

Code Generation for Heterogeneous Multiprocessors

José Luis Pino

Edward A. Lee

AT&T Bell Labs Fellowship, ARPA(RASSP) F33615-93-C-1317 and the Ptolemy Project

Today, programming of signal processing algorithms on embedded
digital signal processors is done in assembly language and
scheduled by hand. If the processor configuration changes, the
code must be redesigned. If the processors themselves change,
the code must be completely rewritten. In this project, we are
interested in rapid prototyping of signal processing applications.
We have developed a code generation framework for
heterogeneous multiprocessor DSP systems from a high-level
block diagram specification [1]. Code generation requires
partitioning and scheduling of the algorithm onto the
multiprocessor architecture. Subsequently, the algorithm code is
generated in the appropriate languages.

The algorithm is specified using multiple independent dataflow
graphs as described in [2]. The independent graphs communicate over nondeterminate communication links.
These links do not introduce data dependencies among the independent graphs. We have found that this
communication mechanism is ideal for specifying run-time controls and displays for real-time signal processing
applications.

An illustration of the use of such multiple
dataflow graphs is shown in figure 1. Here we
have the top-level specification of an FM
music synthesis algorithm. This application
has been targeted to a heterogeneous
platform consisting of a Unix workstation and
a Motorola 56001 DSP board. In this
example, there are five independent dataflow
graphs communicating over five
nondeterminate links. The C and Tcl/Tk code
is generated for the Unix workstation;
Motorola 56001 assembly code is generated
for the DSP board. The user interface, shown
in figure 2, is generated from the user
specification.

[1] J. L. Pino, S. Ha, E. A. Lee, and J. T.
Buck, “Software Synthesis for DSP Using
Ptolemy,” to appear in Journal of VLSI
Signal Processing, special issue on
Synthesis for DSP, vol. 9, no. 1, 1995. (http://ptolemy.eecs.berkeley.edu/papers/jvsp_codegen)

[2] J. L. Pino, T. M. Parks and E. A. Lee, “Mapping Multiple Independent Synchronous Dataflow Graphs onto
Heterogeneous Multiprocessors,” Proceedings of the IEEE Asilomar Conference on Signals, Systems, and
Computers, Pacific Grove, CA, November 1994.
(http://ptolemy.eecs.berkeley.edu/papers/multiIndepGraph)

Figure 1. Top-level FM synthesis
specification. The keyboard, DSP, and FFT
blocks each contain an internal dataflow
graph which is not shown.

Figure 2. User interface generated for the FM synthesis
application.

http://ptolemy.eecs.berkeley.edu/papers/jvsp_codegen
http://ptolemy.eecs.berkeley.edu/papers/multiIndepGraph

Hierarchical Static Scheduling of Dataflow Graphs onto
Multiple Processors

José Luis Pino

Edward A. Lee

AT&T Bell Labs Fellowship, ARPA(RASSP) F33615-93-C-1317 and the Ptolemy Project

The goal of this project is to reduce the complexity of scheduling synchronous dataflow (SDF) [1] graphs onto
multiple processors. SDF semantics have proven to be useful in describing multirate digital signal processing
algorithms. Furthermore, compile-time scheduling is possible from SDF block diagram descriptions. Many
synchronous dataflow schedulers are available for both uniprocessor and multiprocessor architectures. Those
for uniprocessor systems optimize for costs such as code and buffer memory usage while multiprocessor
schedulers optimize the makespan of the application.

We are implementing a scheduling
framework that can make use of
heterogeneous schedulers. The
core of this framework is a
clustering technique that reduces
the number of actors before
expanding the SDF graph into an
directed acyclic graph [2]. The
internals of the clusters are then
scheduled with uniprocessor SDF
schedulers which can optimize for
memory usage. The clustering is
done in such a manner as to leave
ample parallelism exposed for the
multiprocessor scheduler.

This framework has been tested on
a number of practical applications
detailed in [2] and [3]. One of the applications, a 4-QAM modem, is shown in figure 1. For this modem, the use
of our framework realized a 90x speedup in scheduling time with an 60x reduction of memory usage.

[1] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceedings of the IEEE, vol. 75, no. 9, 1987,
p. 1235-1245.

[2] J. L. Pino, S.S. Bhattacharyya and E. A. Lee, A Hierarchical Multiprocessor Scheduling Framework for
Synchronous Dataflow Graphs, UCB/ERL M95/36, May 30, 1995.
(http://ptolemy.eecs.berkeley.edu/papers/erl-95-36)

[3] J. L. Pino, S. S. Bhattacharyya and E. A. Lee, “A Hierarchical Multiprocessor Scheduling System for DSP
Applications,” Proc. IEEE Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA,
Oct. 29 - Nov. 1, 1995. (http://ptolemy.eecs.berkeley.edu/papers/hierStaticSched-asilomar-95)

Parallel Scheduler

Uniprocessor Scheduler (1) Uniprocessor Scheduler (2)

Uniprocessor Scheduler (3)

Figure 1. A 4-QAM Modem using 4 schedulers. There are 3 uniprocessor
schedulers hierarchically embedded inside of a parallel schedule.

http://ptolemy.eecs.berkeley.edu/papers/erl-95-36
http://ptolemy.eecs.berkeley.edu/papers/hierStaticSched-asilomar-95

Interface Synthesis in Heterogeneous System-Level DSP
Design Tools

José Luis Pino

Edward A. Lee

AT&T Bell Labs Fellowship, ARPA(RASSP) F33615-93-C-1317 and the Ptolemy Project

We have developed a framework for automatic interface construction between prototyping and simulation
engines in system-level DSP design tools. The techniques described below have been tested using the SDF
(synchronous dataflow) model of computation in Ptolemy and can be extended to other models of computation.
The framework provides incremental compilation, interfaces to foreign simulators, and interfaces between code
generation domains.

Using incremental compilation, a compute-
intensive subsystem in, for example, the SDF
simulation domain can be retargeted to CGC (code
generation in C) and compiled to become a single
monolithic actor in SDF (figure 1). A similar
capability is used to encapsulate a CG56
subsystem (which runs on the Motorola
DSP56000) into an SDF actor. This new actor can
then be added to the designer’s actor library.

The interface mechanism also allows for easy
incorporation of foreign simulators. For example, a
VHDL subsystem can be analyzed to synthesize a
fast customized C interface to a commercial VHDL
simulator. The VHDL subsystem in turn can be
interfaced with another system that executes on a
DSP card.

Finally, the framework allows the combination of more than one code generation domain. For example, CGC
can be mixed with CG56 to produce programs that execute concurrently on a host workstation and a DSP card.

A fundamental problem is that dataflow systems cannot always be incrementally compiled. The problem lies in
the fact that dataflow systems lack the composition property. Thus subsystems of dataflow actors in an
application specification do not necessarily have the same semantics as an individual actor.

[1] J. L. Pino, M. C. Williamson, and E. A. Lee, “Interface Synthesis in Heterogeneous System-Level DSP
Design Tools,” submitted to Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Atlanta,
GA, May 1996.

FIR FIR FIR FIR

2:1 4:3 5:7 4:7

Figure 1. CD (44.1 kHz) to DAT (48 kHz) sample rate
conversion. The polyphase filter bank is incrementally
compiled from CGC into a monolithic simulation SDF actor.
The input (CD) and output (DAT) signal plots are shown.

DAT - 48 kHz

0 50 100 150

CD - 44.1 kHz

0 50 100 150

Polyphase filter bank

Top level application specification

	Code Generation for Heterogeneous Multiprocessors
	Hierarchical Static Scheduling of Dataflow Graphs ...
	Interface Synthesis in Heterogeneous System-Level ...

