
Abstract

This paper studies the semantics of hierarchical finite-state
machines that are composed using various concurrency mod-
els, particularly dataflow, discrete-events, and synchronous/
reactive modeling. It is argued that all three combinations are
useful, and that the concurrency model can be selected inde-
pendently of the decision to use hierarchical FSMs. In con-
trast, most formalisms that combine FSMs with concurrency
models, such as Statecharts (and its variants) and hybrid sys-
tems, tightly integrate the FSM semantics with the concur-
rency semantics. An implementation that supports three
combinations is described.

1.0 INTRODUCTION

Manna and Pnueli [35] argue that concurrency is the
essential feature of reactive systems, a class that includes all
embedded systems, real-time systems, and many software
systems. In concurrent systems, modules consist of relatively
autonomous agents that interact through messaging of some
sort. The rules of interaction of the agents, the semantics of
the composition, is what we call the model of computation. 

Models of computation that support concurrency are
numerous. A popular one today is threads, where a set of
sequential processes operate on the same data. More sophis-
ticated concurrent models of computation include CSP
(communicating sequential processes) [25], the pi calculus
[38], dataflow [19], process networks [28], discrete events
[14], and the synchronous/reactive model [5]. These models
are more sophisticated in the sense that complex concurrent
systems can be more easily designed, and the designs yield
better to analysis. The block diagram languages used in sig-
nal processing, for example, almost all have some variant of
dataflow semantics, and often yield to deadlock analysis,
static scheduling, and reasonably efficient synthesis of
embedded software or hardware.

While concurrency is a major source of complexity, it is
not the only one. Increasingly intricate sequential control
logic also adds difficulty to design, particularly when errors
in the control sequence can have fatal consequences for the
user, as is the case in many embedded systems. Finite state
machines (FSMs) have long been used to describe and ana-
lyze intricate control sequences. Because of their finite
nature, FSMs yield better to analysis and synthesis than
alternative control models, such as sequential programs with
if-then-else and goto. For example, with an FSM, a designer

can enumerate the set of reachable states to ascertain that a
particularly dangerous state cannot be reached. The same
question may be undecidable in a richer language.

Most modern electronic systems have both intricate con-
trol requirements and concurrency. Thus, combining FSMs
with concurrent models of computation is an attractive and
increasingly popular approach to design. Since Harel intro-
duced that Statecharts model [23] in 1987, a number of vari-
ations have been explored [44]. The Argos language
[36][37], for example, combines FSMs with a synchronous/
reactive concurrency model [5]. Jourdan et al. [27] combine
the synchronous language Lustre [22] and Argos. 

Many researchers have combined FSMs with concurrent
models of computation that are significantly different from
that of Statecharts. SDL combines process networks with
FSMs [4]. The codesign finite state machine (CFSM) model
[16] combines FSMs with a discrete-event concurrency
model. Pankert et al. combine synchronous dataflow [31]
with FSMs [40][36]. Program-state machines (PSM) com-
bine imperative semantics with FSMs [39][43]. Hybrid sys-
tems [1][24] mix concurrent continuous-time systems
(usually given as differential equations) with finite automata.
Simulink, from The MathWorks, Inc., provides a simulation
environment for such combinations. All of these examples,
however, tightly intertwine the concurrency model with the
automata semantics. Except for Simulink and Statecharts
(and some of its variants), they also have limited composi-
tionality in that they permit automata only in the leaf cells of
the hierarchy (as in SDL), or only permit automata at the top
of the hierarchy (as in hybrid systems).

With Statecharts, Harel dramatically increased the
usability of FSMs through two innovations [23]. First, FSMs
can be hierarchically combined. A single state a at one level
of the hierarchy is interpreted as being in one of several
states, e.g. b, c, or d, at a lower level of the hierarchy. These
are often called “or states” because being in state a is inter-
preted as being in state b, c, or d. Second, FSMs can be con-
currently combined. An FSM with states a and b can be
composed with an FSM with states c and d, resulting in an
FSM that is in state ac, bc, ad, or bd. These are sometimes
called “and states” because the FSM can be in both state a
and c, for example. Both innovations allow state machines to
be represented compactly and intuitively.

While the static interpretation of “and states” is clear,
their dynamics are far less clear. Given two concurrent
FSMs, when do they make state transitions, relative to one
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another? How should they communicate their state and/or
transitions? These questions greatly complicate the FSM
model of computation, and indeed were not completely
resolved by Harel initially. This is part of the reason for the
proliferation of variations of concurrent hierarchical FSM
models of computation [44].

Harel loosely defined state transitions in concurrent
FSMs to be simultaneous. A state transition could broadcast
an event, visible immediately to all other FSMs. The other
FSMs could then make state transitions immediately, and
also broadcast events. As long as there is no circular logic
(circular dependencies among transitions), this notion of
simultaneous transitions is well-defined. Real circular
dependencies can lead to genuine paradoxes and/or to under-
determined behavior. However, apparent circular dependen-
cies prove to be common in practical systems, primarily
because of the use of hierarchy, so the model had to be
refined. The Argos language [37] and others refine the model
by applying the synchronous/reactive (SR) principle [5],
which resolves apparent circular dependencies by seeking at
each instant a least fixed point, a globally consistent behav-
ior. The SR principle, first developed by Berry in the Esterel
language [8], gives a well-defined and determinate seman-
tics to simultaneous concurrent actions. But there is no rea-
son to restrict concurrent FSMs to SR semantics.

Indeed, all known high-level concurrency models have
their strengths and weaknesses. SR models are good at
describing tightly coordinated control, but overspecify sys-
tems that do not need such tight synchronization. Dataflow
and process networks models are much more loosely syn-
chronized, but poorly model control logic and resource man-
agement. Discrete-event models are excellent for describing
hardware or other physically disjoint agents, but their physi-
cal notion of time is awkward for more conceptual or
abstract concurrency.

This paper advocates decoupling the concurrency model
from the hierarchical FSM semantics. We describe a family
of models of computation, called *charts (pronounced
“starcharts”). Unlike Statecharts and other concurrent hierar-
chical FSMs, *charts do not define a concurrency model, but
rather show how to embed hierarchical FSMs within a vari-
ety of concurrency models. Thus, the concurrency model can
be chosen to match the problem at hand. Is tight synchroni-
zation possible? Desirable? If not, then an SR model is inap-
propriate, and perhaps a dataflow or process network model
would be a better choice. Is there a globally consistent notion
of time? If not, then a discrete-event model will be inappro-
priate, and perhaps a CSP model would be a better choice.
The same hierarchical FSM language works with all of these
concurrency models.

The hierarchy in *charts is arbitrarily deep, and concur-
rency models and FSMs can be placed anywhere within it.
An FSM can be nested within a module in a concurrency
model, with the interpretation that the FSM describes the
behavior of the module. Conversely, a subsystem in some
concurrency model can be nested within a state of an FSM,
with the meaning that the subsystem is active if and only if
the FSM is in that state. The latter is particularly well suited
to describing modal systems, where modes of operation are
modeled as states of an FSM.

More interestingly, once we have decoupled FSM seman-
tics from concurrency semantics, heterogeneous combina-
tions using multiple concurrency models become possible.
Systems can truly be built up from modular components that
are separately designed, and each subsystem can be designed
using the models of computation best suited to it. 

The main objective of this paper is to give a scalable
approach to design. By “scalable” we mean that subsystems
can be designed, analyzed, verified, and synthesized rela-
tively independently of one another, and can then be com-
posed in a way that the composition can be analyzed,
verified, and synthesized. To achieve these objectives, our
models of computation must satisfy two objectives. First,
they must be compositional. This means that composite
modules can be treated as primitive modules. Second, they
must support heterogeneity. This means that composite mod-
ules can be embedded within a foreign model of computa-
tion. To preserve analyzability, this embedding should be
done with a maximum amount of information hiding.

A side effect of supporting heterogeneity is that more
specialized models of computation become more useful.
They do not need to solve all problems because alternatives
are available. They only need to solve some problems well.
Thus, it becomes practical to use specialized models of com-
putation, such as finite-state machines and synchronous
dataflow, which have strong formal properties, excellent
paths to synthesis, and natural and intuitive syntaxes.

We begin by adapting a standard notation for FSMs,
which is compact and efficient when considering an FSM in
isolation, to get a notation more suitable for studying compo-
sitions of FSMs. To do this, we have to put more emphasis
than usual on the interaction between an FSM and its envi-
ronment. We then consider combining FSMs with three pop-
ular concurrent models of computation: dataflow, discrete
events, and the synchronous/reactive model. In the case of
dataflow, we introduce a new subset of dataflow called het-
erochronous dataflow that combines particularly well with
FSMs. We then briefly describe an experimental implemen-
tation in the Ptolemy environment [13], where hierarchical
FSMs can be combined with dataflow, discrete-event, and
synchronous/reactive concurrency models.

2.0 FINITE STATE MACHINES

2.1 The Basic FSM

An FSM is a five-tuple [26]

(Q, Σ, ∆, σ, q0) (1)

where
1. Q is a finite set of symbols denoting states.
2. Σ is a set of symbols denoting the possible inputs.
3. ∆ is a set of symbols denoting the possible outputs.
4. σ is a transition function mapping Q × Σ to Q × ∆.
5. q0 ∈ Q is the initial state.

In one reaction, an FSM maps a current state p ∈ Q and an
input symbol a ∈ Σ to a next state q ∈ Q and an output sym-
bol b ∈ ∆, where σ(p, a) = (q, b). Given an input word, or
sequence of symbols from the input alphabet Σ, and an initial
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state, a sequence of reactions will produce a sequence of
states and an output word, or sequence of symbols from the
output alphabet ∆. All sequences are potentially infinite.

A directed graph, called a state transition diagram, is
popular for describing an FSM. As shown in figure 1, each
elliptic node represents a state and each arc represents a tran-
sition. Each transition is labeled by “guard/action”, where
guard ∈ Σ represents the input symbol that triggers the tran-
sition, and action ∈ ∆ represents the output symbol when the
transition is triggered. The arc without a source state points
to the initial state, i.e. state α. During one reaction of the
FSM, one transition is triggered, chosen from the set of
enabled transitions. An enabled transition is an outgoing
transition from the current state where the guard matches the
current input symbol. The FSM goes to the destination state
of the triggered transition and produces the output symbol
indicated by the action of the triggered transition.

In this paper, we focus on deterministic and reactive
FSMs. An FSM is deterministic if from any state there exists
at most one enabled transition for each input symbol. An
FSM is reactive if from any state there exists at least one
enabled transition for each input symbol. To simplify nota-
tion and ensure that all our FSMs are reactive, every state is
assumed to have an implicit self transition, i.e. going back to
the same state, for each input symbol that is not a guard of an
explicit outgoing transition. Each such self transition has as
its action some default output symbol, denoted by ε, which
has to be an element of ∆. Sometimes, this default symbol is
interpreted to mean “empty” and is omitted from the output
word [26].

For example (see figure 1), suppose Q = {α, β}, Σ = {a,
b}, ∆ = {ε, u, v}, q0 = α and σ: Q × Σ → Q × ∆ is such that
σ(α, b) = (β, v) and σ(β, a) = (α, u), then we also must have
the implicit self transitions σ(α, a) = (α, ε) and σ(β, b) = (β,
ε). A possible trace, or sequence of reactions, is shown in
figure 2.

2.2 Multiple Inputs and Outputs

An FSM is embedded in an environment. The environ-
ment may in fact be part of the overall system under design,

or may be out of the control of the designer. In either case, it
provides a sequence of input symbols, and the FSM reacts by
providing a sequence of output symbols, meanwhile tracing
a sequence of states.

Frequently, the interaction with the environment needs to
be modeled in more detail. It may not be convenient, for
example, to consider the FSM to have only a single input
symbol. Multiple inputs and multiple outputs may be a more
natural model. To handle this, the input alphabet can be fac-
tored and expressed as a cartesian product Σ = Σ1 × Σ2 × ...
× ΣM. Here, the input to the FSM consists of M signals,
where the ith signal is a sequence of events represented by
symbols from the signal alphabet Σi. The FSM reacts to a set
of M simultaneous symbols from the M signals. The output
alphabet can be similarly factored. Reactions emit events on
signals.

2.3 Pure and Valued FSMs

A common special case, called a pure FSM, is where the
size of the input symbol set is a power of two, |Σ| = 2M, and
each signal alphabet has size two, |Σi | = 2 for 1 ≤ i ≤ M. We
interpret this to mean that at a reaction, each signal consists
of an event that is either present or absent (hence |Σi | = 2). A
common notation in this scenario assigns a name to each sig-
nal, such as “a”, and denotes the alphabet corresponding to
that signal by Σi = {a, a}, interpreted as {a is present, a is
absent}. Thus for example, consider an FSM with two input
signals I = {a, b} and two output signals O = {u, v}. The
input alphabet is written Σ = {ab, ab, ab, ab} and the output
alphabet is written ∆ = {uv, uv, uv, uv}, where ε = uv is the
default symbol.

In a valued FSM, the input and output alphabets are again
factored into signal alphabets, but at least one of these signal
alphabets has size greater than two (it might even be infi-
nite). We again interpret one element of such an alphabet to
denote absence of an event, while the remaining elements
denote presence of an event and a value for the event. Valued
FSMs are often used to augment automata with arithmetic
operations, which are awkward to specify directly using pure
FSMs. In our scenario, this augmentation is not fundamen-
tally needed because arithmetic operations can be specified
instead in a foreign model of computation better suited to
them, such as dataflow. Nonetheless, valued FSMs may pro-
vide a more convenient syntax, even if they add nothing fun-
damental in expressiveness, so we will briefly discuss their
ramifications.

In a pure FSM, the size of the input alphabet grows expo-
nentially with the number of input signals. Thus, it can
become quite inconvenient to define a reactive FSM by
explicitly specifying outgoing transitions from every state
for every input symbol. This may be a very large number of
transitions. To avoid this problem, a single transition may
bear as a guard a subset of Σ rather than a single symbol. It
would thus represent an ensemble of transitions compactly.
An arbitrary subset of Σ can be defined by a boolean expres-
sion in the input signals. For example, if Σ = {ab, ab, ab,
ab}, the boolean expression “¬a ∨ b” (not a or b) represents
the subset {ab, ab, ab}. Thus, for pure FSMs, guards will be
represented as boolean expressions of the input signals.

Figure 1. A basic FSM.

α β

b v⁄

a u⁄

Current State

Next State

Output Symbol

α α …β β

α β …β α

Input Symbol a b b a

ε v ε u …

…

Figure 2. A possible trace for the basic FSM in figure 1.
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Consider the example in figure 3 with states Q = {α, β},
input signal alphabet I = {a, b} and output signal alphabet O
= {u, v}. The guard “¬a ∨ b” of the transition from α to β is
enabled by any input in {ab, ab, ab}. The guard “a” of the
transition from β to β is enabled by any input in {ab, ab}.

For valued FSMs, more complicated boolean-valued
expressions can be used for the guards. For example, sup-
pose that in a valued FSM, the ith signal is named “a” and
has the alphabet Σi = ℜ, the set of real numbers. Then a
guard may contain comparison operators and real numbers,
for example “a < 10”. This compactly represents an uncount-
ably infinite number of transitions. However, it also makes it
much more difficult to reason about the FSM. In fact, with a
sufficiently rich expression language, it will make some
questions undecidable. Thus, valued FSMs carry a high cost:
loss of analyzability.

Fortunately, because our model is heterogeneous, valued
FSMs add no fundamental expressiveness. Instead of a guard
“a < 10” we could specify a guard “b” and externally, say in
a dataflow model, compute the function

. (2)

By supporting heterogeneous combinations of models of
computation, *charts permits us to keep FSMs pure, simpli-
fying formal analysis, while not compromising on expres-
siveness. Of course, the combined model is no more
analyzable than the valued FSM, but at least we are able to
analyze the pure FSM.

For pure FSMs, actions are specified with a reasonably
compact notation. The default output for each signal is
assumed to denote an absent event. An action thus only lists
output signals that are to have present events in the current
reaction. In other words, all output events that are not explic-
itly emitted in an action are absent. For example, in figure 3,
the action “u” of the transition from β to β implies output
symbol uv, i.e. output signal u is present and output signal v
is absent event when the transition is triggered. The absence
of v is implicit, not explicit, a fact that will become important
for hierarchical FSMs. If all events in an action are implicitly
absent, the action is omitted altogether. For example, in fig-
ure 3, the label of the transition from β to α consists of just
the guard “¬a ∧ b”, and when this transition is triggered,
both output signals u and v are implicitly absent.

For valued FSMs, an action denotes any output value that
is different from the default. The default is again implicitly
emitted, and may denote absence of an event. Since the num-
ber of transitions in an FSM is finite, the possible emitted
values form a finite set, and thus could be represented by a
finite number of boolean signals. Thus, again, a pure FSM

could be used without fundamental loss of expressiveness.
Externally, in some other model of computation, these bool-
ean signals could be translated into values. Hence, although
valued FSMs may provide a more convenient syntax, they
are not fundamentally required for expressiveness.

A possible trace for the FSM of figure 3 is shown in fig-
ure 4. Note that in state β, when both inputs a and b are
absent, an implicit self-transition is taken and both outputs u
and v are absent.

2.4 Hierarchy

The basic FSM, which is flat and sequential, has a major
weakness; most practical systems have a very large number
of states and transitions. Representation and analysis become
difficult. One of Harel’s solutions to this problem is hierar-
chy. In a hierarchical FSM, a state may be further refined
into another FSM. We will call the inside FSM the slave and
the outside FSM the master in such a composition. For
example, we can let the state β in figure 3 refined into
another FSM but let the state α not be refined, as illustrated
in figure 5.

At a fundamental level, hierarchy adds nothing to the
model of computation. Nor does it reduce the number of
states. But it can significantly reduce the number of transi-
tions and make the FSM more intuitive and easy to under-
stand. The transition from β to α in figure 5 is simply a
compact notation for transitions from γ to α and δ to α. The
state space of the equivalent flat FSM is simply Q = {α, γ,
δ}.

The input alphabet for the slave FSM is a subset of the
input alphabet of its master FSM. In a pure or valued FSM,

Figure 3. A pure FSM.

a u⁄a b¬∧ v⁄

a b∧¬

a¬ b u⁄ v,∨

α β

b true; a 10<
false; otherwise




=

Current State

Next State

a

b

u

present

α

absent

α

absent

absent

absent

present

…

…

…

…

…

present

present

β

present

β

β

β

absent

absent

absent

β

present

absent

α

absent

α

β

v present present …absent absent absent

Figure 4. A possible trace for the embedded FSM in figure 3.

a u⁄a b¬∧ v⁄

a b∧¬

a¬ b u⁄ v,∨

α β

Figure 5. A hierarchical FSM.

Master FSM

Slave FSM

a v⁄

b v⁄

γ δ
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the input signals for the slave FSM are a subset of the input
signals for the master. Similarly, the output signals from the
slave FSM are a subset of the output signals from its master.

The hierarchy semantics define how the slave FSMs
reacts relative to the reaction of its master FSM. A reason-
able semantics defines one reaction of the hierarchical FSM
as follows: if the current state is not refined, the hierarchical
FSM behaves just like a basic FSM. If the current state is
refined, then first the corresponding slave FSM reacts and
then the master FSM reacts. Thus, two transitions are trig-
gered, so two actions are taken. These two actions must be
somehow merged into one.

In the case of pure FSMs, it is easy to merge the actions
and avoid conflicting definitions of the output between the
slave and the master. We take an output event to be present if
the action of the master or any slave FSM below it emits an
event on that output. Since an action does not explicitly emit
the symbol for absence of an event, no conflict is possible in
this syntax. For example, if figure 5 is in state β and substate
γ and input signal a is present, the triggered action of the
slave FSM is “v” and the triggered action of the master FSM
is “u”. Thus, the output of the hierarchical FSM is uv (both
output signals u and v are present). A possible trace for the
hierarchical FSM is shown in figure 6.

For a valued FSM, we adopt the convention again that an
action makes no explicit mention of an absent event. How-
ever, since two actions can both emit an event with different
values, the syntax permits conflicting definitions of the out-
put. In Esterel, a function can be specified to combine the
conflicting the definitions [8]. For example, for two reals,
the values might be added. We prefer to consider this an
error condition, because the values can be more conveniently
and flexibly combined externally, in a model of computation
better suited to numerical computation. Thus, for a valued
(determinate) FSM, no two triggered transitions should emit
the same output signal.

In the example of figure 5, the hierarchical FSM has only
two levels. However, the slave FSM can actually be another
hierarchical FSM, so the depth of hierarchy is arbitrary. The
semantics generalizes trivially.

3.0 HETEROGENEITY — MIXING FSMS 
WITH CONCURRENCY MODELS

Hierarchical FSMs are not by themselves adequate for
describing most complex systems. For one thing, numerical
computations are extremely awkward to express within this

model. For practical application to complex systems, the
FSM model of computation has to be combined with others. 

One commonly used solution is to generalize the activity
associated with an action. For instance, in the Stateflow tool
from the MathWorks, Inc., an action can invoke a function or
assign a value to a variable. Moreover, FSMs in this tool can
be embedded within a block diagram system called Sim-
ulink, allowing for numerical computations outside the FSM. 

Function calls and variable assignments, by themselves,
are still quite limited. They provide, for example, no concur-
rency. One could work around this limitation by using proce-
dures rather than functions, and permitting them to operate
on global state outside the FSM. If this is done in an undisci-
plined way, however, it would provide a very chaotic and
poorly characterized programming model. Imposing some
discipline on this model seems essential. It needs a model of
computation. In the most recent version of Simulink (version
2.2), actions can invoke Simulink block diagrams, allowing
a multi-level hierarchy as in Statecharts. The computation
invoked by an action is specified using the Simulink concur-
rency model.

Unfortunately, the very richness of possibilities makes it
difficult to decide a priori which models of computation
should be used. Each has its strengths and weaknesses. We
advocate leaving that choice up to the application designer,
rather than building it into the language. Thus, the language
should support heterogeneity. A convenient way to support
heterogeneity is the black box approach. For a system con-
sisting of a set of interconnected modules, each module can
be treated as a black box. Some model of computation is
chosen to govern the interaction between boxes, but the con-
tents of boxes need not be governed by this same model of
computation. The only requirement is that the interfaces of
boxes must conform to a standard accepted by the outer
model of computation. Thus, a box may encapsulate a sub-
system specified by one model of computation within a sys-
tem specified by another. In other words, heterogeneity
allows different models of computation to be systematically
and modularly combined together.

Our hierarchical FSM model of computation is easily
extended to support heterogeneity. A state or transition may
be refined to a black box that reacts to some subset of the
input signals by emitting events on some subset of the output
signals. Internally, this black box need not be an FSM. It
could be, for example, a Turing machine (that halts), a C pro-
cedure (that eventually returns), a dataflow graph, etc.

In the reverse scenario, the FSM model of computation
can be used to describe a module inside some other model of
computation, as long as that model of computation provides
a way to unambiguously determine the input symbols and
when a reaction should occur. For example, in figure 7, three
FSMs are embedded inside the blocks of a “block diagram
language”. The exact semantics of this embedding (the inter-
action semantics) needs to be defined in terms of both the
semantics of the block diagram language and the FSM. Most
interestingly, however, if the block diagram language has
concurrent semantics (e.g. dataflow), then the slave FSMs
are concurrent FSMs. 

In this section, we explore the interaction semantics of
FSMs with various concurrent models of computation,Figure 6. A trace for the hierarchical FSM in figure 5.
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α
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α

absent
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α

β,γ

v present present …present present present
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namely dataflow (DF), discrete-event (DE), and synchro-
nous/reactive (SR). Our objective is to develop semantics
that supports arbitrary nestings of these concurrent models
with FSMs. We wish for an FSM to be able to define a mod-
ule in a concurrent system and for a state to be able to be
refined to a concurrent subsystem. The depth and order of
the nesting is arbitrary. As shown in figure 8, we adopt the
notation that square boxes indicate modules in a concurrent
model of computation and ellipses indicate states in an FSM.

3.1 Termination

In general, the systems of interest may not terminate.
Concurrent models of computation are usually defined with
this in mind [17]. The reaction of an FSM, however, will
usually need to take finite time. This means that if a state
refines to a concurrent subsystem, that subsystem must react
in finite time to the inputs, possibly emitting output events as
a result. This implies a finiteness of computation that is not
intrinsic to many concurrent models of computation.

For some models of computation, there is a simple solu-
tion [15]. The execution of a non-terminating system can
often be divided into a set of iterations. Each iteration can be
associated with a reaction of the master FSM. We require,

therefore, that any concurrent model of computation that can
refine a state of an FSM have a well-defined finite iteration.
We will explore the implications of this requirement in terms
of specific examples below.

The reaction of an FSM is discrete and for most applica-
tions will be required to take finite time. The sequence of
reactions, however, may not be finite if the input sequence is
not finite. Thus, a model of computation that can include
modules refined to an FSM must be capable of supplying an
infinite sequence of inputs and requesting an infinite
sequence of discrete reactions. This is not a problem for any
of the concurrent models of computation being considered.

3.2 Dataflow with FSM

The dataflow model  of computat ion,  original ly
introduced by Dennis [19], can be thought of as a special
case of the process networks (PN) model, originally
introduced by Kahn [28]. Lucid is an early language with
dataflow semantics [3][45]. In PN, a network of concurrent
processes communicate through unbounded FIFO queues.
Formally, a process in a PN network is a prefix-monotonic
function that maps a set of potentially infinite input
sequences into a set of potentially infinite output sequences
[28].

In the DF special case, a process consists of a sequence
of discrete, atomic units of computation called firings[19]. In
DF, a process is often called an actor. A denotational formal
semantics for Dennis dataflow is given in [29]. Our descrip-
tion here is informal and operational. The DF special case is
better suited to our purposes since the discrete firings map
naturally into reactions of a slave FSM playing the role of a
dataflow actor.

Both DF and PN, however, can easily describe applica-
tions that do not terminate, meeting our objective in this
regard. For DF (but perhaps not for PN), we can invent a nat-
ural definition of an iteration. Specifically, we will define an
iteration of a DF graph to be the minimum set of actor firings
(greater than zero) that return the FIFO queues to the same
size that they were at the beginning of the iteration. Unfortu-
nately, for general dataflow graphs, it is undecidable whether
a finite iteration exists [12]. Moreover, there may not be a
unique minimum set of actor firings. 

To get around these problems, we specialize further to a
subclass of dataflow called synchronous dataflow (SDF)
[31], reviewed below, for which these problems disappear. In

a / b

A0 A1

a

b / c

B0 B1

e

c / d

C0 C1

c ∧ b

ba

c d

Figure 7. Three FSMs are embedded inside the
blocks of a block diagram language.

e

Figure 8. Hierarchical nesting of FSMs with concurrency models.
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SDF, each time a dataflow actor fires, it consumes and pro-
duces a fixed number of tokens on its input and output FIFO
queues. Even for this more restricted model, some interest-
ing fundamental issues arise. We advocate a semantics for
combining SDF with FSM that is much more expressive than
either SDF or FSM alone, but falls short of the full expres-
sive power of general dataflow. In exchange for this loss in
expressiveness, we can ensure that intrinsic properties of a
design, like deadlock or bounded memory execution, remain
decidable, a very desirable property for embedded systems.

3.2.1 Synchronous Dataflow
Under the SDF model of computation, a system consists

of a set of blocks interconnected by directed arcs. The blocks
represent functions that map input data into output data. The
data are divided into tokens, which are treated as atomic
(indivisible) units. An arc represents a potentially infinite
sequence, or stream of tokens. Streams are carried by con-
ceptually unbounded first-in-first-out (FIFO) queues. A fir-
ing of a block is an atomic computation that consumes a
fixed number of tokens from each input arc and produces a
fixed number of tokens on each output arc. The number of
tokens consumed and produced on each input and output can
be viewed as part of the type signature of the actor, along
with, of course, the data type of the tokens. These numbers
can be used to unambiguously define an iteration, or mini-
mal set of firings that return the queues to their original size,
as we will now explain [31]. This is done by writing for each
arc a balance equation,

ri pi = rj cj , (3)

where the arc here is assumed to go from actor i to actor j,
and on this arc, actor i produces pi tokens and actor j con-
sumes cj tokens. The variables ri and rj are defined to be the
number of firings of actors i and j, respectively. The balance
equations tell us that the number of tokens produced by the
source actor equals the number of tokens consumed by the
destination actor.

Although in general ri and rj may be infinite, in which
case (3) is trivially satisfied, the balance equations may also
be satisfied by a finite number of firings. Indeed, to imple-
ment an SDF systems, we seek a finite solution to the bal-
ance equations, and then construct a finite schedule where
actor i is fired ri times and data precedences are respected.
Such a finite schedule produces and consumes the same
number of tokens on each arc, and thus can be iterated indef-
initely with bounded resources. Thus, we take the variables
ri to be unknown and attempt to solve the balance equations
to find the smallest number (greater than zero) of firings of
each actor such that the balance equations are satisfied.

Assuming there are M arcs and N actors, then there will
be M equations in N unknowns, ri, 1 ≤ i ≤ N. It can be shown
that for a connected graph, there is either a unique smallest
positive solution for the unknowns, called the minimal solu-
tion, or the only solution is ri = 0, 1 ≤ i ≤ N. When the mini-
mal solution exists, we define an iteration to consist of
exactly ri firings of each actor i. When there is no solution,
the SDF graph is considered defective and an error is
reported (analogous to a type error a strongly typed lan-
guage). Thus, for SDF, it is decidable whether an iteration

exists. If it does, it is unique, and the firing schedule for an
iteration can be determined at compile time.

The simplest SDF graphs are homogeneous, defined to
mean that every actor produces and consumes a single token
on each input and output arc. For such graphs, an iteration
always consists of exactly one firing of each actor, ri = 1, 1 ≤
i ≤ N. The schedule of such firings must obey the data prece-
dences (a token must be in a queue before it can be con-
sumed). Thus, to avoid deadlock, all directed cycles in a
homogeneous SDF graph must have at least one initial token
(often called a delay) on at least one arc in the cycle. Arbi-
trary SDF may require more than one initial token on some
arcs, but unlike general dataflow, it is decidable whether a
given set of initial tokens is sufficient to prevent deadlock
[31].

3.2.2 FSM inside SDF
When an FSM subsystem is a slave to an SDF actor, it

must externally obey SDF semantics. Thus it must consume
and produce a fixed number of tokens on every input and
every output. In the simplest case, the FSM subsystem
refines a homogeneous SDF actor. Each input to the SDF
actor provides a single data token, which takes on values
from some alphabet. The cross product of these signal alpha-
bets forms the input alphabet for the FSM, perfectly match-
ing our FSM model in section 2.2. The actions of the FSM
will be able to emit events on each output signal, represent-
ing each event by a symbol from the corresponding signal.
Any outputs that are not emitted by the FSM in an action will
be assigned the default element of the alphabet, as usual. 

The only subtlety in this approach is that an “absent”
event appears explicitly as a token in the SDF graph, where
the value of this token encodes the “absent” interpretation
using the default symbol. A simple approach would be to
encode presence and absence using boolean-valued tokens.
In the other concurrent models of computation, absence of
an event will correspond to absence of a token. A key prop-
erty of dataflow, however, is that absence of a token is not a
well-defined, testable condition, so the absence of an event
must be encoded in a (present) token.

Consider the example in figure 9, where there are two
pure FSMs refining homogeneous SDF actors. An iteration
of the SDF graph consists of a single firing of each actor.

a

b
x yc

SDF

Figure 9. Two FSMs, refining homogeneous SDF blocks,
are embedded in an SDF system.

α β

a x⁄

b A

FSM

α
c y⁄

B

FSM

A B
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Since there is no initial token on the arc between them, actor
A fires before actor B in the iteration. The names on the arcs
(“a”, “ b”, “ x”, etc.) indicate the names of the nearest input or
output of a dataflow actor. Suppose that in some iteration the
input tokens have values indicating that a is present and b is
absent, and that both A and B are in state α. The SDF system
reacts as follows:

• fire A: Since a is present, make the transition from α to 
β, and let the output x be assigned the value indicating it 
is present.

• fire B: Since c = x is present, make the transition back to 
state α, and let the output y be present.

Although this simple example may not look like a concurrent
FSM, it is one, in fact. Within an iteration, A and B must fire
sequentially. Across iterations, however, they can fire con-
currently. The ith firing of A may be concurrent with the (i −
m)th firing of B for any m > 0 such that i − m > 0. Of course,
with more complicated SDF graphs, there can be much more
concurrency, even within an iteration.

We can easily devise a syntax that permits an FSM to
refine a non-homogeneous SDF actor. For a non-homoge-
neous actor (i.e., an actor where more than one token of each
input/output can be consumed or produced), we syntactically
differentiate each token of a given input or output by concat-
enating its occurrence to its name. Borrowing notation from
the Signal language [6], “a”  denotes the most recent (last)
token consumed from input a, “a$1” denotes the next most
recent token consumed, and “a$2” the next most recent.
Consider the example in figure 10, focusing for now on lev-
els (d) and (e). The numbers in parentheses at level (d) indi-
cate the number of tokens consumed or produced by the
corresponding actor. The guard on the arc from α to β in A
on level (e) is , which means that both tokens con-
sumed from the a input must have the value representing a
present event. In B, the action y means that the first (oldest)
output token on output y will have a value representing an
absent event (because y$1 is not mentioned), while the sec-
ond (newest) token on output y will have a value represent-
ing a present event (because y is mentioned).

a(2)

b(1)
x(1) y(2)c(2)

SDF

Figure 10. Two FSMs, behaving like multirate blocks, are embedded in an SDF system.

α β

b A

α
c/y

B

FSM
FSMa a$1∧ /x

a(4)

b(2)
y(2)

α β

b b$1∨
C

FSM
a$3 a$2 a$1 a∧( )∨( )∧ /x

a(4)

b(2)
y(2)

SDF

(a)

(b)

(c)

(d)

(e)

A B

CD E

a a$1∧
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By default, state transitions occur whenever a dataflow
actor that refines to an FSM fires. Sometimes, however, we
will prefer for transitions to occur only between iterations of
the dataflow graph. This will prove important below where
states of the FSM may themselves be refined. In this case,
there are two types of firings of the dataflow actor that
refines to FSM. In type A, no transition is taken and no
action is performed, but if the current state is refined, the
refinement subsystem is fired. In type B, the refinement sys-
tem is fired, a transition is taken, and the corresponding
action is performed. Type B firings will always be the last of
an iteration.

Consider again the example of figure 10, focusing on
levels (a) and (b). Suppose that the schedule for the top-level
SDF system is {D,C,C,C,E}. The first two firings of actor C
are type A firings, where only the subsystem refining the
current state (either  or ) is fired. The third firing of C is
a type B firing, where the refinement system is fired, a tran-
sition is taken according to the values of the inputs a and b,
and the corresponding action is performed.

The notation described here has an obvious extension to
valued FSMs. We leave the details to the reader.

3.2.3 SDF inside FSM
If an SDF graph refines a state of an FSM, when that

state is the current state, the next reaction will consist of one
iteration of the SDF graph followed by a reaction of the
FSM. If the slave SDF graph is homogeneous (consumes a
single token from each input and produces a single token on
each output), then it fits the FSM model naturally. At each
reaction, each input has a symbol from the corresponding
signal alphabet. Even if this symbol is interpreted as denot-
ing an absent event, it nonetheless provides a token for the
SDF graph to consume.

If the slave SDF graph is not homogeneous, the seman-
tics becomes more subtle. Suppose for example that the SDF
subsystem of figure 10(d) is to be used as a slave within
another FSM, say the one at level (b). Solving the single bal-
ance equation for the subsystem at level (d) (there is only
one arc entirely inside the subsystem, and hence only one
balance equation) indicates that one iteration will consist of
two firings of A and one firing of B. Thus, as shown at level
(c), the type signature for the subsystem indicates that four
tokens will be consumed from input a and two from input b,
and two tokens will be produced at output y, in one iteration
of the subsystem. The semantics we choose is that the result-
ing composite SDF type signature becomes the type signa-
ture of the FSM subsystem itself. Thus, whatever system the
FSM at level (b) is embedded in must treat the FSM like an
SDF actor with the given type signature.

There are a number of potential complications. First,
composing synchronous dataflow actors to create a new syn-
chronous dataflow actor is not always possible. An example
is shown in figure 11. There, if actors A and B are combined
to form a synchronous dataflow actor C, the behavior
changes. If for example actor C is connected as shown, then
the system deadlocks with actor C, but not with actors A and
B. This problem can be resolved for general dataflow, which
can be made compositional, but not for synchronous data-

flow [29]. For the purposes of this paper, we assume that
only valid aggregations are specified.

A second complication is that the FSM at level (b) in fig-
ure 10 might not be embedded within an SDF environment.
Suppose for example that it is embedded within a discrete-
event environment. In this case, the semantics must be that
of SDF embedded within DE, which is covered in [15]. The
key, therefore, is that an FSM that contains slave SDF graphs
must itself be treated as an SDF actor with the type signature
determined by the slave SDF graphs.

A third complication is that the type signature may not be
the same in different states. In this case, the FSM system
cannot be treated as an SDF actor because the number of
tokens it produces and consumes is dependent on its state.
This possibility is extremely interesting, and represents a
major increment in expressive power, if it can be handled
cleanly. We deal with it in the next subsection.

3.2.4 Heterochronous Dataflow

When an FSM system has more than one state refined to
an SDF graph, the simplest case is where the type signatures
of the SDF graphs are identical. Then the FSM system itself
is treated as an SDF actor with this type signature. Consider
however the situation where the type signatures are different.
For example, in figure 12, one of the SDF graphs consumes
three tokens and produces one, while the other consumes one
and produces two. In this case, there are two possible type
signatures for the FSM subsystem, and hence it cannot be
embedded within an SDF graph.

One option is to embed the FSM system within a
dynamic dataflow (DDF) or boolean dataflow (BDF) graph
[12]. In DDF and BDF, the number of tokens consumed and
produced need not be constant for each actor. However, the
price we pay for this approach is high. In DDF and BDF,
many questions about the system are undecidable, such as
whether it will deadlock and whether the memory required
by the FIFO queues is bounded [12]. More importantly, syn-
thesis becomes more difficult and implementations more
expensive. Moreover, it seems that this choice of semantics
provides more generality than we really need for this appli-
cation. So we invent a new model of computation that we
call heterochronous dataflow (HDF).

In HDF, an actor has a finite number of type signatures,
where each type signature specifies the number of tokens
consumed and produced. When such an actor fires, a well-

α β

Figure 11. Actor C is not a valid SDF composition of A and B. 
The actors produce and/or consume a single token on each 

firing, as suggested by the annotations.

C
B

A

1 1

1 1

11
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defined type signature is in effect. But type signatures are
allowed to change between firings.

This model of computation is related to cyclo-static data-
flow (CSDF) [11]. In CSDF, an actor cycles through a finite
list of type signatures. It is easy to generalize the balance
equations so that all such actors complete an integer number
of cycles in an iteration of the overall system. Thus, once
again, an iteration is finite, and static scheduling is possible.
In HDF, however, the order in which type signatures are used
is not cyclic, nor even predictable.

If we allow the type signature of an actor to change
between any two firings, then it is easy to show that this
model of computation has the full expressive power of BDF
and DDF, and hence of Turing machines. A more modest
generalization is possible by restricting the changes in type
signature to occur at more controlled points in the execution.

When an HDF system starts execution, there is an initial
type signature in effect for each actor. These type signatures
can be used to solve the balance equations, finding an itera-
tion. The semantics we choose for HDF is that each type sig-
nature must remain constant for the duration of the
corresponding iteration. To ensure this, the FSM components
do not change state until their last firing in an iteration. At
the completion of the iteration, a new set of type signatures
is in effect, so the balance equations must be solved anew to
redefine an iteration.

In the example in figure 12, the top of the hierarchy is an
HDF system. The middle actor in this system has two possi-
ble type signatures, consuming three and producing one or
consuming one and producing two. Since this is the only

actor refined into an FSM, there are two sets of solutions to
the balance equations. Two corresponding sequential sched-
ules are {A,A,A,B,B,C,C} and {A,B,B,C,C,C,C}. Since
state α is the initial state of the FSM, the HDF system starts
by executing the first schedule. After the second firing of B,
the FSM is allowed to change state based on observations of
the inputs. At that point, if the two most recent consumed
tokens (in the iteration) indicated “present,” then the state
changes to β. After completion of the HDF iteration, instead
of repeating the α schedule, the β schedule is invoked.

There are a number of alternatives for implementing
HDF. If the number of possible type signature combinations
is small, as for the example in figure 12, it is probably best to
precompute (at compile time) all balance equation solutions,
and all iteration schedules. Unlike DDF or BDF, it is always
theoretically possible to precompute all schedules for all
possible iterations. In general, however, the number of type
signature combinations is exponential in the number of HDF
nodes, so this approach can become impractical. Fortunately,
the balance equations can be solved in time that is only linear
in the number of arcs plus the number of actors, and a sched-
ule can be found in time that is linear in the number of firings
and the number of edges [10], so it may not be impractical to
compute schedules dynamically between iterations. We are
currently exploring these implementation alternatives.

Although the number of type signature combinations can
be exponential in the number of actors, it is finite. For each
combination, all key questions are decidable (deadlock,
bounded memory), and schedules can be statically con-
structed. Thus, we have retained the key advantage of SDF
(decidability), but have dramatically increased its expres-

a(3) x(1)

SDF

Figure 12. An FSM with states that refine to SDF subsystems with different type signatures.

α β

a B

FSM
a a$1∧ /x

a(1) x(2)

SDF

x(1,2)

HDF

a(3,1)b(2) y(1)
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siveness. However, we can construct designs where not all
combinations are reachable. Obviously, we need not worry
about scheduling such combinations. But if the language for
expressing guards is rich enough, then which combinations
are reachable will not be decidable.

HDF has one significant disadvantage. When a state tran-
sition occurs depends on a global solution the balance equa-
tions, rather than a local definition. This could make using it
harder, as it compromises the modularity of a design.

Note that in figure 12, in addition to the type signatures
implied by the SDF refinements of the states, there are type
signatures implied by the guards on the transitions. The
guard  implies that there are at least two tokens con-
sumed from input a in one iteration (and that this input is
pure). A compiler will have to check that these constraints
on the type signature are consistent with the type signature of
the refinement of the state from which the arc containing the
guard emanates.

3.2.5 Dynamic Dataflow

The dynamic dataflow (DDF) and Boolean dataflow
(BDF) models of computation permit actors to consume and
produce a variable number of tokens on each firing. This
enhancement by itself is sufficient to make the models
Turing complete (they can implement a universal Turing
machine) [12]. At a fundamental level, these models are
therefore much more expressive than SDF or HDF. The price
we pay is that deadlock and bounded memory become
undecidable and schedules can no longer (always) be
constructed at compile time.

To combine FSMs with DDF and BDF, we use the con-
cept of firing rules, formalized in [29]. For the purposes of
this paper, these firing rules simply imply that any dataflow
actor must assert, prior to any firing, how many tokens it
needs on each input1. So if an FSM refines a DDF actor, then
in each state of the FSM, we must determine how many
tokens need to be consumed on each input for the next firing
(the next reaction of the FSM).

The semantics we adopt is simple; at least one token is
consumed on every input signal mentioned in the guard of
any outgoing transition from the current state. If multiple
tokens are mentioned for a single signal, using the notation
“a$i” for any positive integer i, then for each such signal, we
find the largest index i mentioned, and consume that many
tokens plus one.

Thus, in each state, we know how many tokens will be
consumed at each input in the next reaction. These numbers
become the firing rules for the DDF actor refined by the
FSM, specifying the number of tokens that must be present
on the inputs for the next firing to occur.

The inverse scenario is a bit more complicated. If a DDF
graph refines a state of an FSM, then the firing rules of the
DDF graph are exported to the environment of the FSM.

That is, when the FSM is in the state so refined, the entire
FSM becomes a DDF actor that will only be invoked when
the firing rules of the DDF subsystem, treated as an actor,
are met. This seems simple enough, but in fact, most realiza-
tions of DDF semantics are not compositional, meaning that
a DDF subsystem cannot be treated as an actor, and hence
cannot have well-defined firing rules. Techniques for making
DDF compositional, and for determining the resulting firing
rules, are covered in [29], and are beyond the scope of this
paper. It is sufficient for our purposes here to know that it
can be done.

3.3 Discrete Events with FSM

Dataflow is a loosely synchronized concurrency model,
where events are partially ordered according to their data
precedences. Because of this partial ordering of events,
many realizations of a dataflow system are possible, so
systems are not overspecified. Moreover, it implies a great
deal of concurrency, which can be exploited through parallel
imp lementa t io ns .  Howeve r,  the  resu l t ing  loose
synchronization is also a key weakness of dataflow. Because
of it, dataflow is not well suited for explicitly modeling
resource sharing and resource usage. We study, therefore,
two popular concurrency models that are more tightly
synchronized, DE and SR. The formal relationship among all
of these models of computation is studied in [33].

The discrete-event (DE) model of computation [14] is
particularly useful for modeling distributed or parallel hard-
ware or software and their communication infrastructure. It
carries a notion of global time, a value, usually a real num-
ber, that is known simultaneously throughout the system. An
event in a signal occurs at a point in time. In a simulation of
such a system, each event carries both a value and a time
stamp that indicates the time at which the event occurs. The
time stamp of an event is typically generated by the actor
that produces the event, and is determined by the time stamp
of input events and the latency of the block. The DE simula-
tor needs to maintain a global event queue that sorts the
events by their time stamps, and chronologically processes
each event by sending it to the appropriate actor, which
reacts to the event (fires).

A formal semantics for DE is given in [30], which also
references other formal treatments. The semantics is based
on constructing a metric space using the so-called Cantor
metric, and defining signals to be elements of this metric
space. Causality turns out to be a key property of operators
on signals, and can be characterized in terms of contraction
mappings in the metric space. Determinacy is ensured if
feedback loops contain a contraction mapping.

3.3.1 FSM inside DE

Since the DE model of computation, like dataflow, has
well-defined fir ings, embedding FSM within DE is
straightforward from a control perspective. An FSM that
refines a DE actor reacts when the DE actor fires, which
occurs when there is an event at one of its inputs, and that
event has the smallest time stamp of all events in the event
queue2. If that event has a value, then that value is made
available to the FSM for testing by the guards. If the other
input signals do not also have events with the same time

1.  In [29], an actor may also assert what the token values must be. 
It is a simple exercise to show that omitting this capability does not 
compromise Turing completeness. Moreover, for reactive FSMs, 
adding this capability would not increase expressiveness. Thus, we 
omit it.

a a$1∧
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stamp available for this reaction, then those signals are
assigned an input symbol indicating the absence of event.
Unlike dataflow, absence of an event is represented in DE
with absence of a token.

In a reaction, an FSM that refines a DE actor may emit
output events. Those output events translate directly into
events in the DE domain. However, in DE, they must be
assigned a time stamp, something that the FSM semantics
does not provide for. We choose semantics where the FSM
system appears to the DE system as a zero-delay actor. If an
output is generated in a reaction, it is assigned the same time
stamp as the input that triggered that reaction.

Consider the example shown in figure 13. Suppose that
an event for a with a time stamp t is the next to be processed
in the global event queue, and both FSM A and B are in state
α. Then, the DE system reacts as follow:

• Fire A: Since there exists an event for a, A makes the 
transition from α to β, and emits the pure event x. In 
DE, this event will have time stamp t and thus will be 
the next to be processed.

• fire B: Since there exists an event for c, B makes the 
transition back to state α, and emits y. In DE, the event 
on y will have time stamps t.

Since DE semantics is event-driven, an actor does not fire if
there are no events at its inputs. This leads to some subtleties
with guards. Consider the example in figure 14, and suppose
that the FSM is in state α. The guard on the only outgoing
transition indicates that a must be absent for the transition to
trigger. Implicitly, however, b must be present, or the FSM
would not react (there would be no event to trigger a firing).
Thus, it would be clearer to give the guard as . If the
guard were given instead as , the transition would
never fire, since a and b are the only two inputs and the actor
will not fire when both are absent.

3.3.2 DE inside FSM

Much as we did with dataflow, if a state in an FSM
refines to a DE subsystem, then the properties of that
subsystem are exported to the environment of the FSM. If
that environment is not DE, but something else, such as

dataflow, then the semantics of DE within dataflow apply
[15]. If more than one state of the FSM refines, then all must
refine to a DE subsystem, but the semantics imposes no
other consistency constraint, as we had to do with SDF1

If the environment of an FSM is DE, the semantics is
simple. The FSM will react when any of the inputs is
present. The input that triggers the firing will have as its time
stamp the current time of the environment. If the current
state refines to a DE subsystem, then that subsystem will be
simulated until its current time matches that of the environ-
ment. In the meantime, it may emit events, which become
outputs to the environment with time stamps equal to the
current time (or later).

As is always the case with DE modeling where zero-
delay actors are permitted, there can be semantic problems
with directed cycles that have zero delay [33]. Consider the
example in figure 15. When A reacts to an event on a, it
starts a process by which an event will circulate through the
cycle forever with no advance of time. There are a number of
solutions to problem, but all of them are intrinsic to DE and
not to the DE/FSM combination, and hence are beyond the
scope of this paper.

3.4 Synchronous/Reactive Systems with FSM

Even though time is a real number in a DE system, for
any well-behaved DE simulation, time in fact advances in
discrete steps. Recognizing that, we could instead use a
model of computation where only the discrete steps are

2.  There is some ambiguity when there is more than one event in 
the event queue with the same smallest time stamp. Various DE 
simulators deal with situation differently. See [15] for a discussion 
of this issue. For the purposed of this paper, it makes no difference 
what technique is used.
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Figure 13. Two FSMs that refine DE actors.
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1.  A particular programming environment may impose constraints 
on the data types of the tokens, but that is not an issue being 
addressed in this paper.
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Figure 14. The guard on the upper transition is incomplete,
in that event b must be present if a is absent and 

the FSM is reacting.
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modeled, and not the time continuum. In addition, we can
resolve the problem highlighted above with zero-delay
feedback loops by adopting a fixed-point semantics. With
these two innovations, we get the synchronous/reactive (SR)
model of computation [5]. SR is synchronous in the same
sense as synchronous digital circuits. Time delays in
computations become irrelevant, so a useful conceptual
gimmick is to assume that computations take zero time. SR
has a major advantage over DE in that an SR model can be
compiled into either sequential code or parallel circuits. DE,
in contrast, is difficult to implement efficiently in sequential
code, although it is used routinely to specify circuits, which
are intrinsically parallel (via the VHDL and Verilog
languages).

Execution of an SR system occurs at a sequence of glo-
bal, discrete, instants called ticks (as in ticks of a clock). At
each tick, each signal either has no event (is absent) or has an
event (is present, possibly with a value). At each tick, signals
are related by functions that have signals as arguments and
define signals. In general, directed cycles are permitted. I.e.,
for signals a and b, and functions f and g, we might have

a = f(b)
b = g(a) (4)

Thus, at each tick, signals are defined by a set of simulta-
neous equations using these functions. A solution is called a
fixed point, and the task of a compiler is to generate code
that will find such a fixed point.

To ensure that the system is deterministic, that the imple-
mentation always finds the same solution given the same
inputs, each function is required to be monotonic in a very
particular sense. Suppose that a function f has input signal a
with signal alphabet {ε, a1, a2, ...}. We augment the alphabet
with a special symbol ⊥, pronounced “bottom,” that we
interpret to mean “unknown.” The function must be defined
for input ⊥ (the output will often, but not always be ⊥). We
then define a “flat” partial order on the augmented set, {⊥, ε,
a1, a2, ...}, as shown in figure 16(a). In this diagram, ⊥ is
below (“less than”) everything else in the set, and no two
other elements in the set are comparable (neither can be less
than the other). The function f is monotonic if

a ≤ a' ⇒ f(a) ≤ f(a'), (5)

where the symbol “≤” is interpreted with respect to this par-
tial order. The partial order and the notion of a monotonic
function is easily generalized to allow functions with multi-
ple arguments. It is then possible to use a fixed point theo-
rem based on the Knaster-Tarski fixed-point theorem to
show that any network of such monotonic functions has a
least fixed point, where “least” is with respect to this partial
order [18]. The least fixed point is taken to be the semantics
of the network of functions. This basic approach was pio-
neered by Scott [42], Manna [34], and others. Many practical
implementations of the SR model have been constructed,
starting with the Esterel language [8].

Finding the fixed point is straightforward, in principle.
The functions are simply evaluated in any order until we
converge to a fixed point. Choosing a good order for evaluat-
ing the functions can greatly impact performance, obviously.
In [20], Edwards proposes and compares several algorithms
for choosing a good order of evaluation.

Functions are allowed to change between ticks. Thus, a
module in SR has two distinct behaviors that we call produce
and transition. In the produce phase, the current function is
evaluated to determine outputs given the current information
about the inputs. In the transition phase, the function is
changed in preparation for the next tick.

Most familiar functions are strict, meaning that all argu-
ments must be known before the function output is defined.
Strict functions are always monotonic. A directed loop of
strict functions has the solution ⊥ (unknown) for all signals. 

It is not uncommon, however, to have functions where
the output can be determined even if some of the inputs are
not known. The use of non-strict functions allows directed
loops with less trivial solutions. We will see that FSMs can
be described as non-strict functions that map input events
into output events in each reaction.

3.4.1 Simple FSM Inside SR

Emb edd ing  an  FSM as  an  SR modu le  seems
straightforward in the following sense. If at a tick the inputs
to the FSM are known, then the FSM can react to them and
possibly assert output events. Any output events that are not
asserted would then be known to be absent. However, there
are two difficulties with SR. First, the current state of the
FSM may refine to an SR or non-SR subsystem. Second, the
inputs may not be completely known. In particular, if the SR
system includes a directed loop, then the inputs cannot be
known at the start of the tick for all the modules in the loop.

In this subsection, assume the states of the FSM are not
refined. Consider the example in figure 17, where there are
two FSMs, A and B, embedded in an SR system and
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enclosed in a directed loop. In A, the function mapping the
inputs a, b into the output x in state α is

. (6)

This function does not depend on b, so if the FSM is in state
α and a is observed to be present or absent, then we specify
whether x will be present or absent without observing b.
Thus, in state α, the SR function defined by this FSM is not
strict. It only needs to observe a, not b.

The above analysis can be automated to get a simplified
function for each output at each state using standard tech-
niques from digital logic design. These simplified functions
will indicate for each state what inputs need to be known to
define an output.

We then define two phases of execution of an FSM
within SR, also called produce and transition. To comple-
ment firing types A and B used for FSM within dataflow, we
might call these firing types C and D, respectively. In the
produce phase, a type C firing, the FSM observes the inputs
and determines whether any output function can be evalu-
ated. If so, it is evaluated so that the output is defined. If not,
it indicates that the outputs are still unknown. The produce
phase may be invoked any number of times in a single tick,
as long as the output functions are monotonic. The transition
phase (a type D firing) makes whatever state transition is
enabled by the current inputs, but ignores the action associ-
ated with that transition.

Thus, a run-time scheduler can sequence through func-
tion evaluations, iterating until a fixed point is found. The
scheduler executes in three phases (cf. [20]):

1. First, invoke the produce phase for each FSM (and other 
SR blocks) however many times is needed for it to 
either define the outputs or reach a fixed point. An algo-
rithm for ordering these invocations is given by 
Edwards [20].

2. If any signals remain undefined, signal a causality loop 
error.

3. Invoke the transition function of every FSM in the SR 
system.

The iterative procedure in step (1) may seem costly at first
glance, but experience indicates that with intelligent sched-
uling, convergence to a fixed point is very fast [20]. More-
over, the iterative procedure is amenable to embedding in
compiled code, so it does not imply an interpreted execution
style. However, causality loops are only detected at run time,
and hence can only be reported at run time. This can be a
serious impediment to using such a scheme in embedded
systems.

3.4.2 Refined FSMs Inside SR

We consider two cases. If the current state of an FSM
refines to an SR subsystem, then the produce phase of the
FSM should invoke the produce phase of the SR subsystem.
No other change is needed. If the FSM refines to non-SR
subsystem, then we have to be more cautious. In that case,
we assume that the non-SR subsystem defines a strict
function, and modify the SR scheduling as follows:
1. Same as above.
2. Look at all FSMs in the SR system where the current 

state refines to a non-SR subsystem and that subsystem 
has not fired. If there are non, continue to step 3. Other-
wise, if all of these have undefined inputs, then signal a 
causality loop error. Otherwise, fire all refinements that 
have all inputs defined and repeat steps 1 and 2.

3. If any signals remain undefined, signal a causality loop 
error.

4. Invoke the transition function of every FSM in the SR 
system.

We do not have enough experience with this doubly iterative
procedure to know how costly it is. This is future work.

3.4.3 SR inside FSM

Embedding SR systems within FSM is straightforward. If
the current state of an FSM refines to an SR subsystem, then
the semantics of SR are simply exported to the boundary of
the FSM.

4.0 VERIFICATION AND SYNTHESIS

Synthesis of hardware or software from FSMs is standard
practice, and has been supported for many years in widely
used CAD packages. Synthesis of hardware (e.g. [46]) and
so f twa re  ( e . g .  [ 10 ] )  f r om SDF g raphs  ha s  been
demonstrated. Synthesis of hardware (e.g. [9][41]) and
software (e.g. [8]) from SR has also been demonstrated.
Given our simple composition semantics, it is not hard to
come up with ways to combine independently synthesized
components. Although still somewhat limited, such
combinations have been demonstrated for embedded
software by Edwards [20]. DE is used more for modeling
than synthesis, so synthesis is not much of an issue.

Verification of FSMs (reachability analysis and model
checking) is well studied. Verification of SDF graphs
includes liveness analysis (or conversely, deadlock detec-
tion) [31]. Independent analysis is not compromised by our
approach. However, verification of an SDF/FSM combina-
tion, in general, becomes much more difficult. It is probable
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that because of fundamental decidability questions, simula-
tion will remain the main validation method for most aspects
of the combined system.

One of the advantages of our approach is that it permits
the use of established and reasonably mature synthesis and
verification technologies within each model of computation,
and provides a simple and determinate mechanism for com-
bining the results. The determinacy of the combination
ensures that validation of the combination by simulation is
practical.

5.0 IMPLEMENTATION

An experimental implementation of several of the
combinations discussed here has been implemented in the
Ptolemy software environment [13]. The SDF, DE, and SR
models were already present in the software, and minimal
modifications were required to interface them to FSM. The
only significant complication encountered was that, in order
to support arbitrary hierarchical combinations of all four
models, all four had to have hooks supporting the produce
and transition phases of execution required for partial
evaluation in SR. For SDF and DE, the “produce” phase
does nothing, and the “transition” phase implements a
standard firing. Thus, SDF and DE have strict behavior. To
get a modular software architecture, the object-oriented
principle of polymorphism is used, where the default
behavior of a model of computation is strict, but specific
models can override this behavior.

6.0 EXAMPLES

6.1 The Reflex Game

A commonly used example for control-intensive
software environments is the “reflex game” [7]. Our version
of the reflex game is a two-player game (to introduce more
concurrency).

6.1.1 Description of the Game
The inputs to the system are coin, ready, go, stop and

time. All but the last are user inputs, while the last simply
counts off time. The outputs are blueLt, yellowLt, greenLt,
redLt and flashTilt, used to control a user interface. Normal
play proceeds as follows:

1. Either player may assert coin to start the game. A status 
light turns blue.

2. When player 1 is ready, he presses ready, and the status 
light turns yellow.

3. When player 2 presses go, the status light turns green 
and player 1 presses stop as fast as he can.

4. The game ends, and the status light turns red.

The game measures the reflexes of player 1 by reporting the
time between greenLt and redLt. There are some situations
where the game ends abnormally, and a “tilt” light flashes.
These are:
1. After coin is asserted, player 1 does not press ready 

within L time units.
2. Player 1 presses stop before or at the same instant that 

player 2 presses go.
3. After player 2 presses go, player 1 does not press stop 

within L time units.

One additional rule is that if player 2 does not press go
within L time units after player 1 presses ready, then go is
asserted by the system, and the game advances to wait for
player 1 to press stop.

6.1.2 Heterogeneous Realization of the Game
Our realization of the game is shown in figure 18, To

simulate the real-time behavior of the game, we use DE as
the topmost level (a), modeling the environment of the game
(including the players). The DE model contains a clock to
generate time ticks, models of the two players, a reflex block
modeling the implementation of the game, and a display
block. It also contains a merge block because either player
can assert coin. 

At the next level of the hierarchy (b), inside the reflex
block, we have a two state FSM. The states are game off and
game on. Inside the game on state, at level (c), we use an SR
model consisting of the two players. These are intercon-
nected with a zero-delay feedback loop, so we exploit the
fixed-point semantics of SR.

At level (d), the two players are refined into concurrent
FSMs. Player 1 starts in the idle state, and when ready is
asserted, emits a start event and transitions to the wait go
state. This causes player 2 to transition to the wait state and
emit a yellowLt event. The rest of the behavior at this level
should now be evident from the figure.

In several states, we need to count ticks from the clock to
watch for time outs. This counting is a simple arithmetic
computation that can be performed using the dataflow graph
shown at level (e). This graph simply counts ticks, compares
the count against a constant, and emits a timeout event when
the threshold is exceeded. 

6.1.3 Esterel Realization

Figure 19 shows an Esterel realization of the two-player
reflex game. The description is concise, taking slightly less
space than the one in figure 18. This application is a good
match for the concurrent semantics of Esterel, which is
synchronous/reactive. However, this Esterel module does not
include a model of the environment. Esterel programs
generally specify modules that are intended to reside within
some foreign realization of the environment, such as a C
program. There is no support for discrete-event modeling.

The computational aspects of the reflex game, which
involve only trivially simple arithmetic, are also a good
match for Esterel. For more sophisticated computations,
such as signal processing, it is common for Esterel programs
to fall back on modules written in C for their implementa-
tion. By contrast, in the *charts model, a designer could use
dataflow models of the sophisticated computations, which
are somewhat higher level (more abstract) than C programs.

Which description, Esterel or *charts, is more readable or
understandable will depend heavily on the familiarity of the
reader with the languages involved. We believe that the ver-
sion in figure 18 will be more easily understood in general.
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6.1.4 VHDL and C Realizations

Esterel has proven paths to synthesis of both hardware
and software [8][9]. Code generation from dataflow graphs
for both hardware and software targets has also been
demonstrated [10][40], and has appeared in a number of
commercial products, such as SPW from Cadence and
COSSAP from Synopsys. Synthesis of embedded software
for a version of synchronous/reactive semantics that admits

heterogeneity has been demonstrated [20]. Synthesis of
hardware from FSM models is routine in CAD software, and
synthesis of embedded software from FSM models has
appeared in commercial products, such as Stateflow from
The MathWorks. Thus, all of the elements are in place for
synthesis  f rom the  *char ts  heterogeneous model .
Nonetheless, we have not yet completed a synthesis tool that

Figure 18. The system of the reflex game can be hierarchically decomposed into five levels of subsystems.
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performs the entire task, and we do not wish to imply that
this is a trivial task.

Although we have not implemented automatic synthesis
for the *charts model, we manually crafted implementations
of the two-player reflex game in both (synthesizable) VHDL

and C. This code is written in a style similar to what would
be generated by a synthesis program. The complete VHDL
implementation is shown in figure 20, although not in a read-
able font. VHDL is a relatively verbose language, and this
description, which includes almost no comments, occupies

Figure 20. VHDL description of the two-player Reflex game, with the segment corresponding to level (b) in figure 
18 shown in a readable font at the upper right. At the lower right is the C version.

entity reflex_game is

  port (clk, reset : in bit;

ready, stop, coin, go : in bit;

blueLt, yellowLt, greenLt, redLt, flashTilt : out bit);

end reflex_game;

architecture behavior of reflex_game is

signal counter : integer range 0 to 100;

type player1_type is (wait_ready, wait_go, wait_stop, done);

signal player1_state: player1_type;

type player2_type is (idle, wait0);

signal player2_state: player2_type;

type reflex_type  is (game_off, game_on);

signal reflex_state : reflex_type;

---------- Level (e) ----------

procedure wait_time_proc

    (counter : in integer range 0 to 100;

     counter_next : out integer range 0 to 100;

     timeout : out bit) is

variable counter_tmp : integer range 0 to 100;

begin  -- wait_time_proc

    counter_tmp:=counter+1;

    if (counter_tmp>=100) then

timeout:=’1’;

counter_tmp := 0;

    else

timeout:=’0’;

    end if;

    counter_next:=counter_tmp;

end wait_time_proc;

---------- Level (d) ----------

procedure player1_produce_proc

    (ready,stop:in bit;

     end0:in integer range -1 to 1;

     tmp_error0,tmp_exit0,start,tmp_greenLt:out integer range -1 to 1;

     timeout:inout bit;

     player1_state:in player1_type;

     counter:in integer range 0 to 100;

     player1_state_next:out player1_type;

     counter_next:out integer range 0 to 100) is 

begin  -- player1_produce_proc

    case player1_state is

when wait_ready =>

    wait_time_proc (counter, counter_next, timeout);

    if (ready=’1’ and timeout=’0’) then

tmp_error0:=0;

tmp_exit0:=0;

start:=1;

tmp_greenLt:=0;

    elsif (timeout=’1’) then

tmp_error0:=1;

tmp_exit0:=0;

start:=0;

tmp_greenLt:=0;

    else

tmp_error0:=0;

tmp_exit0:=0;

start:=0;

tmp_greenLt:=0;

    end if;

        when wait_go =>

    if (end0=1) then

tmp_error0:=0;

tmp_exit0:=0;

start:=0;

tmp_greenLt:=1;

    elsif (stop=’1’) then

tmp_error0:=1;

tmp_exit0:=0;

start:=0;

tmp_greenLt:=0;

    else

tmp_error0:=0;

tmp_exit0:=0;

start:=0;

tmp_greenLt:=0;

    end if;

        when wait_stop =>

    wait_time_proc (counter, counter_next, timeout);

    if (stop=’1’) then

tmp_error0:=0;

tmp_exit0:=1;

start:=0;

tmp_greenLt:=0;

    elsif (timeout=’1’) then

tmp_error0:=1;

tmp_exit0:=0;

start:=0;

tmp_greenLt:=0;

    else

tmp_error0:=0;

tmp_exit0:=0;

start:=0;

tmp_greenLt:=0;

    end if;

        when done =>

    end case;

end player1_produce_proc;

procedure player1_transition_proc

    (ready,stop:in bit;

     end0:in integer range -1 to 1;

     timeout:in bit;

     player1_state:in player1_type;

     player1_state_next:out player1_type) is

begin  -- player1_transition_proc

    case player1_state is

when wait_ready =>

    if (ready=’1’ and timeout=’0’) then

player1_state_next:=wait_go;

    elsif (timeout=’1’) then

player1_state_next:=done;

    else

player1_state_next:=wait_ready;

    end if;

when wait_go =>

    if (end0=1) then

player1_state_next:=wait_stop;

    elsif (stop=’1’) then

player1_state_next:=done;

    else

player1_state_next:=wait_go;

    end if;

when wait_stop =>

    if (stop=’1’) then

player1_state_next:=done;

    elsif (timeout=’1’) then

player1_state_next:=done;

    else

player1_state_next:=wait_stop;

    end if;

when done =>

    end case;

end player1_transition_proc;

procedure player2_produce_proc

    (start:in integer range -1 to 1;

     go:in bit;

     end0:out integer range -1 to 1;

     tmp_yellowLt:out integer range -1 to 1;

     timeout:inout bit;

     player2_state:in player2_type;

     counter:in integer range 0 to 100;

     player2_state_next:out player2_type;

     counter_next:out integer range 0 to 100) is

begin  -- player2_produce_proc

    case player2_state is

when idle =>

    if (start=1) then

end0:=0;

tmp_yellowLt:=1;

    else

end0:=0;

tmp_yellowLt:=0;

    end if;

        when wait0 =>

    wait_time_proc (counter, counter_next, timeout);

    if (go=’1’ or timeout=’1’) then

end0:=1;

tmp_yellowLt:=0;

    else

end0:=0;

tmp_yellowLt:=0;

    end if;

    end case;

end player2_produce_proc;

procedure player2_transition_proc

    (start:in integer range -1 to 1;

     go:in bit;

     timeout:in bit;

     player2_state:in player2_type;

     player2_state_next:out player2_type) is

begin  -- player2_transition_proc

    case player2_state is

when idle =>

    if (start=1) then

player2_state_next:=wait0;

    else

player2_state_next:=idle;

    end if;

when wait0=>

    if (go=’1’ or timeout=’1’) then

player2_state_next:=idle;

    else

player2_state_next:=wait0;

    end if;

    end case;

end player2_transition_proc;

---------- Level (c) ----------

procedure game_on_proc

    (ready,go,stop:in bit;

     yellowLt_var,greenLt_var,error0,exit0:out bit;

     player1_state:in player1_type;

     player2_state:in player2_type;

     counter:in integer range 0 to 100;

     player1_state_next:out player1_type;

     player2_state_next:out player2_type;

     counter_next:out integer range 0 to 100) is

variable tmp_yellowLt,tmp_greenLt,tmp_error0,tmp_exit0:integer range -1 to 1;

variable old_yellowLt,old_greenLt,old_error0,old_exit0:integer range -1 to 1;

variable old_start,old_end0:integer range -1 to 1;

variable start,end0:integer range -1 to 1;

variable fixed:bit;

variable timeout:bit;

begin  -- game_on_proc

    tmp_yellowLt:=-1; tmp_greenLt:=-1; tmp_error0:=-1; tmp_exit0:=-1;

    start:=-1; end0:=-1;

    fixed:=’0’;

    for i in 1 to 2 loop

if (fixed=’0’) then

    old_yellowLt:=tmp_yellowLt;

    old_greenLt:=tmp_greenLt;

    old_error0:=tmp_error0;

    old_exit0:=tmp_exit0;

    old_start:=start;

    old_end0:=end0;

player1_produce_proc (ready,stop,end0,tmp_error0,tmp_exit0,start,

tmp_greenLt,timeout,player1_state,counter,

player1_state_next,counter_next);

player2_produce_proc (start,go,end0,tmp_yellowLt,timeout,

      player2_state,counter,

      player2_state_next,counter_next);

    if (old_start=start and old_end0=end0 and 

old_yellowLt=tmp_yellowLt and old_greenLt=tmp_greenLt and

old_error0=tmp_error0 and old_exit0=tmp_exit0) then

fixed := ’1’;

    end if;

        end if;

    end loop;  -- i

    player1_transition_proc (ready,stop,end0,timeout,

     player1_state,player1_state_next);

    player2_transition_proc (start,go,timeout,

     player2_state,player2_state_next);

    if tmp_yellowLt=1 then

yellowLt_var:=’1’;

    else

yellowLt_var:=’0’;    

    end if;

    if tmp_greenLt=1 then

greenLt_var:=’1’;

    else

greenLt_var:=’0’;    

    end if;

    if tmp_error0=1 then

error0:=’1’;

    else

error0:=’0’;    

    end if;

    if tmp_exit0=1 then

exit0:=’1’;

    else

exit0:=’0’;    

    end if;

end game_on_proc;

---------- Level (b) ----------

procedure reflex_proc

    (coin,ready,go,stop:in bit;

     blueLt_var,yellowLt_var,greenLt_var,redLt_var,flashTilt_var:out bit;

     reflex_state:in reflex_type;

     player1_state:in player1_type;

     player2_state:in player2_type;

     counter:in integer range 0 to 100;

     reflex_state_next:out reflex_type;

     player1_state_next:out player1_type;

     player2_state_next:out player2_type;

     counter_next:out integer range 0 to 100) is

variable exit0,error0:bit;

begin  -- reflex_proc

    case reflex_state is

when game_off =>

    if (coin=’1’) then

blueLt_var:=’1’;

reflex_state_next:=game_on;

    else

reflex_state_next:=game_off;

    end if;

when game_on =>

    game_on_proc (ready,go,stop,yellowLt_var,greenLt_var,error0,exit0,

  player1_state,player2_state,counter,

  player1_state_next,player2_state_next,counter_next);

    if (exit0=’1’) then

redLt_var:=’1’;

reflex_state_next:=game_off;

    elsif (error0=’1’) then

redLt_var:=’1’;

flashTilt_var:=’1’;

reflex_state_next:=game_off;

    else

reflex_state_next:=game_on;

    end if;

    end case;      

end reflex_proc;

begin  -- behavior

---------- Main process for entity ----------

main : process (clk, reset)

variable reflex_state_next:reflex_type;

variable player1_state_next:player1_type;

variable player2_state_next:player2_type;

variable counter_next:integer range 0 to 100;

variable blueLt_var,yellowLt_var,greenLt_var,redLt_var,flashTilt_var:bit;

begin  -- process main

    -- activities triggered by asynchronous reset (active low)

    if reset = ’0’ then

reflex_state<=game_off;

player1_state<=wait_ready;

player2_state<=idle;    

counter<=0;

    -- activities triggered by rising edge of clock

    elsif clk’event and clk = ’1’ then

        reflex_proc(coin,ready,go,stop,blueLt_var,yellowLt_var,

    greenLt_var,redLt_var,flashTilt_var,

    reflex_state,player1_state,player2_state,counter,

    reflex_state_next,player1_state_next,player2_state_next,

    counter_next);

reflex_state<=reflex_state_next;

player1_state<=player1_state_next;

player2_state<=player2_state_next;

counter<=counter_next;

blueLt<=blueLt_var;

yellowLt<=yellowLt_var;

greenLt<=greenLt_var;

redLt<=redLt_var;

flashTilt<=flashTilt_var;

    end if;

end process main;

end behavior;

procedure reflex_proc
    (coin,ready,go,stop:in bit;
     blueLt_var,yellowLt_var,greenLt_var,

 redLt_var,flashTilt_var:out bit;
     reflex_state:in reflex_type;
     player1_state:in player1_type;
     player2_state:in player2_type;
     counter:in integer range 0 to 100;
     reflex_state_next:out reflex_type;
     player1_state_next:out player1_type;
     player2_state_next:out player2_type;
     counter_next:out integer range 0 to 100)

is
variable exit0,error0:bit;
begin  -- reflex_proc
    case reflex_state is

when game_off =>
    if (coin=’1’) then

blueLt_var:=’1’;
reflex_state_next:=game_on;

    else
reflex_state_next:=game_off;

    end if;
when game_on =>

game_on_proc(ready,go,stop,yellowLt_var,
greenLt_var,error0,exit0,
player1_state,player2_state,counter,
player1_state_next,player2_state_next,
counter_next);
    if (exit0=’1’) then

redLt_var:=’1’;
reflex_state_next:=game_off;

    elsif (error0=’1’) then
redLt_var:=’1’;
flashTilt_var:=’1’;
reflex_state_next:=game_off;

    else
reflex_state_next:=game_on;

    end if;
    end case;      
end reflex_proc;

reflex_proc (coin, ready, go, stop, time,
     blueLt, yellowLt, greenLt, redLt, flashTilt)

int coin, ready, go, stop; double time;
int *blueLt, *yellowLt, *greenLt, *redLt, *flashTilt;
{
  int error=0, exit=0;

switch (reflex_state) {
    case game_off:
      if (coin) {

*blueLt=1;
reflex_state=game_on;

      }
      break;
    case game_on:
      game_on_proc(time, ready, go, stop,

   yellowLt, greenLt, &error, &exit);
      if (exit) {

*redLt=1;
reflex_state=game_off;

      } else if (error) {
*redLt=1; *flashTilt=1;
reflex_state=game_off;

      }
      break;
  }
}
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more than five pages, and like the Esterel program, does not
model the environment. The C description is somewhat
shorter, occupying less than four pages. In figure 20 at the
right we show the VHDL and C descriptions of the level (b)
FSM from figure 18. The FSM is implemented very directly
as if-then-else clauses in both cases. From these code seg-
ments, we hope the reader is convinced that the translation
from the syntax in figure 18 to this syntax is relatively

straightforward. Our conclusion is that C and VHDL should
be back-end languages, synthesized from higher level
descriptions for the purpose of interfacing to lower-level
synthesis tools (compilers and logic synthesis), and that
*charts provides a reasonable higher-level description.

6.2 Digital Cellular Telephone

The reflex game example is rich enough to encompass
multiple models of computation, but simple enough to be
summarized on a page. A more practical application that
exhibits many of the same features is a digital cellular
telephone. It includes intensive numerical signal processing
(a good match for SDF), in both the speech coder and radio
modem. It may also include features such as speech
recognition for hands-free dialing. These signal processing
components are each quite sophisticated, and may involve
modal models that would be appropriately constructed by
combining SDF with FSM. For example, equalization of a
fading radio channel may involve the use of distinct
algorithms during the establishment of a connection vs.
steady state. Also, power conservation dictates the use of
simpler algorithms when the channel is benign, suggesting
that mode changes would be driven by channel estimators.

A cellular phone also includes a substantial amount of
embedded control logic for call processing and multiple-
access protocols. Time-division multiple access (TDMA),
such as that used in GSM phones, requires accurate real-time
state transitions. Such protocols can get quite intricate, so the
ability to systematically verify correctness of FSM models
may become valuable. Even without formal verification, if
an FSM model is more easily understood than a C program,
then a design constructed in terms of FSMs is more likely to
be correct.

Modeling a cellular phone requires modeling its environ-
ment, which can itself be quite complex. Multiple-access
scenarios, with varying numbers of other users, should be
part of the model. Multipath fading should also be modeled,
although the level of detail of the model will depend on what
question is being asked about the design (a transfer-function-
level model would be used to verify the design of the radio
modem, while a drop-out-event model would be used to ver-
ify the robustness of the protocol implementations). Many of
the features of the environment can be conveniently modeled
using DE. Detailed modeling of multipath fading is well-
suited to SDF.

A cellular telephone also contains analog RF circuitry,
adding a further element of heterogeneity beyond any we
have discussed in this paper. Mixed-signal models that
include FSMs, DE, and SDF are an active area of research.
Commercial systems have already appeared that support
subsets of these, such as Saber from Analogy, which models
DE systems together with continuous-time systems, and HP
Ptolemy, which models SDF systems together with continu-
ous-time systems.

Finally, a cellular phone development project is a multi-
team effort, and coordination of the diverse tasks of the
teams is a major challenge. In practice, cellular telephone
design efforts use a heterogeneous set of tools and methodol-
ogies. Different techniques are used for each of the embed-
ded DSP software, the embedded microcontroller software,

module REFLEX :

constant L = 10 : integer;

input TIME, READY, STOP, GO, COIN;

output DISPLAY: integer;
output BLUELT, YELLOWLT, GREENLT, REDLT, FLASHTILT;

emit REDLT;
emit DISPLAY(0);

loop
  await COIN;
  emit BLUELT;
  signal START, EXIT, END in
    trap T1 in
      [ % player 1
      var X := 0 : integer in
      do
        await READY
      watching L TIME timeout exit T1 end;
      emit START;
      await
        % the STOP transition has the higher priority
        case STOP do
          exit T1
        case END do
          emit GREENLT
      end await;
        trap T2 in
          [
          do
            await STOP
          watching L TIME timeout exit T1 end;
          exit T2;
          ]
        ||
          [
          every TIME do
            X := X+1
          end every
          ]
        handle T2 do
          emit EXIT;
          emit DISPLAY(X)
        end trap
      end var
      ] % end player 1
    ||
      [ % player 2
        await START;
        emit YELLOWLT;
        await
          case GO do
            emit END
          case L TIME do
            emit END
        end await
      ] % end player 2
    handle T1 do
      emit FLASHTILT;
      emit REDLT
    end trap
  end signal
end loop

end module

Figure 19. Esterel realization of the two-player reflex game.



19

the custom digital hardware, and the analog and RF hard-
ware. We believe that the *charts model provides a good
framework for coordination of such efforts.

7.0 CONCLUSIONS

We have described the combination of finite-state
machines with three different concurrency models, dataflow,
synchronous/reactive (SR) systems, and discrete-event (DE)
systems. These three concurrency models have different
strengths and weaknesses, and are thus applicable in
different situations. Dataflow (Section 3.2) is well-suited to
numerical computation, such as signal processing, but poorly
suited to resource management and control logic. SR
(Section 3.3) is well-suited to resource management and
control logic, but overspecifies numerical computational
systems by imposing synchrony. DE (Section 3.4) is well-
suited to modeling hardware systems, but poorly suited to
more abstract specifications because of its physical notion of
time. Finite-state machines complement all three of these
with sequential control that is  easily analyzed and
synthesized. We have given semantics for each concurrent
model of computation combined with FSM.

An example is described that uses all four models of
computation. The resulting combination is easily understood
by anyone familiar with all four models of computation, but
obviously would be obtuse to someone familiar with only a
subset. This particular example was chosen precisely to
illustrate our claim for heterogeneity and for multiples mod-
els of computation. However, most designs of similar com-
plexity would only require a subset of the four models of
computation.

There are many issues that are not discussed in this
paper. These include enhancements that are possible in FSM,
for example to support preemptive transitions, where the
refinement of a state is not fired prior to taking the transition.
Another issue that is not dealt with is what should be done
with the state of a refinement of a state of an FSM. It is pos-
sible to support a “history entry,” where entering a state
starts the refinement subsystem in whatever state it was last
in.
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Response to review

The paper needs another round of revisions. The
big picture is seems to be that there are already a
lot of models around. To be truly valuable, a
greater effort needs to be made to demonstrate,
through examples, that this model is better than
others.

We have augmented the detail in both key examples of
the paper, the reflex game, in response to reviewer #1’s
comments. However, we do not believe that the above
assessment accurately summarizes the situation. In
fact, this paper presents a systematic way to amalgam-
ate existing models, thus it is presenting a solution to
the problem that “there are a lot of models around.” It
takes as a premise that these models are around
because they are useful.

Only one reviewer remains to be satisfied. Please
address his or her comments very carefully in the
next revision.

We have done that.

Review Number 1.

You have improved the paper considerably - kudos!
However, I’ve recommended to the associate editor
that more concreteness be imparted to the reflex-
game example and/or the cellular phone example
to make the value of the paper significantly go up.

In particular, 

- add more meat to the cellular phone example (a
page more perhaps)

- work out the reflex-game example to some level of
detail.

This example does help tie together many of the
ideas presented to that point - but does not
“deliver” in terms of showing the advantage of the
method in any of the axes (design description, veri-
fication, or synthesis)

So how about if you tell us what could potentially
happen to the reflex-game example after having
described it. Show how one might generate more
concrete VHDL descriptions for portions of it.
Show how one might generate C or reactive-soft-
ware code for it. Actually carry the exercise down
to nuts and bolts in your lab, but report only the
high-level gist of your experiments. 

Seeing concretely how two boxes described at two
different - but compatible in your framework - rep-
resentations turn into actual C-code/HDL-code/

circuits and how they interface concretely would be
a detail worth learning.

Taking a page or two more to detail the reflex-
game example thus will be a valuable addition to
your work. (If you have done all this already, sim-
ply report it!)

We have elaborated on the cell phone example, and
provided much more detail on the reflex game exam-
ple. We are more convinced than ever that the reflex
game is an ideal example for our purposes. We have
included an Esterel description of the game, which is
concise and elegant, but, we believe, considerably
harder to understand than the *charts model. We have
also constructed implementations of the game in both
VHDL and C, and we show a single module of each of
these (see figure 20). These code segments hopefully
also make concrete what the path to synthesis is.
Although we do not (yet) have automated synthesis
from the *charts model, it does not take much imagina-
tion to see how these code segments could be generated
automatically.

We agree, by the way, that it is a major improvement to
the paper to include these details.

One minor request: if it is possible to receive the
next revision of the paper in single-space and pos-
sibly also in two-column, it will be far easier for
me to read it.

OK.

Specific comments:

Page 4: first developed...: I'd prefer replacing with
“developed” - CS ideas tend to be discovered and
re-discovered...

We are not convinced, but have yielded anyway. We do
believe the credit for this innovation goes to Berry.
Even if the germ of the idea had already appeared
(which we doubt), the Esterel language was certainly
the first full-scale embodiment of the idea. Nonethe-
less, we have changed the wording as you request.

Page 9: Add I.e. before |\Sigma|

Done.

Page 22: I'm sorry but the descriptions of type A
and B are still not clear. Can you provide (or refer
to, if already there) an example?

We have added an example:

“Consider again the example of figure 10, focusing on
levels (a) and (b). Suppose that the schedule for the
top-level SDF system is {DCCCE}. The first two fir-
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ings of actor C are type A firings, where only the sub-
system refining the current state (either \alpha\ or \beta)
is fired. The third firing of C is a type B firing, where
the refinement system is fired, a transition is taken
according to the values of the inputs a and b, and the
corresponding action is performed.”

Page 35: So far as I know, Manna [33] is not a pio-
neering work in the sense of discovery - but surely
in terms of pedagogy. So retain Scott, and cite Stra-
chey if you need a second (more deserving) name
(thus representing either side of the Atlantic as is
regarded as polite!)

This is correct. We have modified the reference accord-
ingly.

Edward gives technique for choosing [19]. Very
awkward.

Fixed.

Page 39: Synthesis of hardware or software from
FSMs is easy.

Very casual (and meaningless) sentence. Replace
“easy” by something more precise.

We now say: “Synthesis of hardware or software from
FSMs is standard practice, and has been supported for
many years in widely used CAD packages.” Figure 20
also shows what synthesized hardware and software
might look like, in the form of synthesizable VHDL
and C code.

Page 40: last line. reporting the time between
ready and stop.

Must it not be go and stop? See clause 3 on page
40

Correct. Fixed.

Page 43: Cellular phone section peters out. Was
this more fully

worked out elsewhere? What a great example it
would be!

We agree, and have developed it further. However, it
still remains speculative. A full-scale development
would require tens or hundreds of person years. Cell
phones are surprisingly sophisticated devices.

Page 43: after last line. So what’s recommended?
(Don’t end in a negative or “hopeless” note.)

We have modified this paragraph to read:

“An example is described that uses all four models of
computation. The resulting combination is easily

understood by anyone familiar with all four models of
computation, but obviously would be obtuse to some-
one familiar with only a subset. This particular exam-
ple was chosen precisely to illustrate our claim for
heterogeneity and for multiples models of computation.
However, most designs of similar complexity would
only require a subset of the four models of computa-
tion.”


