ,{ }= G̃

O N
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Lmax 12= vi i 1 2 … 6, , ,=

v1 x1 y3,( )= v2 x2 y4,( )= v3 x3 y6,( )= v4 x4 y8,( )= v5 x5 y8,( )= v6 x6 y8,( )=, , , , ,

si ′ xi yi 4+,( )= i 1 2 3 4, , ,= si ′ xi yi 4–,( )= i 5 6 7 8, , ,=

χ vi( ) sa′ sa 1+ ′ … sb′, , ,{ } 1 a b 8≤ ≤ ≤,
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However, computing the subsets , we obtain

, (26)

and these subsets are clearly not all consistent with the form specified in (25). Thus, the algorithm

developed in Subsection  does not apply directly to handle delays.

However, the technique developed in the previous section can be extended to solve the

general 2LCR problem in polynomial time. This extension is based on separating the subsumption

relationships between the 's and the synchronization edges into two categories: if
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Figure 9. A synchronization graph with unit delays on some of the synchronization
edges.
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subsumes the synchronization edge  then we say that1-subsumes if , and

we say that 2-subsumes  if . For example in Figure 9(a),  1-subsumes

both  and , and  2-subsumes  and .

Observation 8: Assuming the same notation for a generic instance of 2LRC that was defined in

the previous subsection, the initial synchronization graph  satisfies the following conditions:

(a) Each synchronization edge has at most one unit of delay ( ).

(b) If  is a zero-delay synchronization edge and  is a unit-delay synchroni-

zation edge, then  and .

(c) If  1-subsumes a unit-delay synchronization edge , then  also 1-subsumes

all unit-delay synchronization edges  that satisfy .

(d) If  2-subsumes a unit-delay synchronization edge , then  also 2-subsumes

all unit-delay synchronization edges  that satisfy .

(e) If  and  are both distinct zero-delay synchronization edges or they are

both distinct unit-delay synchronization edges, then  and .

(f) If  1-subsumes a unit delay synchronization edge , then .

Proof outline:From Fact 3, we know that . Thus, there exists at least one delayless

synchronization edge in . Let  be one such delayless synchronization edge. Then it is easily

verified from the structure of  that for all , there exists a path  in  directed from

to  such that  contains ,  contains no other synchronization edges, and

. It follows that any synchronization edge  whose delay exceeds unity would be

redundant in . Thus, part (a) follows from the assumption that none of the synchronization

edges in  are redundant.

The other parts can be verified easily from the structure of , including the assumption

that no synchronization edge in  is redundant. We omit the details.

Resynchronizations for instances of general 2LCR can be partitioned into two categories

— category Aconsists of all resynchronizations that contain at least one synchronization edge
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having nonzero delay, andcategory B consists of all resynchronizations that consist entirely of

delayless synchronization edges. An optimal category A solution (a category A solution whose

cost is less than or equal to the cost of all category A solutions) can be derived by simply applying

the optimal solution described in Subsection  to “rearrange” the delayless resynchronization

edges, and then replacing all synchronization edges that have nonzero delay with a single unit

delay synchronization edge directed from , the last actor scheduled on the source processor to

, the first actor scheduled on the sink processor. We refer to this approach asAlgorithm A .

An example is shown in Figure 10. Figure 10(a) shows an example where for general

2LCR, the constraint that all synchronization edges have zero delay is too restrictive to permit a

globally optimal solution. Here, the latency constraint is assumed to be . Under this

constraint, it is easily seen that no zero-delay resynchronization edges can be added without vio-

lating the latency constraint. However, if we allow resynchronization edges that have delay, then

we can apply Algorithm A to achieve a cost of two synchronization edges. The resulting synchro-

nization graph, with redundant synchronization edges removed, is shown in Figure 10(b). Observe

that this resynchronization is an LCR since only delayless synchronization edges affect the

xp

y1

Figure 10. An example in which constraining all resynchronization edges to
be delayless precludes the ability to derive an optimal resynchronization.
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latency of a transparent synchronization graph.

Now suppose that  (our generic instance of 2LCR) contains at least one unit-delay syn-

chronization edge, suppose that  is an optimal category B solution for , and let  denote

the set of resynchronization edges in . Let  denote the set of synchronization edges in

 that have unit delay, and let  denote the ordering of the mem-

bers of  that corresponds to the order in which the source actors execute on the source pro-

cessor — that is, . Note from Observation 8(a) that  is the set of all

synchronization edges in  that are not delayless. Also, let  denote the set of unit-

delay synchronization edges in  that are 1-subsumed by resynchronization edges in . That is,

.

If  is not empty, define

. (27)

Suppose . Then by definition of , , and thus

. Furthermore, since  and  execute on the same processor, .

Hence , so we have that  subsumes

 in . Since  is an arbitrary member of , we conclude that

Every member of  is subsumed by . (28)

Now, if  is not empty, then define

, (29)

and suppose . By definition of ,  and thus . Furthermore,

since  and  execute on the same processor, . Hence,

,

and we have that
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Every member of  is subsumed by . (30)

Observe also that from the definitions of  and , and from Observation 8(c),

; (31)

; (32)

and

. (33)

Now we define the synchronization graph  by ,

where  and  are the sets of vertices and edges in ; , if both

 and  are non-empty;  if  is empty; and

if  is empty.

Theorem 4:  is a resynchronization of .

Proof: The set of synchronization edges in  is , where  is the set of delayless syn-

chronization edges in . Since  is a resynchronization of , it suffices to show that for each

,

. (34)

If  is non-empty then from (27) (the definition of ) and Observation 8(f),

there must be a delayless synchronization edge  in  such that  for some .

Thus,

,

and we have that (34) is satisfied for .

Similarly if  is non-empty, then from (29) (the definition of ) and from the definition of

2-subsumes, there exists a delayless synchronization edge  in  such that  for
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some . Thus,

;

hence, we have that (34) is satisfied for .

From the definition of , it follows that (34) is satisfied for every . n

Corollary 1: The latency of  is no greater than . That is, .

Proof: From Theorem 4, we know that  preserves . Thus, from Lemma 1 in the compan-

ion paper [5], it follows that . Furthermore, from the assumption that

 is an optimal category B LCR, we have . We conclude that

. n

Theorem 4, along with (31)-(33), tells us that an optimal category B LCR of  is always a

resynchronization of

(1) a synchronization graph of the form

, , (35)

or

(2) of the graph , (36)

or

(3) of the graph . (37)

Thus, from Corollary 1, an optimal resynchronization can be computed by examining each

of the  synchronization graphs defined by (35)-(37), computing an opti-

mal LCR for each of these graphs whose latency is no greater than , and returning one of the

optimal LCRs that has the fewest number of synchronization edges. This is straightforward since

these graphs contain only delayless synchronization edges, and thus the algorithm of Section  can
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be used.

Recall the example of Figure 9(a). Here,

,

and the set of synchronization graphs that correspond to (35)-(37) are shown in Figure 11(a)-(e).

The latencies of the graphs in Figure 11(a)-(e) are respectively 14, 13, 12, 13, and 14. Since

, we only need to compute an optimal LCR for the graph of Figure 11(c) (from Corol-

lary 1). This is done by first removing redundant edges from the graph (yielding the graph in Fig-
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Figure 11. The synchronization graphs considered in Algorithm B for the example in Figure 9.

(a) (b) (c)

(d) (e)

ud G̃( ) x5 y1,( ) x6 y2,( ) x7 y3,( ) x8 y4,( ), , ,{ }=

Lmax 12=



33

ure 12(b)) and then applying the algorithm developed in Section . For the synchronization graph

of Figure 12(b), and , it is easily verified that the set of s is

.

If we let

, (38)

then we have,

. (39)

From (39), the algorithm outlined in Subsection  for interval covering can be applied to

obtain an optimal resynchronization. This results in the resynchronization . The

resulting synchronization graph is shown in Figure 12(c). Observe that the number of synchroni-

zation edges has been reduced from  to , while the latency has increased from  to

. Also, none of the original synchronization edges in  are retained in the resynchro-

nization.

We say thatAlgorithm B for general 2LCR is the approach of constructing the
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Figure 12. Derivation of an optimal LCR for the synchronization graph of Figure 11(c).
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( ) synchronization graphs corresponding to (35)-(37), computing an optimal LCR for

each of these graphs whose latency is no greater than , and returning one of the optimal

LCRs that has the fewest number of synchronization edges. We have shown above that Algorithm

B leads to an optimal LCRunder the constraint that all resynchronization edges have zero delay.

Thus, given an instance of a general 2LCR, a globally optimal solution can be derived by

applying Algorithm A and Algorithm B and retaining the best of the resulting two solutions. The

time complexity of this two phased approach is dominated by the complexity of Algorithm B,

which is  (a factor of  greater than the complexity of the technique for

delayless 2LCR that was developed in Section ), where  is the number of vertices in . Since

 from Observation 8(e), the complexity is .

Theorem 5: Polynomial-time solutions exist for the general two-processor latency-constrained

resynchronization problem.

The example in Figure 10 shows how it is possible for Algorithm A to produce a better

result than Algorithm B. Conversely, the ability of Algorithm B to outperform Algorithm A can

be demonstrated through the example of Figure 9. From Figure 12(c), we know that the result

computed by Algorithm B has a cost of  synchronization edges. The result computed by Algo-

rithm A can be derived by applying interval covering to the subsets specified in (26) with all of the

unit-delay edges ( ) removed:

. (40)

A minimal cover for (40) is achieved by , and the corresponding synchro-

nization graph computed by Algorithm A is shown in Figure 13. This solution has a cost of  syn-

chronization edges, which is one greater than that of the result computed by Algorithm B for this

example.
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9.  A heuristic for general synchronization graphs

The companion paper [5] presents a heuristic called Global-resynchronize for the maxi-

mum-throughput resynchronization problem, which is the problem of determining an optimal

resynchronization under the assumption that arbitrary increases in latency can be tolerated. In this

section, we extend Algorithm Global-resynchronize to derive an efficient heuristic that addresses

the latency-constrained resynchronization problem for general synchronization graphs. Given an

input synchronization graph , Algorithm Global-resynchronize operates by first computing the

family of subsets

x2

x3

x4

x5

x6

x7

x8

x1

y2

y3

y4

y5

y6

y7

y8

y1

DD

1

1

2

5

1

1

1

1

1

1

1

1

3

1

4

1

D

Figure 13. The solution derived by Algorithm A when it is applied to the
example of Figure 9.
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. (41)

After computing the family of subsets specified by (41), Algorithm Global-resynchronize

chooses a member of this family that has maximum cardinality, inserts the corresponding delay-

less resynchronization edge, and removes all synchronization edges that become redundant as a

result of inserting this resynchronization edge.

To extend this technique for maximum-throughput resynchronization to the latency-con-

strained resynchronization problem, we simply replace the subset computation in (41) with

, (42)

where  is the latency of the synchronization graph  that results from add-

ing the resynchronization edge  to .

A pseudocode specification of our extension of Global-resynchronize to the latency-con-

strained resynchronization problem, called AlgorithmGlobal-LCR, is shown in Figure 14.

9.1 Customization to transparent synchronization graphs

In Section 5, we mentioned that transparent synchronization graphs are advantageous for

performing latency-constrained resynchronization. If the input synchronization graph is transpar-

ent, then assuming that  has been determined for all ,  in Algorithm Glo-

bal-LCR can be computed in  time from

, (43)

where  is the source actor in ,  is the latency output, and  is the latency of .

Furthermore,  can be updated in the same manner as . That is once the

resynchronization edge,  is chosen, we have that for each ,

, (44)

where  denotes the maximum cumulative execution time between actors in the first iteration
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graph after the insertion of the edge  in . The computations in (44) can be performed by

inserting the simplefor loop shown in Figure 15 at the end of theelse block in Algorithm Global-

LCR. Thus, as with the computation of , the cubic-time Bellman-Ford algorithm need only be

invoked once, at the beginning of the LCR Algorithm, to initialize . This loop can be

function  Global-LCR
input : a reduced synchronization graph

output : an alternative reduced synchronization graph that preserves .

compute  for all actor pairs

 = FALSE

while  not

,

for
if

if

end if
end if

end for
if

else

for /* update  */

end for

end if
end while
return
end function

G V E,( )=

G

ρG x y,( ) x y, V∈

complete

complete( )
best NULL= M 0=

x y, V∈
ρG y x,( ) ∞=( ) x y,( ) E∉( )and( ) L′ x y,( ) Lmax≤( )and

χ* χ x y,( )( )=

χ* M>( )
M χ*=

best x y,( )=

best NULL=( )
complete TRUE=

E E χ best( )– d0 best( ){ }+=
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x y, V∈ ρG
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ρG ρnew=

G

Figure 14. A heuristic for latency-constrained resynchronization.
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inserted immediately before or after thefor  loop that updates .

9.2 Complexity

In the companion paper [5], we showed that Algorithm Global-resynchronize has

 time-complexity, where is the number of actors in the input synchronization graph,

and  is the number of feedforward synchronization edges. Since the longest path quantities

 can be computed initially in  time and updated in  time, it is easily ver-

ified that the  bound also applies to our customization of Algorithm Global-LCR to

transparent synchronization graphs.

In general, whenever the nestedfor loops in Figure 14 dominate the computation of the

while loop, the  complexity is maintained as long as  can be evaluated

in  time. For general (not necessarily transparent) synchronization graphs, we can use the

functional simulation approach described in Section 5 to determine  in

 time, where , and  denotes the number of synchroniza-

tion edges in . This yields a running time of  for general synchroniza-

tion graphs.

The complexity bounds derived above are based on a general upper bound of , which is

derived in the companion paper [5], on the total number of resynchronization steps (while loop

iterations). However, this  bound can be viewed as a very conservative estimate since in prac-

tice, constraints on the introduction of cycles severely limit the number of possible resynchroniza-

tion steps [5]. Thus, on practical graphs, we can expect significantly lower average-case

complexity than the worst-case bounds of  and .

for /* update  */

end for

x y, V υ{ }∪( )∈ Tfi G( )

Tnew x y,( ) Tfi G( ) x y,( ) Tfi G( ) x best( )src,( ) Tfi G( ) best( )snk y,( )+,{ }( )max=

Tfi G( ) Tnew=

Figure 15. Pseudocode to update  for use in the customization of Algorithm Global-
LCR to transparent synchronization graphs.
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9.3 Example

Figure 16 shows the synchronization graph that results from a six-processor schedule of a

synthesizer for plucked-string musical instruments in 11 voices based on the Karplus-Strong tech-

nique, as shown in the companion paper [5]. In this example,  and  are respectively the

latency input and latency output, and the latency is . There are ten synchronization edges

shown, and none of these are redundant.

Figure 17 shows how the number of synchronization edges in the result computed by our

heuristic changes as the latency constraint varies. If just over  units of latency can be tolerated

beyond the original latency of 170, then the heuristic is able to eliminate a single synchronization

edge. No further improvement can be obtained unless roughly another  units are allowed, at

which point the number of synchronization edges drops to , and then down to  for an addi-

tional  time units of allowable latency. If the latency constraint is weakened to , just over
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Figure 16. The synchronization graph that results from a six processor schedule of a
music synthesizer based on the Karplus-Strong technique.
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Figure 17. Performance of the heuristic on the example of Figure 16.
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twice the original latency, then the heuristic is able to reduce the number of synchronization edges

to . No further improvement is achieved over the relatively long range of . When

, the minimal cost of  synchronization edges for this system is attained, which is half

that of the original synchronization graph.

 Figure 18 and Table 1 show how the average iteration period (the reciprocal of the aver-

age throughput) varies with different memory access times for various resynchronizations of Fig-

ure 16. Here, the column of Table 1 and the plot of Figure 18 labeled  represent the original

synchronization graph (before resynchronization); column/plot label  represents the resynchro-

nized result corresponding to the first break-point of Figure 17 ( ,  synchronization

edges); label  corresponds to the second break-point of Figure 17 ( ,  synchroni-

zation edges); and so on for labels ,  and , whose associated synchronization graphs have ,

 and  synchronization edges, respectively. Thus, as we go from label  to label , the number

Table 1. Performance results for the resynchronization of Figure 16. The first column gives the memory
access time; “IP” stands for “average iteration period” (the reciprocal of the average throughput); and
“A/P” stands for “memory accesses per graph iteration.”

Mem
Acc
Time

A F B C D E

IP A/P IP A/P IP A/P IP A/P IP A/P IP A/P

0 210 66 184 47 219 59 188 60 200 50 186 47

1 250 67 195 43 274 58 225 58 222 50 222 47

2 292 66 216 43 302 58 262 52 259 50 248 46

3 335 64 249 43 334 58 294 54 298 50 288 45

4 368 63 273 40 373 59 333 53 338 48 321 46

5 408 63 318 43 413 58 375 53 375 49 357 47

6 459 63 350 43 457 58 396 53 419 50 396 47

7 496 63 385 43 502 58 442 53 461 51 431 47

8 540 63 420 43 553 59 480 54 490 50 474 47

9 584 63 455 43 592 58 523 53 528 50 509 47

10 655 65 496 43 641 62 554 54 573 51 551 47

6 383 644–( )

Lmax 645≥ 5

A

B

Lmax 221= 9

C Lmax 268= 8

D E F 7

6 5 A F
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of synchronization edges in resynchronized solution decreases monotonically. However, as seen

in Figure 18, the average iteration period need not exactly follow this trend. For example, even

though synchronization graph  has one synchronization edge more than graph , the iteration

period curve for graph  lies slightly above that of . This is because the simulations shown in

the figure model a shared bus, and take bus contention into account. Thus, even though graph

has one less synchronization edge than graph , it entails higher bus contention, and hence results

in a higher average iteration period. A similar anomaly is seen between graph  and graph ,

where graph  has one less synchronization edge than graph , but still has a higher average

iteration period. However, we observe such anomalies only within highly localized neighbor-

hoods in which the number of synchronization edges differs by only one. Overall, in a global

sense, the figure shows a clear trend of decreasing iteration period with loosening of the latency

constraint, and reduction of the number of synchronization edges.

It is difficult to model bus contention analytically, and for precise performance data we

must resort to a detailed simulation of the shared bus system. We propose using such a simulation
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Figure 18. Average iteration period (reciprocal of average throughput) vs. memory access time for various
latency-constrained resynchronizations of the music synthesis example in Figure 16.
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as a means of verifying that the resynchronization optimization does not result in a performance

degradation due to higher bus contention. Our experiments suggest that this needs to be done only

for cases where the number of synchronization edges removed by resynchronization is small com-

pared to the total number of synchronization edges (i.e. when the resynchronized solution is

within a localized neighborhood of the original synchronization graph).

Figure 19 shows that the average number of shared memory accesses per graph iteration

decreases consistently with loosening of the latency constraint. As mentioned in the companion

paper, such reduction in shared memory accesses is relevant when power consumption is an

important issue, since accesses to shared memory often require significant amounts of energy.

Figure 20 illustrates how the placement of synchronization edges changes as the heuristic

is able to attain lower synchronization costs.

Note that synchronization graphs computed by the heuristic are not necessarily identical

over any of the  ranges in Figure 17 in which the number of synchronization edges is con-

stant. In fact, they can be significantly different. This is because even when there are no resyn-

chronization candidates available that can reduce the net synchronization cost (that is, no

resynchronization candidates for which ), the heuristic attempts to insert resynchroni-
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Figure 19. Average number of shared memory accesses per iteration for various latency-constrained
resynchronizations of the music synthesis example.
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zation edges for the purpose of increasing the connectivity; this increases the chance that subse-

quent resynchronization candidates will be generated for which  [5]. For example,

Figure 21, shows the synchronization graph computed when  is just below the amount

needed to permit the minimal solution, which requires only five synchronization edges (solution

). Comparison with the graph shown in Figure 20(d) shows that even though these solutions
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Figure 20. Synchronization graphs computed by the heuristic for different values of .Lmax
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have the same synchronization cost, the heuristic had much more room to pursue further resyn-

chronization opportunities with , and thus, the graph of Figure 21 is more similar to

the minimal solution than it is to the solution of Figure 20(d).

Earlier, we mentioned that our  and  complexity expres-

sions are conservative since they are based on an  bound on the number of iterations of the

while loop in Figure 14, while in practice, the actual number ofwhile loop iterations can be

expected to be much less than . This claim is supported by our music synthesis example, as

shown in the graph of Figure 22. Here, the -axis corresponds to the latency constraint , and

the -coordinates give the number ofwhile loop iterations that were executed by the heuristic.

We see that between  and  iterations were required for each execution of the algorithm, which

is not only much less than , it is even less than . This suggests that perhaps a signifi-

cantly tighter bound on the number of while loop iterations can be derived.

10.  Conclusions

This paper has addressed the problem of latency-constrained resynchronization for self-

timed implementation of iterative dataflow specifications.

Given an upper bound  on the allowable latency, the objective of latency-constrained

Figure 21. The synchronization graph computed by the heuristic for .Lmax 644=

D
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Figure 22. Number of resynchronization iterations versus  for the example of Figure 16.Lmax
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resynchronization is to insert extraneous synchronization operations in such a way that a) the

number of original synchronizations that consequently become redundant significant exceeds the

number of new synchronizations, and b) the serialization imposed by the new synchronizations

does not increase the latency beyond . To ensure that the serialization imposed by resynchro-

nization does not degrade the throughput, the new synchronizations are restricted to lie outside of

all cycles in the final synchronization graph.

We have established that optimal latency-constrained resynchronization is NP-hard even

for a very restricted class of synchronization graphs; we have derived an efficient, polynomial-

time algorithm that computes optimal latency-constrained resynchronizations for two-processor

systems; and we have extended the heuristic presented in the companion paper [5] for maximum-

throughput resynchronization to address the problem of latency-constrained resynchronization for

generaln-processor systems. Through an example of a music synthesis system, we have illus-

trated the ability of this extended heuristic to systematically trade-off between synchronization

overhead and latency.

The techniques developed in this paper and the companion paper [5] can be used as a post-

processing step to improve the performance of any of the large number of static multiprocessor

scheduling techniques for iterative dataflow specifications, such as those described in [1, 2, 8, 11,

12, 19, 24, 27, 31, 33].

11.  Glossary

: The number of members in the finite set .

: Same as  with the DFG  understood from context.

: If there is no path in  from  to , then ; otherwise,
, where  is any minimum-delay path from  to .

: The delay on a DFG edge .

: The sum of the edge delays over all edges in the path .

: An edge whose source and sink vertices are  and , respectively, and
whose delay is equal to .

Lmax

S S

ρ x y,( ) ρG G

ρG x y,( ) G x y ρG x y,( ) ∞=
ρG x y,( ) p( )Delay= p x y

e( )delay e

p( )Delay p

dn u v,( ) u v
n
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: The set of synchronization edges that are subsumed by the ordered pair of
actors .

2LCR: Two-processor latency-constrained resynchronization.

contributes to the elimination:
If  is a synchronization graph,  is a synchronization edge in ,  is a
resynchronization of , , , and there is a path  from
to  in  such that  contains  and ,
then we say that  contributes to the elimination of .

eliminates: If  is a synchronization graph,  is a resynchronization of , and  is a
synchronization edge in , we say that  eliminates  if .

execution source: In a synchronization graph, any actor that has no input edges or has non-
zero delay on all input edges is called an execution source.

estimated throughput:
The maximum over all cycles  in a DFG of , where  is the
sum of the execution times of all vertices traversed by .

FBS: Feedback synchronization. A synchronization protocol that may be used
for feedback edges in a synchronization graph.

feedback edge: An edge that is contained in at least one cycle.

feedforward edge: An edge that is not contained in a cycle.

FFS: Feedforward synchronization. A synchronization protocol that may be used
for feedforward edges in a synchronization graph.

LCR: Latency-constrained resynchronization. Given a synchronization graph ,
a resynchronization  of  is an LCR if the latency of  is less
than or equal to the latency constraint .

resynchronization edge:
Given a synchronization graph  and a resynchronization , a resynchro-
nization edge of  is any member of  that is not contained in .

: If  is a synchronization graph and  is a resynchronization of , then
 denotes the graph that results from the resynchronization .

SCC: Strongly connected component.

self loop: An edge whose source and sink vertices are identical.

subsumes: Given a synchronization edge  and an ordered pair of actors
,  subsumes  if

.

χ p( )
p

G s G R
G s′ R∈ s′ s≠ p s( )src

s( )snk Ψ R G,( ) p s′ p( )Delay s( )delay≤
s′ s
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: The execution time or estimated execution time of actor .

: The sum of the actor execution times along a path from  to  in the first
iteration graph of  that has maximum cumulative execution time.
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