
Chapter 6. Using the Cluster Class
for Scheduling

Authors: José Luis Pino

6.1 Introduction
The Ptolemy kernel has three main facilities to aid in the implementation of schedul-

ing algorithms: generic clustering mechanisms, graph iterators, and classical graph algo-
rithms. In this chapter, we will cover the use of these facilities and some of the important
methods currently available in Ptolemy to implement new scheduling algorithms.

6.2 Basic Classes
User-specifications done in Ptolemy are represented internally as a collection of anno-

tated directed graphs that may contain cycles. Nodes in these directed graphs may themselves
contain other directed graphs. Anatomic node is either aStar, which defines code to imple-
ment the node operation, or aWormHole, which has an internal graph that is hidden from the
outside. AWormHole is used when there is a change in the semantics between the internal and
external graphs, such as a change in theDomain or Scheduler . For purposes of the outside
graph, aWormHole is equivalent to aStar . A non-atomic node, orGalaxy, is a node which
contains an internal graph which is visible from the outside. This internal graph is stored in a
Galaxy ’s BlockList . Finally, aScheduler is a class that determines the firing order of
atomic nodes in a graph.

WormHoles , Galaxies andStars are all derived from the classBlock . A Block
containsPortLists , which store a list ofPortHoles that provide locations to connect input
or output arcs to theBlock . Blocks also containStateLists, which may either be user-
specified parameters or run-time states that are used when a graph is executed.

A user specification is compiled into an internal representation known as aninter-
preted universe (InterpUniverse). Currently, the user specifications are in the form of ptcl
or oct facets. In the future there will probably be also a Tycho specification format. An
InterpUniverse captures the user hierarchy in the form of a directed graph ofWormHoles ,
Galaxies andStars . TheInterpUniverse is derived fromGalaxy and contains the top-
level user-specification in itsBlockList . Every other level of the user specified hierarchy is
represented by either aWormhole or Galaxy embedded inside of itsparentGalaxy .

All Block s have aparent Block pointer. The parent of aBlock is theGalaxy or
WormHole in which theBlock is embedded. TheInterpUniverse , which is the top-level
Galaxy user specification, has itsparent pointer set toNULL.

6.3 Galaxies and their relationship to Adjacency Lists
To define graph algorithms, adjacency-lists and adjacency-matrices are commonly

used to represent a directed graph [Cor90]. An adjacency-matrix is a square matrix where

6-2 Using the Cluster Class for Scheduling

U. C. Berkeley Department of EECS

there is one column,i, and one row,j, for each node,i, the graph. An element(i, j) in this
matrix is either 1 if there is an arc fromi to j, or 0 if no arc exists. The second representation is
an adjacency-list in which each node has a list containing the nodes to which it is connected.
Thus an adjacency-list is better suited for sparse graphs, whereas adjacency-matrices are well
suited for dense graphs.

Blocks with theirPortLists can be viewed as equivalent to the adjacency-list data
structure. APortHole , in most domains, is either an input or an output. It contains afar-
SidePort pointer to thePortHole it is connected to (NULL if it is not connected). To
traverse the adjacency-list, a scheduler writer must make use of two iterators in Ptolemy (See
“Iterators” on page 3-10):GalStarIter andSuccessorIter . By using aGalStarIter a
scheduler writer can iterate over the nodes in the user-specified graph. Then on each of these
nodes we can find the adjacent nodes using theSuccessorIter . Although it is not necessary
for adjacency-list equivalence, thePredecessorIter is provided to iterate over the nodes
that are predecessors to a given node.

There is slight overhead in accessing the graph using bothGalStarIter andSuc-
cessorIter over a straight forward implementation of an adjacency-list class. This over-
head has a constant cost which is not dependent on the size of the graph. Thus we feel that the
robustness achieved by not having two parallel representations of the same graph far outweigh
this small overhead.

6.4 Clustering
Clustering is often used in implementing scheduling heuristics. We have provided a

genericCluster class in the Ptolemy kernel which scheduler writers can use directly or, if
need be, derive specialized clustering classes. The older schedulers such as the BDF scheduler
and the SDF loop schedulers have not been upgraded to use the newCluster classes. Thus,
the BDF and SDF schedulers should not be used as examples of how to do clustering in
Ptolemy, but rather the hierarchical SDF parallel scheduler ($PTOLEMY/src/domains/cg/
hierScheduler) can be used as a model. TheHierScheduler in the current version of
Ptolemy is a prototype of the hierarchical parallel scheduler detailed in [Pin95]. In addition,
we have a specialized loop scheduler [Mur94] which also uses the new cluster facilities.

The classCluster is derived from theDynamicGalaxy and as such manages its
own memory. TheCluster classes useClusterPort s which are derived fromGalPort .
The main difference between theClusterPort s andGalPort s is thatClusterPort s
maintain afarSidePort pointer. We need this change inClusterPort in order to easily
iterate over theCluster s at any level of the clustering hierarchy. AClusterPort::far-
SidePort pointer will only beNULL if the ClusterPort is aliased to aStar PortHole
connected at higher level of the clustering hierarchy.

6.4.1 Initialization — Flattening the User Specified Graph

Clustering is done directly on the internal representation of the user-specified graph.
Before we can begin to cluster the internal representation, the irrelevant user hierarchy must
be flattened. The flattening is accomplished by creating a temporaryCluster instance and
then invoking theCluster::initializeForClustering method on theGalaxy whose
internals we want to cluster. This top-levelGalaxy will remain intact, but all internalGalax-

The Almagest 6-3

Ptolemy Last updated: 10/17/97

ies which pass theCluster::flattenGalaxy test will be flattened and deleted. Thus any
Scheduler and Target pointers to the top-levelGalaxy will not need to be updated
because they do not change. The necessary information from the user-specified hierarchy is
preserved automatically with the aid of theScope class detailed in section 6.5.

After the internals of the top-levelGalaxy have been flattened,Cluster s are con-
structed around each individual atomicBlock . In that way, the scheduler writer can treat all
the Block s at each level (except the innermost level) as aCluster . This property is main-
tained through any sequence of merge/absorb calls. An exampleinitializeForCluster-
ing invocation is shown in figure 6-1, frames 1 and 2.

A facility for restoring the internal Ptolemy representation back to the original user-
specified hierarchy is detailed in section 6.6.

6.4.2 Absorb and Merge

The basic clustering mechanisms are implemented with the virtual methods: Clus-
ter::merge andCluster::absorb . Both of these methods can take up to two arguments.
The first argument is theCluster to absorb/merge and the second argument(optional) speci-
fies whether or not to remove the absorbed or mergedCluster from the original parentGal-
axy .

TheCluster::merge method takes the contents of theCluster being merged and
moves them into the Cluster pointed to by thethis pointer. A merge operation is communi-
cative. A series of merge steps is shown in figure 6-1 frames 3 and 4.

TheCluster::absorb method takes theCluster being absorbed and moves it into
the Cluster pointed to by thethis pointer. Unlike merge, absorb is not communicative as
shown in figure 6-1 frames 5 and 5’.

The absorbed or mergedCluster is removed from the original parentGalaxy by
default whenCluster::merge or Cluster::absorb is called. We provide three ways to
update the graph after a clustering operation with differing levels of efficiency. These meth-
ods are detailed in the table 6-1. We first list some variable definitions:

 • Let be defined as the number ofCluster s in the parentGalaxy

 • Let be defined as the number ofPortHole s in this Cluster

 • Let be defined as the number ofPortHole s in theCluster to absorb or merge

Deletion/Update Method
Complexity to
update at each
clustering step

Using merge/absorb in their default mode of operation. This is the most
inefficient way to do clustering.

TABLE 6-1: Complexity cost of absorb/merge step.

N

Et

Ec

O N Et Ec×+()

6-4 Using the Cluster Class for Scheduling

U. C. Berkeley Department of EECS

A

B

C

D

3. B.merge(C)

A

B

C

D

4. BC.merge(A)

A

B

C

D

5. D.absorb(ABC)

A

B

C

D A

B

C

D

2. initializeForClustering1. Initial Graph

A

B

C

D

5’. ABC.absorb(D)

FIGURE 6-1: A five step clustering example. By convention, a Cluster in this figure will be
named by the listing of its innermost atomic Block s. In frame 1, the user-specified
graph is shown. Cluster::initializeForClustering is called and the
resultant graph is shown in frame 2 — this step adds a Cluster around all atomic
Block s. Frames 3-5 show a series of merge/absorb operations. The ordering is
important only with absorb operation — as shown by frames 5 and 5’.

The Almagest 6-5

Ptolemy Last updated: 10/17/97

6.4.3 Cluster Iterator Classes

TheCluster iterator classes assume that allBlock s in theGalaxy being iterated on
areCluster s. This property isTRUE assuming that theGalaxy (or one of its parent Galax-
ies) has been properly initialized (section 6.4.1) and merge/absorb have been the only func-
tions that have modified the topology of the graph since the initialization. These iterators
ignore pointers to invalidCluster s which have been left in theGalaxy using merge /
absorb with theremoveFlag set toFALSE (last two cases in table 6-1). The cluster iterators
are listed in table 6-2.

GalTopBlockIter::remove
We can use this method if theCluster to absorb/merge was found using
a GalTopBlockIter (or derived iterator class) on the parentGalaxy .
The scheduler writer needs to do two things:

 • remove the absorbed/merged cluster using from the parentGal-
axy using the iterator’sremove method.

 • delete the removedCluster using theC++ operatordelete .

This is the most efficient way of updating the graph after a clustering
operation — but it is not always possible because we may be traversing
the graph in some other way such as using aSuccessorIter .

cleanupAfterCluster (defined inCluster.{h,cc})
If we cannot use the previous method, we can leave theCluster in the
parentGalaxy list (it will be marked invalid automatically). TheClus-
ter iterator classes automatically skip these invalidCluster s. Periodi-
cally (but not at each clustering step), thecleanupAfterCluster
function should be invoked to remove and delete the invalidCluster s.
This function will cost to execute, but since it is not done
at each clustering step — the result on the overall complexity will be
additive versus being multiplicative. For an example of how this is done,
refer to: $PTOLEMY/src/domains/cg/hierScheduler/Hier-
Scheduler.cc .

Iterator Description

ClusterIter Iterate over all validCluster s in the givenGalaxy .

SuccessorClusterIter Iterate over all successor (adjacent)Cluster s for a
givenCluster .

TABLE 6-2: Cluster Iterators

Deletion/Update Method
Complexity to
update at each
clustering step

TABLE 6-1: Complexity cost of absorb/merge step.

O Et Ec×()

O N Et Ec×+()

O Et Ec×()

6-6 Using the Cluster Class for Scheduling

U. C. Berkeley Department of EECS

6.5 Block state and name scoping hierarchy
Recall, that when we initialize aGalaxy for clustering, we flatten the original user-

specified hierarchy. Before this action, we extract the important information in the hierarchy
using theScope class. In this section we detail this class. The details in this section, however,
are not necessary to understand clustering in Ptolemy.

Block s inherit states from their parent. TheScope class makes it possible for aTar-
get or Scheduler to change theBlock hierarchy by saving the inherited states in the user-
specified hierarchy. The scoping hierarchy was first released in Ptolemy 0.6, and is only cre-
ated when the static methodScope::createScope(Galaxy&) is invoked. Currently, the
only code that uses the scoping hierarchy is theCluster class.

TheScope class manages its memory. Once aScope is created, it will not be deleted
until all Block s within the givenScope are deleted. TheScope class is privately derived
from Galaxy . To turn on scoping a programmer simply calls the static method:

static Scope* Scope::createScope(Galaxy&)

This method constructs a parallel tree corresponding to eachGalaxy and copies the
StateList andname() for each level.

6.6 Resetting an InterpUniverse back to actionList
Ptolemy 0.6 and later includes the ability to reset anInterpUniverse back to the

original user-specification. Resetting is occasionally necessary to undo certain operations
done on a universe by aScheduler or Target . An example is in parallel scheduling, where
the original stars in theInterpUniverse are moved to thesubGalaxies for the child
Targets (see$PTOLEMY/src/domains/cg/parScheduler/ParProcessors.cc). To
signal that a theInterpUniverse needs to be rebuilt upon the next run, the scheduler writer
should invokeTarget::requestReset() .

PredecessorClusterIter Iterate over all predecessorCluster s for a givenClus-
ter .

Iterator Description

TABLE 6-2: Cluster Iterators

The Almagest 6-7

Ptolemy Last updated: 10/17/97

6.7 References

[Cor90] Cormen, Leiserson and Rivest,Introduction to Algorithms, New York: MIT
Press, 1990.

[Mur94] Murthy, Bhattacharyya, and Lee,Combined code and data minimization for
synchronous dataflow programs, Memorandum UCB/ERL M94/93, University
of California at Berkeley, December,1994. (http://ptolemy.eecs.berkeley.edu/
papers/jointCodeDataMinimize)

[Pin95] Pino, Bhattacharyya, and Lee,A Hierarchical Multiprocessor Scheduling
Framework for Synchronous Dataflow GraphsMemorandum UCB/ERL M95/
36, University of California at Berkeley, May, 1995. (http://ptolemy.eecs.ber-
keley.edu/papers/hierStaticSched)

6-8 Using the Cluster Class for Scheduling

U. C. Berkeley Department of EECS

