
The Almagest 14-1

Ptolemy Last updated: 10/17/97

Chapter 14. CGC Domain

Authors: Joseph T. Buck
Soonhoi Ha
Edward A. Lee
Yu Kee Lim
Thomas M. Parks
José Luis Pino

Other Contributors: Sunil Bhave
Kennard White

14.1 Introduction
The CGC domain generates code for theC programming language. “Code Generation”

on page 13-1 describes the features common to all code generation domains. The basic princi-
ples of writing code generation stars are explained in “Writing Code Generation Stars” on
page 13-2.You will find explanations for codeblocks, macros, and attributes there. This chap-
ter explains features specific to the CGC domain. Refer to the CGC domain chapter in the
user’s manual for an introduction to this domain.

14.2 Code Generation Methods
The addCode method is context sensitive so that it will ‘do the right thing’ when

invoked from within theinitCode , go, andwrapup methods ofCGCStar. Refer to “Writing
Code Generation Stars” on page 13-2 for documentation onaddCode , including context sen-
sitive actions and conditional code generation. There are several additional code-generation
methods defined in the CGC domain. TheaddInclude method is used to generate
#include file directives. TheaddDeclaration method is used to declare local variables
within the main function. TheaddGlobal method is used to declare global variables outside
the main function. As withaddCode , these methods returnTRUE if code was generated for
the appropriate stream andFALSE otherwise. These methods are member functions of the
CGCStar class.

int addInclude (const char* file)
Generate the directive#include file in theinclude stream.
The stringfile must include quotation marks (" file ") or angle
brackets (<file >) around the name of the file to be included.
Only one#include file directive will be generated for the
file, even if addInclude is invoked multiple times with the
same argument. ReturnTRUE if a new directive was generated.

int addDeclaration (const char* text , const char* name = NULL)
Add text to themainDecls stream. Usename as the identify-
ing key for the code fragment if it is provided, otherwise use

14-2 CGC Domain

U. C. Berkeley Department of EECS

text itself as the key. Code will be added to the stream only
the first time that a particular key is used.

int addGlobal (const char* text , const char* name = NULL)
Add text to theglobalDecls stream. Usename as the identi-
fying key for the code fragment if it is provided, otherwise use
text itself as the key. Code will be added to the stream only
the first time that a particular key is used.

int addCompileOption (const char* text)
Add options to be used when compiling a C program. The
options are collected in thecompileOptionsStream stream.

int addLinkOption (const char* text)
Add options to be used when linking a C program. The options
are collected in thelinkOptionsStream stream.

The following streams, which are used by the code generation methods just described,
are defined as members of theCGCTarget class in addition to the streams defined by the
CGTarget class.

CodeStream include
Include directives are added to this stream by theaddInclude
method ofCGCStar.

CodeStream mainDecls
Local declarations for variables are added to this stream by the
addDeclaration method ofCGCStar.

CodeStream globalDecls
Global declarations for variables and functions are added to this
stream by theaddGlobal method ofCGCStar.

CodeStream mainInit
Initialization code is added to this stream when theaddCode
method is invoked from within theinitCode method.

CodeStream mainClose
Code generated when theaddCode method is invoked from
within thewrapup method of stars is placed in this stream.

CodeStream compileOptionsStream
Options to be passed to the C compiler which have been added
using theCGCStar::addCompileOption method.

CodeStream linkOptionsStream
Options to be passed to the linker which have been added using
theCGCStar::addLinkOption method.

14.3 Buffer Embedding
Although many of the methods related to buffer embedding are actually implemented

in the CG domain, only the CGC domain makes use of them at this time. The following func-

The Almagest 14-3

Ptolemy Last updated: 10/17/97

tion is defined as a method of theCGPortHole class.

void embed (CGPortHole port , int location = -1)
Embed the buffer ofport in the buffer of this porthole with
offset location . The defaultlocation of -1 indicates that
the offset is not yet determined.

For example, the following statements appear in the setup method of theSwitch
block. This causes the buffers oftrueOutput andfalseOutput to be embedded within the
buffer of input.

input.embed(trueOutput,0);
input.embed(falseOutput,0);

14.4 Command-line Settable States
In the Ptolemy releases before Ptolemy0.6 the C programs generated by Ptolemy in the

CGC domain did not take any command-line arguments. The state values of the various stars
were set during compilation and thus hard-coded into the program. In order to change a state
variable, the code had to be recompiled again (i.e. the universe had to be re-run within
Ptolemy). This was time consuming, and it also placed unnecessary load on the machine. In
Ptolemy0.6 and later, the CGC domain can generate C code that allow users to set the state
values from the command-line, which allows runs with different parameters to be executed
and compared quickly and easily.

Implementation

14.4.1 C code generated to support command line arguments

A sample of the additional code generated to support command-line arguments is
shown below:

.

.
struct {
 double FOO;
 double BAR;
} arg_store = {1.0, 0.01,};

void set_arg_val(char *arg[]) {
 int i;
 for (i = 1; arg[i]; i++) {
 if ((!strcmp(arg[i], "-help")) \

||(!strcmp(arg[i], "-HELP")) \
||(!strcmp(arg[i], "-h"))) {
printf("Settable states are :\n

 FOO\tdefault : 1.0\n
 BAR\tdefault : 0.01\n");

exit(0);
 }
 if (!strcmp(arg[i], "-FOO")) {

if (arg[i + 1])
 arg_store.FOO = atof(arg[i + 1]);

14-4 CGC Domain

U. C. Berkeley Department of EECS

 continue;
 }
 if (!strcmp(arg[i], "-BAR")) {

if (arg[i + 1])
 arg_store.BAR = atof(arg[i + 1]);
 continue;

 }
 }

}

/* main function */
main(int argc, char *argv[]) {
.
.
 double value_11;
 double value_12;
.
. // End of Declaration
 set_arg_val(argv);
. // Begin of Initialization
.
 value_12 = arg_store.BAR;
 value_11 = arg_store.FOO;
. // Code
.
}

The default values (set by the "edit-parameters" command) are stored in the struct
arg_store . The functionset_arg_val(argv) scans the list of command-line arguments
for FOO andBAR and sets the corresponding member inarg_store . It also builds up the help
message (consist of the settable state names and their default values) to be printed when the
program receives a '-h ', '-help ' or '-HELP' option. The state values are initialized to the cor-
respondingarg_store members during the variable initialization stage. By doing this, a
state will get its default value if it is not set on the command-line.

14.4.2 Changes in pigiRpc to support command line arguments

The pragma mechanism in theTarget base class is used to specify the state that is to
be made settable via command-line arguments as well as to store the name to be used on the
command-line. InCGCtarget , these are stored as a character string in aTextTable* map-
pings (a pointer to aHashTable in which the data value and index are character strings) via
the overloadedpragma() member functions.

A function, isCmdArg(const State* state) , is used to check whether 'state '
is to be set by a command-line argument. It callsCGCTarget::pragma() and scans through
theStringList returned for the state's name. If found, the mapped name is return. Other-
wise a null string is return.

Four new protectedCodeStream are added toCGCTarget to store the additional
codes:

cmdargStruct stores the struct members.

The Almagest 14-5

Ptolemy Last updated: 10/17/97

cmdargStruct stores the default values.

setargFunc stores the code segment inset_arg_val() .

setargFuncHelp stores the built-up help message.

Four new public member functions and four private ones are also added toCGCStar
to generate the codes:

cmdargStates() callscmdargState() to generate the members of
struct arg_store using the mapped name returned by

isCmdArg() .

cmdargStatesInits()
calls cmdargStatesInit() to generate the default values of
the settable states.

setargStates() calls setargState() to generate the code segment to match
the mapped name to the command-line options.

setargStatesHelps()
callssetargStatesHelp() to build up the help message.

These are called in theCGCTarget::declareStar(CGCStar* star) function
after the global and main declarations have been generated.CGCStar::initCod-
eState(const State* state) is modified to generate the required initialization code if
state is to be settable from the command-line.

In order for a$val state to be settable from the command-line, it has to be changed to
a reference state . TheexpandVal() member function is overloaded inCGCStar to
check if the "name" state is to be made settable from the command-line. If so, it is added to
the list of referenced state so that it will be declared and initialized.

14.4.3 Limitations of command line arguments.

Currently, this implementation works only for scalar states with float or integer values.
Extension to other types of state should be straight forward by simply adding the appropriate
struct member declaration code inCGCStar::cmdargState(const State* state) .
The cmdargStatesInit() , setargState() , setargStatesHelp() and initCode-
String() member functions need to be modified accordingly to generate codes for the ini-
tialization, setting function, help message and assignment respectively of the new state
variable.

Also, there is no provision to check for duplicate command-line names. If there are
duplicates, Ptolemy will simply generate multiplestruct members with the same name, and
error will result in the generated code. To get around this, a new Tk interface could be written
to specify and set the settable states and checking can be done at that level. Alternatively, it
might be a better idea to use theput() method inCodeStream to add thestruct member
with its unique handle to the appropriateCodeStream . That way, there will not be duplicate
struct members and state-variables could still reference the same member, so that two or
more states could be set to the same value from a single argument on the command-line.

Another limitation is that the command-line capability only works for states of blocks
at the top level. It will not work for states ofGalaxies andUniverses , and states that refer-

14-6 CGC Domain

U. C. Berkeley Department of EECS

enced other settable states. This could probably be solved by modifying the pragma mecha-
nism to ensure thatpragma s at the top level propagate all the way down to the contained
blocks. By doing this, states will inheritpragma s from their parentgalaxies so that these
can be picked up by theisCmdArg() function, and the appropriate codes can be generated.

Certain states will affect the overall scheduling of the whole system, e.g. thefactor of
upsampling and downsampling stars, and changing these would mean that new code
needs to be generated since the scheduling is hard-coded into the generated code. Thus these
should not be allowed to take values from the command-line. A new attribute can be intro-
duced to identify those states that should not be settable from the command-line. Warnings
can then be generated if users attempt to specify these for command-line setting.

14.5 CGC Compile-time Speed
There are several areas that can affect the amount of time that it takes a CGC universe

to compile, we discuss them below.

 • Large sample rate changes and large delays can result in Ptolemy taking a very long
time to generate C code. A symptom of this sort of problem is that thepigiRpc pro-
cess will consume all the available swap and eventually crash. If you feel you need
really large delays, James Lundblad suggests writing your own code in your stars that
provides the same functionality as delays, but usesmalloc() in the initCode sec-
tion instead of the array that is created by the CGC Delay icon.

 • C compiler optimizers do not work well with functions that have thousands of lines.
The main() function of a CGC simulation may be too large for the peephole opti-
mizer, causing the optimizer to take a long time to compile the file. Undergcc , you
can pass the-O0 option to turn off the optimizer.

14.6 BDF Stars
Because the classCGCPortHole is not derived fromBDFPortHole , the setBDF-

Params method described in “BDF Domain” on page 8-1 is not available for code generation
stars. Use thesetRelation method ofDynDFPortHole instead.

void setRelation (DFRelation relation , DynDFPortHole* assoc)
Specify therelation of this port with the associated portholeassoc .
There are five possible values for relation:
DF_NONE no relationship.
DF_TRUE produces/consumes data only whenassoc has aTRUE

particle.
DF_FALSE produces/consumes data only whenassoc has aFALSE

particle.
DF_SAME signal is logically the same asassoc .
DF_COMPLEMENT signal is the logical complement of

assoc .

For example, the following statements describe the relationships among the portholes
of theSwitch block.

trueOutput.setRelation(DF TRUE, control);

The Almagest 14-7

Ptolemy Last updated: 10/17/97

falseOutput.setRelation(DF FALSE, control);

14.7 Tcl/Tk Stars
TheCGCTclTkTarget class defines thetkSetup stream for Tcl/Tk stars.There is no

special code generation function for this stream, so its name must be used withaddCode . This
is usually done from within theinitCode method.

addCode(codeblock, "tkSetup");

The following functions, which are defined in the filetkMain.c , can be used within
codeblocks of Tcl/Tk stars in the CGC domain.

void errorReport (char* message)
This functions creates a pop-up window containingmessage .

void makeEntry (char* window , char* name, char* desc , char*
initValue , Tcl CmdProc* callback)
This function creates an entry box in awindow . Thename of the entry
box must be unique (e.g. derived from the star name). The description
of the entry box is desc. The initial value in the entry box is
initValue .

A callback function is called whenever the user enters aRET in the
box. The argument to thecallback function will be the value that the
user has put in the entry box. The return value of thecallback func-
tion should beTCL_OK.

void makeButton (char* window, char * name, char* desc , Tcl Cmd-
Proc* callback)
This function creates a push button in awindow . Thename of the
push button must be unique (e.g. derived from the star name). The
description of the push button isdesc .

A callback function is called whenever the user pushes the button.
The return value of thecallback function should beTCL_OK.

void makeScale (char* window , char* name, char* desc , int posi-
tion , Tcl CmdProc* callback)
This function creates a scale (with slider) in awindow . The name of the
scale must be unique (e.g., derived from the star name). The description
of the push button is desc. The initial position of the slider must be
between0 and100 .

A callback function is called whenever the user moves the slider in
the scale. The argument to thecallback function will be the current
position of the slider, which can range from0 to 100 . The return value
of thecallback function should beTCL_OK.

void displaySliderValue (char* window , char* name, char*
value)

14-8 CGC Domain

U. C. Berkeley Department of EECS

This function displays a value associated with a scale’s slider. The
scale is identified by its name and thewindow it is in. This function
must be called by the user of the slider. Only the first 6 characters of the
value will be used.

14.8 Tycho Target
The CGC TychoTarget is an experimental target that provides a way to create CGC

control panels that use the functionality in Tycho. A universe that uses TychoTarget must pro-
vide a script that creates the control panel that the user sees. The TychoTarget is documented
in $PTOLEMY/demo/whats_new/whats_new0.7/tychotarget.html .

