
The Almagest 13-1

Ptolemy Last updated: 10/17/97

Chapter 13. Code Generation

Authors: Joseph Buck
Soonhoi Ha
Edward A. Lee
Praveen K. Murthy
Thomas M. Parks
José Luis Pino
Kennard White

13.1 Introduction
The CG domain and derivative domains are used to generate code rather than to run

simulations [Pin92]. Only the derivative domains are of practical use for generating code. The
stars in the CG domain can be thought of as “comment generators”; they are useful for testing
and debugging schedulers and for little else. The CG domain is intended as a model and a col-
lection of base classes for derivative domains. This section documents the common features
and general structure of all code generation domains.

The CG domain is currently based on dataflow semantics. Dataflow models of compu-
tation in Ptolemy include synchronous dataflow (SDF), dynamic dataflow (DDF), and bool-
ean dataflow (BDF). Both DDF and BDF are very general models of dataflow in that they are
Turing equivalent. SDF is a subset of both these models. Hence, a code generation target that
uses the BDF scheduler can support BDF and SDF stars but a target that uses SDF schedulers
only supports SDF stars. Most targets in code generation domains use SDF schedulers and
parallel schedulers which makes these targets support only SDF stars. An advantage of SDF is
that compilation can be done statically; this permits very efficient code generation. While we
have implemented targets that allow DDF code generation stars in the system, these targets
are not in the current release. However, there are a couple of targets that use the BDF sched-
uler; refer to the BDF domain documentation, the section on the bdf-cg target in the CG
domain documentation in the user’s manual, and the section on the bdf-cgc target in the CGC
domain documentation for more information on BDF semantics and the types of stars that can
be supported. In this chapter, we assume that stars obey only SDF semantics since code gener-
ation for non-SDF models is still in its early stages.

The design goal of the code generation class hierarchy is to save work and to make the
system more maintainable. Most of the work required to allocate memory for buffers, con-
stants, tables, and to generate symbols that are required in code is completely processor-inde-
pendent; hence these facilities are provided in the generic classes found in the$PTOLEMY/
src/domains/cg/kernel directory.

A key feature of code generation domains is the notion of a target architecture. Every
application must have a user-specified target architecture, selected from a set of targets sup-
ported by the user-selected domain. Every target architecture is derived from the base class
Target , and controls such operations as scheduling, compiling, assembling, and download-
ing code. Since it controls scheduling, multiprocessor architectures can be supported with

13-2 Code Generation

U. C. Berkeley Department of EECS

automated task partitioning and synchronization.

In the following sections, we will introduce the methods and data structures needed to
write new code generation stars and targets. However, we will not document what is needed to
write a new code generation domain; that discussion can be found in chapter 17. We will first
introduce what is needed to write a new code generation star, introducing the concepts ofcode
blocks, code streams and code block macros. Next we will describe the various methods
which will generally use theaddCode method to piece together the code blocks into the code
streams. We will then go into what is required to write single-processor and multiple-proces-
sor targets. Finally we will document the various schedulers available in the code generation
domains.

13.2 Writing Code Generation Stars
Code generation stars are very similar to the C++ simulation stars. The main differ-

ence is that the initialization (setup()), run time (go()), and termination (wrapup()) meth-
ods generate code to be compiled and executed later. Additionally, code generation stars have
two more methods calledinitCode() andexecTime() .

Thesetup() method is called before the schedule is generated and before any mem-
ory is allocated. In this method, we usually initialize local variables or states. Note that the
setup method of a star may be called multiple times. This means that the user should be care-
ful so that the behavior of the star does not change even though setup method is called multi-
ple times. TheinitCode() method of a star is called after the static schedule has been
generated and before the schedule is fired. This method is used to generate the code outside of
the main loop such as initialization code and procedure declaration code. To generate start-up
code, use theinitCode method, NOT the setup method, since setup is called before schedul-
ing and memory allocation. The main use of the setup method, as in SDF, is to tell the sched-
uler if more than one sample is to be accessed from a porthole with thesetSDFParams call.

The go() function is used to generate the main loop code for the star. Finally, the
wrapup() function is used to generate the code after the main loop.

TheexecTime() method returns an integer specifying the time needed to execute the
main loop code of a code generation star in processor cycles or instruction steps. These num-
bers are used by the parallel schedulers. In the assembly code generation domains, the integer
returned is the main loop code execution time in DSP instruction cycles. The better theexec-
Time() estimates are for each star, the more efficient the parallel schedule becomes.

If a star is invoked more than once during an iteration period, the precedence relation
between stars should be known to the parallel scheduler. If there is no precedence relation
between invocations, the parallel scheduler will try to parallelize them. By default, there is a
precedence relation between invocations for any star (this is equivalent to having a self-loop).
To assert that there is no such self-loop for a star, we have to call thenoInternalState()
method in the constructor:

constructor {
noInternalState();

}

It is strongly recommended that the star designer determine whether the star is parallelizable
or not, and callnoInternalState() if it is.

The Almagest 13-3

Ptolemy Last updated: 10/17/97

TheCGStar class is the base class for all code generation stars, such as high level lan-
guage code generation stars and assembly language code generation stars. In this section, we
will explain the common features that theCGStar class provides for all derivative code gen-
eration stars.

As a simple example to see how code generation stars are written, let’s write an adder
star for the C code generation domain. Thedefstar is almost the same as for a simulation
star:

defstar {
name {Add}
domain {CGC}
desc { Output the sum of the inputs, as a floating

value.}
author { J. Pino }
input {

name {input1}
type {float}

}
input {

name {input2}
type {float}

}
output {

name {output}
type {float}

}
...

13.2.1 Codeblocks

Next we have to define the C code which will be used to generate the run-time code.
For this we use a codeblock. A codeblock is a pseudo-language specification of a code seg-
ment. By pseudo-language we mean that the block of code is written in the target language
with interspersed macros. Macros will be explained in the following section.

Codeblocks are implemented as protected static class members (e.g. there is one
instance of a codeblock for the entire class). Since they are protected, codeblocks from one
star class can be used from a derived star. Thecodeblock directive defines a block of code
with an associated identifying name (“addCB” in this case).

codeblock (addCB) {
/* output = input1 + input2 */
$ref(output) = $ref(input1) + $ref(input2);
}

Special care should be given to codeblock specification. Within each line, spaces, tabs, and
new line characters are important because they are preserved. For this reason, the brackets
“ { } ” should not be on the same lines with the code. HadaddCB been defined as follows:

codeblock (addCB) { /* output = input1 + input2 */
$ref(output) = $ref(input1) + $ref(input2); }

the line

13-4 Code Generation

U. C. Berkeley Department of EECS

ref(output) = $ref(input1) + $ref(input2);

would be lost! This is because anything preceding the closing “} ” on the same line is dis-
carded by the preprocessor (ptlang). Secondly, the spaces and tabs between the opening “{ ”
and the first non-space character will be ignored.

The first definition of theaddCB codeblock is translated byptlang into a definition
of a static public member in the.h file:

class CGCAdd : public CGCStar
{
...
static CodeBlock addCB;
...
}

An associated constructor call will be generated in the .cc file:

CodeBlock CGCAdd :: addCB (
" /* output = input1 + input2 */\n"
" $ref(output) = $ref(input1) + $ref(input2);\n"
);

The argument is a single string, divided into lines for convenience. The following will com-
plete our definition of the add star:

go {
addCode(addCB);

}

Notice that the code is added in the go method, thus implying that the code is generated in the
main loop.

The

addCode(code, stream name , <unique name>)

method of a CG star provides an interface to all the code streams (stream name and unique-
name arguments are optional). This method defaults to adding code into themyCode stream
(codestreams are explained later on). If a stream name is specified,addCode looks up the
stream using thegetStream(stream-name) method and then adds the code into that
stream. Furthermore, if a unique name is provided for the code, the code will only be added if
no other code has previously been added with the given unique name. The methodaddCode
will return TRUE if the code-string has been added to the stream and otherwise will return
FALSE.

The star just defined is a very simple star. Typical code generation stars will define
many codeblocks. Conditional code generation is easily accomplished, as is done in the fol-
lowing example:

go {
if (parameter == YES)

addCode(yesblock);
else

addCode(noblock);

The Almagest 13-5

Ptolemy Last updated: 10/17/97

}

So far, we have used theaddCode() method to generate the code inside the main loop
body. In the assembly language domains,addCode can be called in theinitCode and
wrapup methods, to place code before or after the main loop respectively. In all of the code
generation domains, we can use theaddProcedure() method to generate declarations out-
side of the main body. Refer to “Code streams” on page 13-16 for documentation on the
addCode andaddProcedure methods.

The next section describes the extended codeblock support. The previous discussion of
simple codeblocks is still correct and supported byptlang ; the extensions below are upward
compatible. These extensions are experimental. They may change in future version of
Ptolemy, and may still contain bugs.

13.2.2 Codeblocks with arguments

Simple codeblocks (as described above) have a name and are implemented as static
member strings. Extended codeblocks have a name, optional arguments, and are implemented
as non-static functions. They have an escape mechanism so that C++ expressions may be
evaluated at run time and inserted into the generated code. However, in order to take advan-
tage of this escape mechanism, a codeblock must be defined and called with arguments, even
if those arguments are empty. An example:

codeblock(cbLoop,"int N, double x") {
for (i=0; i < @N; i++) {
 $ref(output,i) = sin(i*@x);
}

}

This defines a codeblock namedcbLoop with two arguments:N andx . The variablei will
appear in the generated code, while the C++ expressionsN andx are escaped by@ and will be
evaluated at code-generation time. When this is called as

cbLoop(5, 0.1);

the following string will be returned:

for (i=0; i < 5; i++) {
 $ref(output,i) = sin(i*0.1);
}

This might be used within ago() method as:

go {
addCode(cbLoop(5, 0.1));

}

TheaddCode() method will process the$ref() macro as described elsewhere. More com-
plicated expressions are allowable. In general, the@ clause may be delimited by parentheses
“ (”and “) ”, and must be operator<< printable. The above codeblock could have been equiva-
lently declared as:

13-6 Code Generation

U. C. Berkeley Department of EECS

codeblock(cbLoop,"int N, double x") {
for (i=0; i < @(N); i++) {
 $ref(output,i) = sin(i*@(x));
}

}

A more complicated example follows:

codeblock(cbLoop2,"char *portname, int N, double x") {
for (i=0; i < @(int(length)); i++) {
 $ref(@portname,i) = sin(i*@(x/N));
}

}

In this example,length is a data member of the star (typically a state). When called as:

cbLoop2("ina", 3, 0.2);

it would generate (assuming the value oflength is 20):

for (i=0; i < 20; i++) {
 $ref(ina,i) = sin(i*0.6666666);
}

In order to trigger the C++ expression processing via@-escapes in codeblocks which would
otherwise have no arguments, add in a null argument list as in:

codeblock(cbLoop3,"") {
for (i=0; i < @(int(length)); i++) {
 $ref(output,i) = sin(i*0.1);
}

}

In the example above, the@(int(length)) will be replaced with the value of the class
memberlength . The above example would be called with an empty argument list as:

go {
addCode(cbLoop3());

}

The complete parsing rules are:
@@ ==> @ (double "@" goes to single)
@ATSIGN ==> @
@{ ==> {
@LBRACE ==> { (LBRACE is literal string)
@} ==> }
@RBRACE ==> } (RBRACE is literal string)
@\ ==> \
@BACKSLASH ==> \ (BACKSLASH is literal string)
@id ==> C++ token {id} (id is one or more alphanumerics)
@(expr) ==> C++ expr {expr}(expr is arbitrary with balanced

The Almagest 13-7

Ptolemy Last updated: 10/17/97

parens)
@(white_space) ==> nothing
@anything_else is passed through unchanged (including the @)

In an extended codeblock, trailing backslashes "\ " will omit the following newline in the gen-
erated code. This special meaning of trailing "\ " may be prevented by using "@\" or
“@BACKSLASH”.

13.2.3 In-line codeblocks

Code blocks may be specified in the body of a method. Inside the definition of a
method (such asgo()), all contiguous blocks of lines with a leading@ will be translated into
an in-line codeblock (i.e., anaddCode() statement). The@ escape mechanism for C++
expressions works as described above for codeblocks with arguments. Within@-escaped
expressions, in-line codeblocks may reference local method variables as well as member vari-
ables.

Leading white-space before a leading@ will be ignored. Note that no override mecha-
nism is provided to prevent the in-line codeblock interpretation. Note also that@ has dual
meanings: the first@ on the line introduces in-line codeblock mode, while subsequent@ char-
acters on the same line escape into C++ expressions. For example:

go() {
 @CMAM_wait(&$ref(ackFlag), 1);
}

is equivalent to:

go() {
 addCode("CMAM_wait(&$ref(ackFlag), 1);\n");
}

A more complicated example:

go {
 @ $ref(output) = \
 int ni = input.numberPorts();
 for (int i = 1; i <= ni; i++) {

@$ref(input#@i) @(i < ni ? " + " : ";\n") \
 }
}

If “ input.numberPorts() ” returns 3 when the above program is run, the generated code
will be:

" $ref(output) = $ref(input#1) + $ref(input#2) + $ref(input#3);\n"

Currently, only the pre-defined methods (start , go, exectime etc.) are processed this way;
not user-defined methods.

13-8 Code Generation

U. C. Berkeley Department of EECS

13.2.4 Macros

In code generation stars, the inputs and outputs no longer hold values, but instead cor-
respond to target resources where values will be stored (for example, memory locations/regis-
ters in assembler generation, or global variables in C-code generation). A star writer can also
define states which can specify the need for global resources.

A code generation star, however, does not have knowledge of the available global
resources or the global variables/tables which have already been defined in the generated
code. For star writers, a set of macros to access the global resources is provided. The macros
are expanded in a language or target specific manner after the target has allocated the
resources properly. In this section, we discuss the macros defined in theCGStar class.

$ref(name)
Returns a reference to a state or a port. If the argument, name, refers to a port,
it is functionally equivalent to thename%0 operator in the SDF simulation
stars. If a star has a multi-porthole, sayinput, the first real porthole isinput#1.
To access the first porthole, we use$ref(input#1) or
$ref(input#internal_state) whereinternal_state is the name of a
state that has the current value, 1.

$ref(name,offset)
Returns a reference to an array state or a port with an offset that is not negative.
For a port, it is functionally equivalent toname%offset in SDF simulation
stars.

$val(state-name)
Returns the current value of the state. If the state is an array state, the macro
will return a string of all the elements of the array spaced by the new line char-
acter. The advantage of not using$ref macro in place of$val is that no addi-
tional target resources need to be allocated.

$size(name)
Returns the size of the state/port argument. The size of a non-array state is one;
the size of a array state is the total number of elements in the array. The size of
a port is the buffer size allocated to the port. The buffer size is usually larger
than the number of tokens consumed or produced through that port.

$starName()
Returns the instantiated name of the star (without galaxy or universe names)

$fullName()
Returns the complete name of the star including the galaxies to which it
belongs.

$starSymbol(name)
Returns a unique label in the star instance scope. The instance scope is owned
by a particular instance of that star in a graph. Furthermore, the scope is alive
across all firings of that particular star. For example, two CG stars will have
two distinct star instance scopes. As an example, we show some parts of ptlang

The Almagest 13-9

Ptolemy Last updated: 10/17/97

file of theCGCPrinter star.

initCode {
...

StringList s;
s << " FILE* $starSymbol(fp);";
addDeclaration(s);
addInclude("<stdio.h>");
addCode(openfile);

...
}
codeblock (openfile) {

if(!($starSymbol(fp)=fopen("$val(fileName)","w"))) {
fprintf(stderr,"ERROR: cannot open output file

for Printer star.\n");
exit(1);
}

}

The file pointerfp for a star instance should be unique globally, and the
$starSymbol macro guarantees the uniqueness. Within the same star
instance, the macro returns the same label.

$sharedSymbol(list,name)
Returns the symbol for name in the list scope. This macro is provided so that
various stars in the graph can share the same data structures such as sin/cos
lookup tables and conversion table from linear to mu-law PCM encoder. These
global data structures should be created and initialized once in the generated
code. The macrosharedSymbol does not provide the method to generate the
code, but does provide the method to create a label for the code. To generate
the code only once, refer to “Code streams” on page 13-16. A example where a
shared symbol is used is inCGCPCM star.

13-10 Code Generation

U. C. Berkeley Department of EECS

codeblock (sharedDeclarations)
{

int $sharedSymbol(PCM,offset)[8];
/* Convert from linear to mu-law */
int $sharedSymbol(PCM,mulaw)(x)
double x;
{

double m;
m = (pow(256.0,fabs(x)) - 1.0) / 255.0;
return 4080.0 * m;

}
}
codeblock (sharedInit)
{

/* Initialize PCM offset table. */
{
int i;
double x = 0.0;
double dx = 0.125;
for(i = 0; i < 8; i++, x += dx)
{

$sharedSymbol(PCM,offset)[i] =
$sharedSymbol(PCM,mulaw)(x);

}
}
initCode {
...

if (addGlobal(sharedDeclarations, "$sharedSym-
bol(PCM,PCM)"))

addCode(sharedInit);
}

The above code creates a conversion table and a conversion function from linear to
mu-law PCM encoder. The conversion table is namedoffset and belongs to thePCM
class. The conversion function is namedmulaw, and belongs to the same PCM class.
Other stars can access that table or function by saying$sharedSymbol(PCM,off-
set) or $sharedSymbol(PCM,mulaw) . The initCode method tries to put the
sharedDeclarations codeblock into the global scope (byaddGlobal() method
in the CGC domain). That code block is given a unique label by$sharedSym-
bol(PCM,PCM) . If the codeblock has not been previously defined,addGlobal
returns true, thus allowingaddCode(sharedInit) . If there is more than one
instance of the PCM star, only one instance will succeed in adding the code.

$label(name), $codeblockSymbol(name)
Returns a unique symbol in the codeblock scope. Both label and code-
blockSymbol refer to the same macro expansion. The codeblock scope only
lives as long as a codeblock is having code generated from it. Thus if a star
usesaddCode() more than once on a particular codeblock, all codeblock

The Almagest 13-11

Ptolemy Last updated: 10/17/97

instances will have unique symbols. A example of where this is used in the
CG56HostOut star.

codeblock(cbSingleBlocking) {
$label(wait)
jclr #m_htde,x:m_hsr,$label(wait)
jclr #0,x:m_pbddr,$label(wait)
movep $ref(input),x:m_htx
}
codeblock(cbMultiBlocking) {
move #$addr(input),r0
.LOOP #$val(samplesOutput)
$label(wait)
jclr #m_htde,x:m_hsr,$label(wait)
jclr #0,x:m_pbddr,$label(wait)
movep x:(r0)+,x:m_htx
.ENDL
nop
}

The above two codeblocks use a label namedwait. The $label macro will assign
unique strings for each codeblock.

The baseCGStar class provides the above 8 macros. In the derived classes, we can add more
macros, or redefine the meaning of these macros. Refer to each domain document to see how
these macros are actually expanded. There are three commonly used macros in the assembly
code generation domains; these are:

$addr(name)
This returns the address of the allocated memory location for the given state or
porthole name. The address does not include references to the memory bank
the location is coming from; for instance, “x:2034” for location 2034 in the “x”
memory bank for Motorola 56000 is output as 2034.

$addr(name,<offset>)
This macro returns the numeric address in memory of the named object, with-
out (for the 56000) an “x:” or “y:” prefix. If the given quantity is allocated in a
register (not yet supported) this function returns an error. It is also an error if
the argument is undefined or is a state that is not assigned to memory (e.g. a
parameter).
Note that this does NOT necessarily return the address of the beginning of a
porthole buffer; it returns the “access point” to be used by this star invocation,
and in cases where the star is fired multiple times, this will typically be differ-
ent from execution to execution.
If the optional argument offset is specified, the macro returns an expression
that references the location at the specified offset -- wrapping around to the
beginning of the buffer if that is necessary. Note that this wrapping works inde-
pendent of whether the buffer is circularly aligned or not.

$ref(name,<offset>)

13-12 Code Generation

U. C. Berkeley Department of EECS

This macro is much like $addr(name), only the full expression used to refer to
this object is returned, e.g. “x:23” for a 56000 if “name” is in x memory. If
“name” is assigned to a register, this expression will return the corresponding
register. The error conditions are the same as for $addr

$mem(name)
Returns the name of the memory bank in which the given state or porthole has
its memory allocated.

To have “$” appear in the output code, put “$$” in the codeblock. For a domain where “$” is
a frequently used character in the target language, it is possible to use a different character
instead by redefining the virtual functionsubstChar (defined inCGStar) to return a differ-
ent character.

It is also possible to introduce processor-specific macros, by overriding the virtual
function processMacro (rooted inCGStar) to process any macros it recognizes and defer
substitution on the rest by calling its parent’sprocessMacro method.

13.2.5 Assembly PortHoles

Here are some methods of classAsmPortHole that might be useful in assembly code
generation stars:

bufSize() Returns an integer, the size of the buffer associated with the porthole.

baseAddr() Returns the base address of the porthole buffer

bufPos() Returns the offset position in the buffer, which ranges from 0 tobuf-
Size() -1.

circAccessThisTime()
This method returns true (nonzero) if the data to be read or written on
this execution “wrap around”, so that accessing them in a linear order
will not work.

13.2.6 Attributes

Attributes are assertions about the object they are applied to. Both states and portholes
can have attributes. Attributes that apply to states have the prefix “A_”. Attributes that apply
to portholes have the prefix “P_”. The following attributes are common to all code generation
domains:

A_GLOBAL
If set, this state is declared global so that it is accessible everywhere. Currently,
it is only supported in the CGC domain.

A_LOCAL
This is the opposite ofA_GLOBAL.

A_SHARED
A state that is shared among all stars that know its name, type, size.

A_PRIVATE

The Almagest 13-13

Ptolemy Last updated: 10/17/97

Opposite ofA_SHARED.

The default for stars isA_LOCAL|A_PRIVATE. Right now, onlyA_SHARED|A_LOCAL is sup-
ported in the assembly language domains. This combination means that all stars will share the
particular state across a processor. For all stars to share it in a universe the bits
A_SHARED|A_GLOBAL need to be set; this combination is not implemented yet - the default
method will probably restrict all the stars that share this state to the same processor.

A_CONSTANT
The state value is not changed by the star’s execution.

A_NONCONSTANT
The state value is changed by the star’s execution.

A_SETTABLE
The user may set the value of this state from a user interface.

A_NONSETTABLE
The user may not set the value of this state from a user interface (e.g. edit-
parameters doesn’t show it).

Applying an attribute to an object implies that some bits are to be “turned on”, and oth-
ers are to be “turned off”. The underlying attribute bits have names beginning withAB_ for
states, andPB_ for portholes. The only two bits that exist in all states areAB_CONST and
AB_SETTABLE. By default, they are on for states, which means that the default state works
like a parameter (you can set it from the user interface, and the star’s execution does not
change it).

For assembly language domains, the following attributes are defined:

A_CIRC
If set, the memory for this state is allocated as a circular buffer, whose address
is aligned to the next power of two greater than or equal to its length.

A_CONSEC
If set, allocate the memory for thenext state in this star consecutively, starting
immediately after the memory for this star.

A_MEMORY
If set, memory is allocated for this state.

A_NOINIT
If set, the state is not be automatically initialized. The default is that all states
that occupy memory are initialized to their default values.

A_REVERSE
If set, write out the values for this state in reverse order.

A_SYMMETRIC
If set, and if the target has dual data memory banks (e.g. M56000, Analog
Devices 2100, etc.), allocate a buffer for this object in both memories.

13-14 Code Generation

U. C. Berkeley Department of EECS

Given these attributes (technically, the above also have “bit” representations of the form
AB_xxx; A_xxx just turns the bit AB_xxx on), the following attributes correspond to requests
to turn some attributes off and to turn other attributes on. For example:

A_ROM
Allocate memory for this state in memory, and the value will not change --
A_MEMORY andA_CONSTANT set.

A_RAM
A_MEMORY set,A_CONST not set

For portholes in code generation stars, we have:

P_CIRC
If set, then allocate the buffer for this porthole as a circular buffer, even if this
is not required because of any other consideration.

P_SHARED
Equivalent toA_SHARED, only for portholes.

P_SYMMETRIC
Similar toA_SYMMETRIC, but for portholes.

P_NOINIT
Do not initialize this porthole.

Attributes can be combined with the “| ” operator. For example, to allocate memory for a state
but make it non-settable by the user, I can say

AB_MEMORY|A_NONSETTABLE

13.2.7 Possibilities for effective buffering

In principle, blocks communicate with each other through porthole connections. In
code generation domains, we allocate a buffer for each input-output connection by default.
There are some stars, however, that do not modify data at all. A good, and also ubiquitous,
example is aFork star. When aFork star hasN outputs, the default behavior is to createN
buffers for output connections and copy data from input buffer toN output buffers, which is a
very expensive and silly approach. Therefore, we pay special attention to stars displaying this
type of behavior. In the setup method of these stars, theforkInit() method is invoked to
indicate that the star is aFork -type star. For example, theCGCFork star is defined as

defstar {
name { Fork }
domain { CGC }
desc { Copy input to all outputs }
version { @(#)CGCFork.pl 1.6 11/11/92 }
author { E. A. Lee }
copyright { 1991-1994 The Regents of the University of Cali-
fornia }
location { CGC demo library }
explanation {

The Almagest 13-15

Ptolemy Last updated: 10/17/97

Each input is copied to every output. This is done by the way
the buffers are laid out; no code is required.
}
input {

name {input}
type {ANYTYPE}

}
outmulti {

name {output}
type {=input}

}
constructor {

noInternalState();
}
start {

forkInit(input,output);
}
exectime { return 0;}
}

Where possible, code generation domains take advantage ofFork -type stars by not allocating
output buffers, but instead the stars reuse the input buffers. Unfortunately, in the current
implementation, assembly language fork stars can not do their magic if the buffer size gets too
large (specifically, if the size of the buffer that must be allocated is greater than the total num-
ber of tokens generated or read by some port during the entire execution of the schedule).
Here, forks or delay stars that copy inputs to outputs must be used.

Another example of aFork -Type star is theSpread star. The star receivesN tokens
and spreads them to more than one destination. Thus, each output buffer may share a subset of
its input buffer. We call this relationshipembedding: the outputs are embedded in the input.
For example, in theCGCSpread star:

setup {
MPHIter iter(output);
CGCPortHole* p;
int loc = 0;
while ((p = (CGCPortHole*) iter++) != 0) {

input.embed(*p, loc);
loc += p->numXfer();

}
}

Notice that the output is a multi-porthole. During setup, we express how each output is
embedded in the input starting at locationloc. At the buffer allocation stage, we do not allo-
cate buffers for the outputs, but instead reuse the input buffer for all outputs. This feature,
however, has not yet been implemented in the assembly language generation domains.

A Collect star embeds its inputs in its output buffer:

setup {
MPHIter iter(input);

13-16 Code Generation

U. C. Berkeley Department of EECS

CGCPortHole* p;
int loc = 0;
while ((p = (CGCPortHole*) iter++) != 0) {

output.embed(*p, loc);
loc += p->numXfer();

}
}

Other examples of embedded relationships areUpSample and DownSample stars.
One restriction of embedding, however, is that the embedded buffer must be static. Automatic
insertion ofSpread andCollect stars in multi-processor targets (refer to the target section)
guarantees static buffering. If there is no delay (i.e., no initial token) in the embedded buffer,
static buffering is enforced by default. A buffer is calledstatic when a star instance consumes
or produces data in the same buffer location in any schedule period. Static buffering requires a
size that divides the least common multiple of the number of tokens consumed and produced;
if such a size exists that equals or exceeds the maximum number of data values that will ever
be in the buffer, static allocation is performed.

13.3 Targets
A code generationDomain is specific to the language generated, such as C (CGC),

Sproc assembly code (Sproc) [Mur93], Silage [Kal93], DSP56000 assembly code (CG56),
and DSP96000 assembly code (CG96). Each code generation domain has a default target
which defines routines generic to the target language. A derivedTarget that defines architec-
ture specific routines can then be written. A given language, particularly a generic language
such as C, may run on many target architectures. Code generation functions are cleanly
divided between the default domain target and the architecture specific target.

All target architectures are derived from the base classTarget . The special class
KnownTarget is used to add targets to the known list of targets, much asKnownBlock is
used to add stars (and other blocks) to the known block list and to assign names to them.

A Target object has methods for generating a schedule, compiling the code, and run-
ning the code (which may involve downloading code to target hardware and beginning its
execution). There also may be child targets (for representing multiprocessor targets) together
with methods for scheduling the communication between them. Targets also have parameters
that are user specified.

13.3.1 Single-processor target

The base target for all code generation domains is theCGTarget , which represents a
single processor by default. This target is calleddefault-CG in the target list for the CG
domain. As the generic code generation target, theCGTarget class defines many common
functions for code generation targets. Methods defined here include virtual methods to gener-
ate, display, compile, and run the code. Derived targets are free to redefine these virtual meth-
ods if necessary.

Code streams

A code generation target manages code streams which are used to store star and target
generated code. TheCGTarget class has the two predefined code streams:myCode andpro-

The Almagest 13-17

Ptolemy Last updated: 10/17/97

cedures . ThemyCode stream is referred to asCODE and theprocedures stream is called
PROCEDURE; these names should be used when referring to these streams as in “Code-
Stream* code = getStream(CODE) ”. Derived targets are free to add more code streams
using theCGTarget methodaddStream(stream-name) . For example, the default CGC
target defines fourteen additional code streams.

Other methods, such asaddProcedure(code, uniquename) can be defined, to
provide a more efficient or convenient interface to a specific code stream (in this case, proce-
dures). WithaddProcedure it becomes clear why unique names are necessary. Recall that
addProcedure is used to declarations outside of the main body of the code. For example,
say we wanted to write a function in C to multiply two numbers. The codeblock to do this
could read:

codeblock(sillyMultiply) {
/* A silly function */
double $sharedSymbol(silly,mult)(double a, double b)
{

double m;
m = a*b;
return m;

}
}

Note that in this codeblock we used thesharedSymbol macro described in the code genera-
tion macros section. To add this code to the procedures stream, in theinitCode method of
the star, we can call either:

addProcedure(sillyMultiply,"mult");

or
addCode(sillyMultiply,"procedures","mult");

or
getStream("procedures")->put(sillyMultiply,"mult");

As with addCode , addProcedure returns aTRUE or FALSE indicating whether the
code was inserted into the code stream. Taking this into account, we could have added the
code line by line:

if (addProcedure("/* A silly function */\n","mult")) {
addProcedure(
"double $sharedSymbol(silly,mult)(double a, double

b)\n"
);
addProcedure("{\n");
addProcedure("\tdouble m;\n");
addProcedure("\tm = a*b;\n");
addProcedure("\treturn m;\n");
addProcedure("}\n");

}

13.3.2 Assembly code streams

Code is generated in the assembly language domains into four streams. The streams
inherited fromCGTarget are theCODE andPROCEDURES stream. The two new streams are:

13-18 Code Generation

U. C. Berkeley Department of EECS

mainLoop Code added to this stream comprises the main loop of the generated
algorithm. All addCode calls from a star’sgo function automatically
are concatenated to this stream unless another stream is supplied as an
argument.

trailer Code added to this stream comprises thewrapup section of the gener-
ated algorithm. AlladdCode calls from a star’swrapup method auto-
matically are concatenated to this stream unless another stream is
supplied as an argument.

Code generation

Once the program graph is scheduled, the target generates the code in the virtual
methodgenerateCode() . (Note: code streams should be initialized before this method is
called.) All the methods called bygenerateCode are virtual, thus allowing for target cus-
tomization. ThegenerateCode method then callsallocateMemory() which allocates the
target resources. After resources are allocated, theinitCode method of the stars are called
by codeGenInit() . The next step is to form the main loop by calling the methodmain-
LoopCode() . The number of iteration cycles are determined by the argument of the “run”
directive which a user specifies inpigi or in ptcl . To complete the body of the main loop,
go() methods of stars are called in the scheduled order. After forming the main loop, the
wrapup() methods of stars are called.

Now, all of the code has been generated; however, the code can be in multiple target
streams. TheframeCode() method is then called to piece the code streams together and
place the unified stream into themyCode stream. Finally, the code is written to a file by the
method writeCode() . The default file name is“ code . output ” , and that file will be
located in the directory specified by a target parameter,destDirectory .

Finally, since all of the code has been generated for a target, we are ready to compile,
load, and execute the code. Derived targets should redefine the virtual methodscompile-
Code() , loadCode() , andrunCode() to do these operations. At times it does not make
sense to have separateloadCode() andrunCode() methods, and in these cases, these oper-
ations should be collapsed into therunCode() method.

13.3.3 Multiprocessor targets

Targets representing multiple processors are derived from theCGTarget class. The
base class for all multiple-processor targets is calledMultiTarget , and resides in the
$(PTOLEMY)/src/domains/cg/kernel directory. CGMultiTarget is derived from
MultiTarget . CGMultiTarget class is the base class for all multiple-processor targets. It
is calledFullyConnected in the CG domain target list.

The design of Ptolemy is also intended to support heterogeneous multi-processor tar-
gets. In the future, the base class of all “abstract” heterogeneous multiprocessor targets will be
implemented from theMultiTarget class. For such targets, certain actors must be assigned
to certain targets, and the cost of a given actor is in general a function of which child target it
is assigned to. We have developed parallel schedulers that address this problem [Sih91].

We have implemented, or are in the process of implementing, both “abstract” and
“concrete” multi-processor targets. For example, we have classes namedCGMultiTarget

The Almagest 13-19

Ptolemy Last updated: 10/17/97

and CGSharedBus that represent sets of homogenous single-processor targets of arbitrary
type, connected in either a fully connected or shared-bus topology, with parametrized commu-
nication costs. These targets, however, use only the CG domain stars and hence do not actu-
ally generate code (recall that CG domain stars are “comment generators”). Some other actual
implementations of multiprocessor systems include the CM-5 (CGCCm5Target in the CGC
domain), the Sproc multiprocessor DSP [Mur93], and the ordered transaction architecture
[Sri93]. Refer to the CG56 domain documentation forCG56MultiSim target, or the CGC
domain documentation forCGCMultiTarget class as examples of “concrete” multi-proces-
sor targets. In this section, we concentrate on the “abstract” multiprocessor target classes that
are in the$(PTOLEMY)/src/domains/cg/targets directory.

CGMultiTarget is the base target class for all homogeneous targets. By default, it
models a fully-connected multiprocessor architecture; when a processor wants to communi-
cate with another processor, it can do immediately. ThescheduleComm() method returns
the time when the required communication is scheduled. In theCGMultiTarget class, it
returns the same time as when the communication is required. On the other hand,CGShared-
Bus, which is derived from theCGMultiTarget class, is the base target class for all multi-
processor targets having a shared-bus topology. In theCGSharedBus class, the
scheduleComm() method schedules the required communication on the shared-bus member
object of that class, and returns the scheduled time. The communication cost (in time) is mod-
eled by thecommTime() method. Given the information on which processors are involved in
this communication and how many tokens are transmitted, it returns the expected communica-
tion time once started. By default (or in fully-connected topology), it only depends on the
number of tokens.

A CGMultiTarget has a sequence of child target objects to represent each of the
individual processors. The number of processors are determined by anIntState , nprocs ,
and the type of the child target is specified by aStringState , childType . Refer to the
User’s Manual for details on how to specify the various target parameters. In the setup stage,
the child targets are created and added to the child target list as members of the multiprocessor
target. Classes derived fromMultiTarget represent the topology of the multi-processor net-
work (communication costs between processors, schedules for use of communication facili-
ties, etc.), and single-processor child targets can represent arbitrary types of processors. The
resource allocation problem is divided between the parent target, representing the shared
resources, and the child targets, representing the resources that are local to each processor.

The main role of a multiprocessor target is to set up one of the chosen parallel schedul-
ers, and to coordinate the child targets. TheCGMultiTarget class has a set of parameters to
select parallel scheduling options. See the schedulers section for a detailed discussion on par-
allel schedulers. The selected parallel scheduler schedules the program graph onto the child
targets and the scheduling results are displayed on a Gantt chart. The parent multiprocessor
target collects the code from each of the child targets after the child targets have generated
code based on the scheduling results. By default, it merges all of the child-processor code into
a single file. If separate files are required, then one approach is to create separate files with
names derived from the child target names and write the code to these files in theframe-
Code() method of the multi-target.

Interprocessor communication (IPC) stars are created by the multiprocessor target by
the methodscreateSend() andcreateReceive() . These stars are spliced in to the sub-

13-20 Code Generation

U. C. Berkeley Department of EECS

galaxies that are created and handed down to the child targets. Typically, these methods just
create the appropriate IPC star and return a pointer to the object created. Each send/receive
pair is matched in thepairSendReceive() method. Typically, this might involve setting
pointers in the send/receive pair to point to each other.

There is no preprocessor for targets likeptlang for stars. Designing a customized
multiprocessor target, therefore, is a bit complicated compared to designing a customized star.
If the interconnection topology is neither fully-connected nor shared-bus, in particular, the
communication scheduling should be designed in the target, which makes a target design
more complicated. So the best way to design a target is to look at an already-implemented tar-
get such asCGCMultiTarget class in the CGC domain.

13.4 Schedulers
Given a Universe of functional blocks to be scheduled and aTarget describing the

topology and characteristics of the single- or multiple-processor system for which code is to
be generated, it is the responsibility of theScheduler object to perform some or all of the
following functions:

 • Determine which processor a given invocation of a givenBlock is executed on (for
multiprocessor systems).

 • Determine the order in which actors are to be executed on a processor.

 • Arrange the execution of actors into standard control structures, like nested loops.

In this section, we explain different scheduling options and their effect on the generated code.

13.4.1 Single-processor schedulers

For targets consisting of a single processor, we provide three different scheduling
techniques. The user can select the most appropriate scheduler for a given application by set-
ting theloopingLevel target parameter.

In the first approach (loopingLevel = DEF), which is the default SDF scheduler, we
conceptually construct the acyclic precedence graph (APG) corresponding to the system, and
generate a schedule that is consistent with that precedence graph. Note that the precedence
graph is not physically constructed. There are many possible schedules for all but the most
trivial graphs; the schedule chosen takes resource costs, such as the necessity of flushing reg-
isters and the amount of buffering required, into account. The target then generates code by
executing the actors in the sequence defined by this schedule. This is a quick and efficient
approach when the SDF graph does not have large sample-rate changes. If there are large sam-
ple-rate changes, the size of the generated code can be huge because the codeblock for an
actor might occur many times (if the number of repetitions for the actor is greater than one); in
this case, it is better to use some form ofloop scheduling.

We call the second approachJoe’s scheduler. In this approach (loopingLevel =
CLUST), actors that have the same sample rate are merged (wherever this will not cause dead-
lock) and loops are introduced to match the sample rates. The result is a hierarchical cluster-
ing; within each cluster, the techniques described above can be used to generate a schedule.
The code then contains nested loop constructs together with sequences of code from the
actors.

The Almagest 13-21

Ptolemy Last updated: 10/17/97

Since the second approach is a heuristic solution, there are cases where some looping
possibilities go undetected. By setting theloopingLevel to SJS, we can choose the third
approach, calledSJS (Shuvra-Joe-Soonhoi) scheduling after the inventor’s first names
[Bha94]. After performing Joe’s scheduling at the front end, it attacks the remaining graph
with an algorithm that is guaranteed to find the maximum amount of looping available in the
graph.

A fourth approach, obtained by settingloopingLevel to ACYLOOP, we choose a
scheduler that generates single appearance schedules optimized for buffer memory usage.
This scheduler was developed by Praveen Murthy and Shuvra ‘Bhattacharyya [Mur96]
[Bha96]. This scheduler only tackles acyclic SDF graphs, and if it finds that the universe is not
acyclic, it automatically resets theloopingLevel target parameter to SJS. Basically, for a given
SDF graph, there could be many different single appearance schedules. These are all opti-
mally compact in terms of schedule length (or program memory in inline code generation).
However, they will, in general, require differing amounts of buffering memory; the difference
in the buffer memory requirement of an arbitrary single appearance schedule versus a single
appearance schedule optimized for buffer memory usage can be dramatic. In code generation,
it is essential that the memory consumption be minimal, especially when generating code for
embedded DSP processors since these chips have very limited amounts of on-chip memory.
Note that acyclic SDF graphs always have single appearance schedules; hence, this scheduler
will always give single appearance schedules. If thefile target parameter is set, then a sum-
mary of internal scheduling steps will be written to that file. Essentially, two different heuris-
tics are used by the ACYLOOP scheduler, called APGAN and RPMC, and the better one of
the two is selected. The generated file will contain the schedule generated by each algorithm,
the resulting buffer memory requirement, and a lower bound on the buffer memory require-
ment (called BMLB) over all possible single appearance schedules.

If the second, third, or fourth approach is taken, the code size is drastically reduced
when there are large sample rate changes in the application. On the other hand, we sacrifice
some efficient buffer management schemes. For example, suppose that star A produces 5 sam-
ples to star B which consumes 1 sample at a time. If we take the first approach, we schedule
this graph as ABBBBB and assign a buffer of size 5 between star A and B. Since each invoca-
tion of star B knows the exact location in the allocated buffer from which to read its sample,
each B invocation can read the sample directly from the buffer. If we choose the second, third,
or fourth approach, the scheduling result will be A5(B). Since the body of star B is included
inside a loop of factor 5, we have to use indirect addressing for star B to read a sample from
the buffer. Therefore, we need an additional buffer pointer for star B (memory overhead), and
one more level of memory access (runtime overhead) for indirect addressing.

13.4.2 Multiprocessor schedulers

A key idea in Ptolemy is that there is no single scheduler that is expected to handle all
situations. Users can write schedulers and can use them in conjunction with schedulers we
have written. As with the rest of Ptolemy, schedulers are written following object-oriented
design principles. Thus a user would never have to write a scheduler from ground up, and in
fact the user is free to derive the new scheduler from even our most advanced schedulers. We
have designed a suite of specialized schedulers that can be mixed and matched for specific
applications.

13-22 Code Generation

U. C. Berkeley Department of EECS

The first step in multiprocessor scheduling, or parallel scheduling, is to translate a
given SDF graph to an acyclic precedence expanded graph (APEG). The APEG describes the
dependency between invocations of blocks in the SDF graph during execution of one itera-
tion. Refer to the SDF domain documentation for the meaning of one iteration. Hence, a block
in a multirate SDF graph may correspond to several APEG nodes. Parallel schedulers sched-
ule the APEG nodes onto processors.

We have implemented three scheduling techniques that map SDF graphs onto multi-
ple-processors with various interconnection topologies: Hu’s level-based list scheduling,
Sih’s dynamic level scheduling [Sih91], and Sih’s declustering scheduling [Sih91]. The target
architecture is described by itsTarget object, derived fromCGMultiTarget . The Target
class provides the scheduler with the necessary information on interprocessor communication
to enable both scheduling and code synthesis.

The CGMultiTarget has a parameter,schedName, that allows the user to select the
type of schedule. Currently, there are five different scheduling options:

DL If schedName is set toDL, we select the Sih’s dynamic level
scheduler that accounts for IPC overhead during scheduling.

HU Hu’s level scheduler is selected, which ignores the IPC over-
head.

DC The Sih’s declustering scheduler can be selected by settingDC.
The declustering algorithm is advantageous only when the list
scheduling algorithm shows poor performance, judged from the
scheduling result because it is more expensive than theDL or HU
scheduler.

HIER(DL) or HIER(HU) or HIER(DC)
If we want to use Pino’s hierarchical scheduler, we have to set
schedName to HIER(DL or HU or DC). The default top-level
scheduling option is theDL scheduler. To use other scheduler,
DC or HU should be specified within the parenthesis.

CGDDF If the schedName is set toCGDDF, the Ha’s dynamic construct
scheduler is selected. To use this scheduler, Ptolemy should be
recompiled with special flags, or usemkcgddf executable.

Whichever scheduler is used, we schedule communication nodes in the generated
code. For example, if we use the Hu’s level-based list scheduler, we ignore communication
overhead when assigning stars to processors. Hence, the code is likely to contain more com-
munication stars than with the other schedulers that do not ignore IPC overhead.

There are other target parameters that direct the scheduling procedure. If the parameter
manualAssignment is set toYES, then the default parallel scheduler does not perform star
assignment. Instead, it checks the processor assignment of all stars (set using theprocId state
of CG and derived stars). By default, theprocId state is set to -1, which is an illegal assign-
ment since the child target is numbered from 0. If there is any star, except theFork star, that
has an illegalprocId state, an error is generated saying that manual scheduling has failed.
Otherwise, we invoke a list scheduler that determines the order of execution of blocks on each
processor based on the manual assignment. We do not support the case where a block might

The Almagest 13-23

Ptolemy Last updated: 10/17/97

require more than one processor. ThemanualAssignment option automatically sets the
oneStarOneProc state to be discussed next.

If there are sample rate changes, a star in the program graph may be invoked multiple
times in each iteration. These invocations may be assigned to multiple processors by default.
We can prevent this by setting theoneStarOneProc state toYES. Then, all invocations of a
star are assigned to the same processor regardless of whether they are parallelizable or not.
The advantage of doing this is the simplicity in code generation since we do not need to splice
in Spread/Collect stars, which will be discussed later. Also, it provides us another possi-
ble scheduling option:adjustSchedule ; this is described below. The main disadvantage of
settingoneStarOneProc to YES is the performance loss of not exploiting parallelism. It is
most severe if Sih’s declustering algorithm is used. Therefore, Sih’s declustering algorithm is
not recommended with this option.

In this paragraph, we describe a future scheduling option which this release does not
support yet. Once automatic scheduling (withoneStarOneProc option set) is performed, the
processor assignment of each star is determined. After examining the assignment, the user
may want to override the scheduling decision manually. It can be done by setting the
adjustSchedule parameter. If that parameter is set, after the automatic scheduling is per-
formed, theprocId state of each star is automatically updated with the assigned processor.
The programmer can override the scheduling decision by setting that state. The
adjustSchedule cannot beYES before any scheduling decision is made previously. Again,
this option is not supported in this release.

Different scheduling options result in different assignments of APEG nodes. Regard-
less of which scheduling options are chosen, the final stage of the scheduling is to decide the
execution order of stars including send/receive stars. This is done by a simple list scheduling
algorithm in each child target. The final scheduling results are displayed on a Gantt chart. The
multiple-processor scheduler produces a list of single processor schedules, giving them to the
child targets. The schedules include send/receive stars for interprocessor communication. The
child targets take their schedules and generate code.

To produce code for child targets, we create a sub-galaxy for each child target, which
consists of the stars scheduled on that target and some extra stars to be discussed below if nec-
essary. A child target follows the same step to generate code as a single processor target
except that the schedule is not computed again since the scheduling result is inherited from the
parent target.

Send/Receive stars

After the assignment of APEG nodes is finished, the interprocessor communication
requirements between blocks are determined in sub-galaxies. Suppose star A is connected to
star B, and there is no sample rate change. By assigning star A and star B to different proces-
sors (1 and 2 respectively), the parallel scheduler introduces interprocessor communication.
Then, processor 1 should generate code for star A and a “send” star, while processor 2 should
generate code for a “receive” star and star B. These “send” and “receive” stars are inserted
automatically by the Ptolemy kernel when determining the execution order of blocks in each
child target and creating the sub-galaxies. The actual creation of send/receive stars is done by
the parallel scheduler by invoking methods (createSend() and createReceive() , as
mentioned earlier) in the parent multi-target.

13-24 Code Generation

U. C. Berkeley Department of EECS

Once the generated code is loaded, processors run autonomously. The synchronization
protocol between processors is hardwired into the “send” and “receive” stars. One common
approach in shared-memory architectures is the use of semaphores. Thus a typical synchroni-
zation protocol is to have the send star set a flag when it completes the data transfer, and have
the receive star read the data and reset the semaphore. The receive star will not read the data if
the semaphore has not been set and similarly, the send star will not write data if the semaphore
has not been reset. In a message passing architecture, the send star may form a message
header to specify the source and destination processors. In this case, the receive star would
decode the message by examining the message header.

For properly supporting arbitrary data types, the send star should have anANYTYPE
input; the receive star should have anANYTYPE output. The resolved type for each of these
ports can be obtained using thePorthole::resolvedType method. For a preliminary ver-
sion of the communication stars, you can use a fixed datatype such asFLOAT or INT .

The send/receive stars that are declared to supportANYTYPE but fail to support a par-
ticular datatype, should display an appropriate error message using theError::abortRun
method. Finally, each of these stars must callPortHole::numXfer to determine the size of
the block of data that needs to be transferred upon each invocation.

Spread/Collect stars

Consider a multi-rate example in which star A produces two tokens and star B con-
sumes one token each time. Suppose that the first invocation of star B is assigned to the same
processor as the star A (processor 1), but the second invocation is assigned to processor 2.
After star A fires in processor 1, the first token produced should be routed to star B assigned to
the same processor while the second token produced should be shipped to processor 2; inter-
processor communication is required! Since star A has one output port and that port should be
connected to two different destinations (one is to star B, the other is to a “send” star), we insert
a “spread” star after star A. As a result, the sub-galaxy created for processor 1 contains 4
blocks: star A is connected to a “spread” star, which in turn has two outputs connected to star
B and a “send” star. The role of a “spread” star is to spread tokens from a single output port-
hole to multiple destinations.

On the other hand, we may need to “collect” tokens from multiple sources to a single
input porthole. Suppose we reverse the connections in the above example: star B produces one
token and star A consumes two tokens. We have to insert a “collect” star at the input porthole
of star A to collect tokens from star B and a “receive” star that receives a token from processor
2.

The “spread” and “collect” stars are automatically inserted by the scheduler, and are
invisible to the user. Moreover, these stars can not be scheduled. They are added to sub-galax-
ies only for the allocation of memory and other resources before generating code. The
“spread” and “collect” stars themselves do not require extra memory since in most cases we
can overlay memory buffers. For example, in the first example, a buffer of size 2 is assigned
to the output of star A. Star B obtains the information it needs to fetch a token from the first
location of the buffer via the “spread” star, while the “send” star knows that it will fetch a
token from the second location. Thus, the buffers for the outputs of the “spread” star are over-
laid with the output buffer of star A.

The Almagest 13-25

Ptolemy Last updated: 10/17/97

In case there are delays or past tokens are used on the connection between two blocks
that should be connected through “spread” or “collect” stars, we need to copy data explicitly.
Thus, we will need extra memory for these stars. In this case, the user will see the existence of
“spread/collect” stars in the generated code.

Spread /Collect stars have only been implemented in the CGC domain so far.

13.5 Interface Issues
In Ptolemy 0.6 and later, we have developed a framework for interfacing code genera-

tion targets with other targets (simulation or code generation). In this section we will detail
how to support this new framework for a code generation target. To learn how to develop
applications within Ptolemy that use multiple targets that support this new framework, refer to
theInterface Issues section in theUser’s Manual - CG Domainchapter.

As with Wormholes , we have developed a way to interfaceN targets without requir-
ing N2 specialized interfaces. We do this by generating a customized interface (analogous to
the universalEventHorizon in wormholes) that is automatically built by using communica-
tion stars supplied by each code generation target. This interface is generated in C (using the
CGC domain) and runs on the Ptolemy host workstation.

To support this infrastructure, a target writer needs to define two pairs of communica-

CS-56X

CS-56X

S-56XC

C VHDL

VHDL C

VHDL C

DSP

VHDL

Spliced-in send/receive pairs

DSP VHDLSparc Sparc

User Specification

Sparc

Sparc

FIGURE 13-1: An interface constructed between three code generation domains. The interface
constructed by the framework is made up of communication pairs, each pair encir-
cled by an ellipse. The first (sine) and last (xgraph) stars are to be run on the host
workstation (CGC). The second block (analysis filter bank, a galaxy made up of
two polyphase FIR actors) is to be run on a DSP card (CG56). The third block
(synthesis filter bank, a galaxy made up of two polyphase FIR actors) is to be run
using a VHDL simulator.

13-26 Code Generation

U. C. Berkeley Department of EECS

tion stars and add target methods which return each of these pairs. The framework will then
build the interface by splicing in these stars as is shown in figure 13-1. These same actors are
used when constructing an interface to a Ptolemy simulation target as shown in figure 13-2.

These communication stars, described in section 13.4.2, are a specialized form of
send/receive stars. In addition to the previous assumptions in section 13.4.2, send/receive for
this infrastructure must also define C code to control the target for operations such as down-
loading, initializing and (if applicable) terminating the generated executable.

One pair of communication stars must communicate from the target to the CGC code
that will run on the Ptolemy host workstation. The other pair must communicate in the oppo-
site direction. The CGC send/receive stars are typically defined from a common base commu-
nication star specific for each target. This common base defines the C code to control a target
that was discussed in the previous paragraphs. Examples of send/receive stars that support this
infrastructure can be found in:

For the S56XTarget (Ariel S-56X DSP card):
$PTOLEMY/src/domains/cg56/targets/CGCXBase.pl
$PTOLEMY/src/domains/cg56/targets/CGCXSend.pl
$PTOLEMY/src/domains/cg56/targets/CGCXReceive.pl
$PTOLEMY/src/domains/cg56/targets/CG56XCSend.pl
$PTOLEMY/src/domains/cg56/targets/CG56XCReceive.pl

For the SimVSSTarget (Synopsis VSS Simulator):
$PTOLEMY/src/domains/vhdl/targets/CGCVSynchComm.pl

FIGURE 13-2: General Ptolemy simulation interface. The analysis and synthesis filter bank
blocks are identical to those described in figure 13-1. The SimIn and SimOut
stars are built into Ptolemy and defined in:

$PTOLEMY/src/domains/cgc/targets/main/CGCSDF{Send,Receive}.pl

CS-56X

CS-56X

S-56XC

C VHDL

VHDL C

VHDL C

DSP

VHDL

SimIn

SimOut

ExternalSim-SDF Sim-SDF

User Specification

Spliced-in simulation-SDF send/receive actors

The Almagest 13-27

Ptolemy Last updated: 10/17/97

$PTOLEMY/src/domains/vhdl/targets/CGCVSend.pl
$PTOLEMY/src/domains/vhdl/targets/CGCVReceive.pl
$PTOLEMY/src/domains/vhdl/targets/VHDLCSend.pl
$PTOLEMY/src/domains/vhdl/targets/VHDLCReceive.pl

After defining both pairs of communication stars, methods to instantiate these stars
must be defined in the target:

CommPair fromCGC(PortHole&);
CommPair toCGC(PortHole&);

A CommPair is a communication pair, where one of the communication stars in a
CGC star. TheS56XTarget::fromCGC method, illustrates the typical code needed for these
methods:

CommPair S56XTarget::fromCGC(PortHole&) {
CommPair pair(new CGCXSend,new CG56XCReceive);
configureCommPair(pair);
return pair;

}

TheconfigureCommPair function is defined in theS56XTarget.cc file and con-
figures the S56XTarget communication stars.

13-28 Code Generation

U. C. Berkeley Department of EECS

