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4.1  Introduction
Stars communicate by sending objects of typeParticle . A basic set of types, includ-

ing scalar and array types, built on theParticle  class, is built into the Ptolemy kernel. Since
all of these particle types are derived from the same base class, it is possible to write stars that
operate on any of them (by referring only to the base class). It is also possible to define new
types that contain arbitrary C++ objects.

There are currently eleven key data types defined in the Ptolemy kernel. There are four
numeric scalar types—complex, fixed-point, double precision floating-point, and integer—
described in Section 4.2. Ptolemy supports a limited form of user-defined type—theMessage
type, described in Section 4.3. Each of the scalar numeric types has an equivalent matrix type,
which uses a more complex version of the user-defined type mechanism; they are described in
Section 4.4.

There are two experimental types included in the basic set, containing strings and file
references, described in Section 4.5. Ptolemy allows stars to be written that will read and write
particles of any type; this mechanism is described in Section 4.6. Finally, some experimental
types that are not officially supported by Ptolemy are described in Section 4.7.

4.2  Scalar Numeric Types
There are four scalar numeric data types defined in the Ptolemy kernel: complex,

fixed-point, double precision floating-point, and integer. All of these four types can be read
from and written to portholes as described in “Reading inputs and writing outputs” on page 2-
17. The floating-point and integer data types are based on the standard C++double  andint
types, and need no further explanation. To support the other two types, the Ptolemy kernel
contains aComplex  class and aFix  class, which are described in the rest of this section.

4.2.1  The Complex data type

TheComplex  data type in Ptolemy contains real and imaginary components, each of
which is specified as a double precision floating-point number. The notation used to represent
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a complex number is a two number pair: (real, imaginary)—for example, (1.3,-4.5) corre-
sponds to the complex number 1.3− 4.5j. Complex  implements a subset of the functionality
of the complex number classes in the cfront and libg++ libraries, including most of the stan-
dard arithmetic operators and a few transcendental functions.

Constructors:

Complex()
Create a complex number initialized to zero—that is, (0.0, 0.0). For
example,
Complex C;

Complex(double real, double imag)
Create a complex number whose value is (real, imag). For example,
Complex C(1.3,-4.5);

Complex(const Complex& arg)
Create a complex number with the same value as the argument (the
copy constructor). For example,
Complex A(complexSourceNumber);

Basic operators:

The following list of arithmetic operators modify the value of the complex number. All func-
tions return a reference to the modified complex number (*this ).

Complex& operator = (const Complex& arg)

Complex& operator += (const Complex& arg)

Complex& operator -= (const Complex& arg)

Complex& operator *= (const Complex& arg)

Complex& operator /= (const Complex& arg)

Complex& operator *= (double arg)

Complex& operator /= (double arg)

There are two operators to return the real and imaginary parts of the complex number:

double real() const

double imag() const

Non-member functions and operators:

The following one- and two-argument operators return a new complex number:

Complex operator + (const Complex& x, const Complex& y)

Complex operator - (const Complex& x, const Complex& y)

Complex operator * (const Complex& x, const Complex& y)
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Complex operator * (double x, const Complex& y)

Complex operator * (const Complex& x, double y)

Complex operator / (const Complex& x, const Complex& y)

Complex operator / (const Complex& x, double y)

Complex operator - (const Complex& x)
Return the negative of the complex number.

Complex conj (const Complex& x)
Return the complex conjugate of the number.

Complex sin(const Complex& x)

Complex cos(const Complex& x)

Complex exp(const Complex& x)

Complex log(const Complex& x)

Complex sqrt(const Complex& x)

Complex pow(double base, const Complex& expon)

Complex pow(const Complex& base, const Complex& expon)

Other general operators:

double abs(const Complex& x)
Return the absolute value, defined to be the square root of the norm.

double arg(const Complex& x)
Return the value arctan(x.imag()/x.real()).

double norm(const Complex& x)
Return the value x.real() * x.real() + x.imag() * x.imag().

double real(const Complex& x)
Return the real part of the complex number.

double imag(const Complex& x)
Return the imaginary part of the complex number.

Comparison Operators:

int operator != (const Complex& x, const Complex& y)

int operator == (const Complex& x, const Complex& y)

4.2.2  The fixed-point data type

The fixed-point data type is implemented in Ptolemy by theFix  class. This class sup-
ports a two’s complement representation of a finite precision number. In fixed-point notation,
the partition between the integer part and the fractional part—the binary point—lies at a fixed
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position in the bit pattern. Its position represents a trade-off between precision and range. If
the binary point lies to the right of all bits, then there is no fractional part.

Constructing Fixed-point variables

Variables of typeFix  are defined by specifying the word length and the position of the
binary point. At the user-interface level, precision is specified either by setting a fixed-point
parameter to a “(value, precision)” pair, or by setting aprecision  parameter. The former
gives the value and precision of some fixed-point value, while the latter is typically used to
specify the internal precision of computations in a star.

In either case, the syntax of the precision is either“x.y”  or “m/n”, wherex is the num-
ber of integer bits (including the sign bit),y andm are the number of fractional bits, andn is
the total number of bits. Thus, the total number of bits in the fixed-point number (also called
its length) is x+y or n. For example, a fixed-point number with precision “3.5” has a total
length of 8 bits, with 3 bits to the left and 5 bits to the right of the binary point.

At the source code level, methods working onFix  objects either have the precision
passed as an “x.y” or “m/n” string, or as two C++ integers that specify the total number of bits
and the number of integer bits including the sign bit (that is,n andx). For example, suppose
you have a star with a precision parameter namedprecision. Consider the following code:

Fix x = Fix(((const char *) precision));
if (x.invalid())

 Error::abortRun(*this, "Invalid precision");

The “precision” parameter is cast to a string and passed as a constructor argument to theFix
class. The error check verifies that the precision was valid.

There is a maximum value for the total length of aFix  object which is specified by the
constantFIX_MAX_LENGTH in the file$PTOLEMY/src/kernel/Fix.h . The current value
is 64 bits. Numbers in theFix  class are represented using two’s complement notation, with
the sign bit stored in the bits to the left of the binary point. There must always be at least one
bit to the left of the binary point to store the sign.

In addition to its value, eachFix  object contains information about its precision and
error codes indicating overflow, divide-by-zero, or bad format parameters. The error codes are
set when errors occur in constructors or arithmetic operators. There are also fields to specify

a. whether rounding or truncation should take place when otherFix  values are
assigned to it—truncation is the default

b. the response to an overflow or underflow on assignment—the default is saturation
(see page 4-6).

Warning

TheFix  type is still experimental.

Fixed-point states

State variables can be declared asFix  or FixArray . The precision is specified by an
associated precision state using either of two syntaxes:
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     • Specifying just a value itself in the dialog box creates a fixed-point number with the
default length of 24 bits and with the position of the binary point set as required to
store the integer value. For example, the value 1.0 creates a fixed-point object with
precision 2.22, and the value 0.5 would create one with precision 1.23.

     • Specifying a (value, precision) pair create a fixed-point number with the specified pre-
cision. For example, the value (2.546, 3.5) creates a fixed-point object by casting the
double 2.546 to aFix  with precision 3.5.

Fixed-point inputs and outputs

Fix  types are available in Ptolemy as a type ofParticle . The conversion from an
int  or a double  to a Fix  takes place using theFix::Fix(double)  constructor which
makes aFix  object with the default word length of 24 bits and the number of integer bits as
needed required by the value. For instance, thedouble  10.3 will be converted to aFix  with
precision 5.19, since 5 is the minimum number of bits needed to represent the integer part, 10,
including its sign bit.

To use theFix  type in a star, the type of the portholes must be declared as “fix ”.
Stars that receive or transmit fixed-point data have parameters that specify the precision of the
input and output in bits, as well as the overflow behavior. Here is a simplified version of
SDFAddFix  star, configured for two inputs:

defstar {
name { AddFix }
domain {SDF}
derivedFrom{ SDFFix }
input {

name { input1 }
type { fix }

}
input {

name { input2 }
type { fix }

}
output {

name { output }
type { fix }

}
defstate {

name { OutputPrecision }
type { precision }
default { 2.14 }

desc {
Precision of the output in bits and precision of the accumulation.
When the value of the accumulation extends outside of the precision,
the OverflowHandler will be called.

}
}

(Note that the realAddFix  star supports any number of inputs.) By default, the precision used
by this star during the addition will have 2 bits to the left of the binary point and 14 bits to the
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right. Not shown here is the stateOverflowHandler , which is inherited from theSDFFix
star and which defaults tosaturate —that is, if the addition overflows, then the result satu-
rates, pegging it to either the largest positive or negative number representable. The result
value,sum, is initialized by the following code:

protected {
Fix sum;

}
begin {

SDFFix::begin();

sum = Fix( ((const char *) OutputPrecision) );
if ( sum.invalid() )

Error::abortRun(*this, "Invalid OutputPrecision");
sum.set_ovflow( ((const char*) OverflowHandler) );
if ( sum.invalid() )

Error::abortRun(*this, "Invalid OverflowHandler");
}

Thebegin  method checks the specified precision and overflow handler for correctness. Then,
in thego method, we usesum to calculate the result value, thus guaranteeing that the desired
precision and overflow handling are enforced. For example,

go {
sum.setToZero();
sum += Fix(input1%0);
checkOverflow(sum);
sum += Fix(input2%0);
checkOverflow(sum);
output%0 << sum;

}

(ThecheckOverflow  method is inherited fromSDFFix .) The protected membersum is an
uninitializedFix  object until thebegin  method runs. In thebegin  method, it is given the
precision specified byOutputPrecision . The go method initializes it to zero. If thego
method had instead assigned it a value specified by anotherFix  object, then it would acquire
the precision of that other object—at that point, it would beinitialized.

Assignment and overflow handling

Once aFix  object has been initialized, its precision does not change as long as the
object exists. The assignment operator is overloaded so that it checks whether the value of the
object to the right of the assignment fits into the precision of the left object. If not, then it takes
the appropriate overflow response is taken and set the overflow error bit.

If a Fix  object is created using the constructor that takes no arguments, as in thepro-
tected  declaration above, then that object is an uninitializedFix ; it can accept any assign-
ment, acquiring not only its value, but also its precision and overflow handler.

 The behavior of aFix  object on an overflow depends on the specifications and the
behavior of the object itself. Each object has a private data field that is initialized by the con-
structor; when there is an overflow, theoverflow_handler  looks at this field and uses the
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specified method to handle the overflow. This data field is set tosaturate  by default, and
can be set explicitly to any other desired overflow handling method using a function called
set_ovflow(<keyword>) . The keywords for overflow handling methods are:saturate
(default),zero_saturate , wrapped , warning . saturate  replaces the original value is
replaced by the maximum (for overflow) or minimum (for underflow) value representable
given the precision of theFix  object.zero_saturate  sets the value to zero.

Explicitly casting inputs

In the above example, the first line of thego method assigned the input to the pro-
tected membersum, which has the side-effect of quantizing the input to the precision ofsum.
We could have alternatively written thego method as follows:

go {
sum = Fix(input1%0) + Fix(input2%0);
output%0 << sum;

}

The behavior here is significantly different: the inputs are added using their own native preci-
sion, and only the result is quantized to the precision ofsum.

Some stars allow the user to select between these two different behaviors with a
parameter calledArrivingPrecision. If set toYES, the input particles are not explicitly cast;
they are used as they are; if set toNO, the input particles are cast to an internal precision,
which is usually specified by another parameter.

Here is the (abbreviated) source of theSDFGainFix  star, which demonstrates this
point:

defstar {
name { GainFix }
domain { SDF }
derivedFrom { SDFFix }
desc {

This is an amplifier; the fixed-point output is the fixed-point input
multiplied by the "gain" (default 1.0). The precision of "gain", the
input, and the output can be specified in bits.

}
input {

name { input }
type { fix }

}
output {

name { output }
type { fix }

}
defstate {

name { gain }
type { fix }
default { 1.0 }
desc { Gain of the star. }

}
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defstate {
name { ArrivingPrecision }
type {int}
default {"YES"}
desc {

Flag indicating whether or no to use the arriving particles as they
are: YES keeps the same precision, and NO casts them to the precision
specified by the parameter "InputPrecision". }

}
defstate {

name { InputPrecision }
type { precision }
default { 2.14 }
desc {

Precision of the input in bits. The input particles are only cast
to this precision if the parameter "ArrivingPrecision" is set to NO.

}
}
defstate {

name { OutputPrecision }
type { precision }
default { 2.14 }
desc {

Precision of the output in bits.
This is the precision that will hold the result of the arithmetic
operation on the inputs.
When the value of the product extends outside of the precision,
the OverflowHandler will be called.

}
protected {

Fix fixIn, out;
}
begin {

SDFFix::begin();

if ( ! int(ArrivingPrecision) ) {
fixIn = Fix( ((const char *) InputPrecision) );
if(fixIn.invalid())

Error::abortRun( *this, "Invalid InputPrecision" );
}

out = Fix( ((const char *) OutputPrecision) );
if ( out.invalid() )

Error::abortRun( *this, "Invalid OutputPrecision" );
out.set_ovflow( ((const char *) OverflowHandler) );

if(out.invalid())
Error::abortRun( *this,"Invalid OverflowHandler" );

}
go {

// all computations should be performed with out since
// that is the Fix variable with the desired overflow
// handler
out = Fix(gain);
if ( int(ArrivingPrecision) ) {
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out *= Fix(input%0);
}
else {

fixIn = Fix(input%0);
out *= fixIn;

}
checkOverflow(out);
output%0 << out;

}
// a wrap-up method is inherited from SDFFix
// if you defined your own, you should call SDFFix::wrapup()

}

Note that theSDFGainFix  star and many of theFix  stars are derived from the starSDFFix .
SDFFix  implements commonly used methods and defines two states:OverflowHandler
selects one of four overflow handlers to be called each time an overflow occurs; andRepor-
tOverflow , which, if true, causes the number and percentage of overflows that occurred for
that star during a simulation run to be reported in thewrapup  method.

Constructors:

Fix() Create aFix  number with unspecified precision and value zero.

Fix(int length, int intbits)
Create aFix  number with total word length oflength  bits andint-
bits  bits to the left of the binary point. The value is set to zero. If the
precision parameters are not valid, then an error bit is internally set so
that theinvalid  method will returnTRUE.

Fix(const char* precisionString)
Create aFix  number whose precision is determined byprecision-
String , which has the syntax “leftbits.rightbits”, where leftbits is the
number of bits to the left of the binary point andrightbits is the number
of bits to the right of the binary point, or “rightbits/totalbits”, where
totalbits is the total number of bits. The value is set to zero. If thepre-
cisionString  is not in the proper format, an error bit is internally set
so that theinvalid  method will returnTRUE.

Fix(double value)
Create aFix  with the default precision of 24 total bits for the word
length and set the number of integer bits to the minimum needed to rep-
resent the integer part of the number value. If the value given needs
more than 24 bits to represent, the value will be clipped and the number
stored will be the largest possible under the default precision (i.e. satu-
ration occurs). In this case an internal error bit is set so that the
ovf_occurred  method will returnTRUE.

Fix(int length, int intbits, double value)
Create aFix  with the specified precision and set its value to the given
value . The number is rounded to the closest representable number
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given the precision. If the precision parameters are not valid, then an
error bit is internally set so that theinvalid  method will returnTRUE.

Fix(const char* precisionString, double value)
Same as the previous constructor except that the precision is specified
by the givenprecisionString  instead of as two integer arguments.
If the precision parameters are not valid, then an error bit is internally
set so that theinvalid()  method will return true when called on the
object.

Fix(const char* precisionString, uint16* bits)
Create aFix  with the specified precision and set the bits precisely to
the ones in the givenbits . The first word pointed to bybits  contains
the most significant 16 bits of the representation. Only as many words
as are necessary to fetch the bits will be referenced from thebits  argu-
ment. For example:Fix("2.14",bits)  will only reference
bits[0] .

This constructor gets very close to the representation and is meant
mainly for debugging. It may be removed in the future.

Fix(const Fix& arg)
Copy constructor. Produces an exact duplicate ofarg .

Fix(int length, int intbits, const Fix& arg)
Read the value from theFix  argument and set to a new precision. If the
precision parameters are not valid, then an error bit is internally set so
that theinvalid  method will return true when called on the object. If
the value from the source will not fit, an error bit is set so that the
ovf_occurred  method will returnTRUE.

Functions to set or display information about the Fix number:

int len() const
Return the total word length of the Fix number.

int intb() const
Return the number of bits to the left of the binary point.

int precision() const
Return the number of bits to the right of the binary point.

int overflow() const
Return the code of the type of overflow response for theFix  number.
The possible codes are:
0 - ovf_saturate ,
1 - ovf_zero_saturate ,
2 - ovf_wrapped ,
3 - ovf_warning ,
4 - ovf_n_types .
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int roundMode() const
Return the rounding mode:1 for rounding,0 for truncation.

int signBit() const
ReturnTRUE if the value of theFix  number is negative,FALSE if it is
positive or zero.

int is_zero()
ReturnTRUE if the value of theFix  number is zero.

double max()
Return the maximum value representable using the current precision.

double min()
Return the minimum value representable using the current precision.

double value()
The value of theFix  number as a double.

void setToZero()
Set the value of theFix  number to zero.

void set_overflow(int value)
Set the overflow type.

void set_rounding(int value)
Set the rounding type:TRUE for rounding,FALSE for truncation.

void initialize()
Discard the current precision format and set theFix  number to zero.

There are a few functions for backward compatibility:

void set_ovflow(const char*)
Set the overflow using a name.

void Set_MASK(int value)
Set the rounding type. Same functionality asset_rounding() .

Comparison function:

int compare (const Fix& a, const Fix& b)
Compare twoFix  numbers. Return –1 ifa < b, 0 if a = b, 1 if a > b.

The following functions are for use with the error condition fields:

int ovf_occurred()
ReturnTRUE if an overflow has occurred as the result of some opera-
tion like addition or assignment.

int invalid()
ReturnTRUE if the current value of theFix  number is invalid due to it
having an improper precision format, or if some operation caused a
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divide by zero.

int dbz() ReturnTRUE if a divide by zero error occurred.

void clear_errors()
Reset all error bit fields to zero.

Operators:

Fix& operator = (const Fix& arg)
Assignment operator. If*this  does not have its precision format set
(i.e. it is uninitialized), the sourceFix  is copied. Otherwise, the source
Fix  value is converted to the existing precision. Either truncation or
rounding takes place, based on the value of the rounding bit of the cur-
rent object. Overflow results either in saturation, “zero saturation”
(replacing the result with zero), or a warning error message, depending
on the overflow field of the object. In these cases,ovf_occurred  will
returnTRUE on the result.

Fix& operator = (double arg)
Assignment operator. The double value is first converted to a default
precisionFix  number and then assigned to*this .

The function of these arithmetic operators should be self-explanatory:

Fix& operator += (const Fix&)

Fix& operator -= (const Fix&)

Fix& operator *= (const Fix&)

Fix& operator *= (int)

Fix& operator /= (const Fix&)

Fix operator + (const Fix&, const Fix&)

Fix operator - (const Fix&, const Fix&)

Fix operator * (const Fix&, const Fix&)

Fix operator * (const Fix&, int)

Fix operator * (int, const Fix&)

Fix operator / (const Fix&, const Fix&)

Fix operator - (const Fix&) // unary minus

int operator == (const Fix& a, const Fix& b)

int operator != (const Fix& a, const Fix& b)

int operator >= (const Fix& a, const Fix& b)

int operator <= (const Fix& a, const Fix& b)

int operator > (const Fix& a, const Fix& b)
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int operator < (const Fix& a, const Fix& b)

Note:

     • These operators are designed so that overflow does not, as a rule, occur (the return
value has a wider format than that of its arguments). The exception is when the result
cannot be represented in aFix  with all 64 bits before the binary point.

     • The output of any operation will have error codes that are the logical OR of those of
the arguments to the operation, plus any additional errors that occurred during the
operation (like divide by zero).

     • The division operation is currently a cheat: it converts to double and computes the
result, converting back toFix .

     • The relational operators ==, !=, >=, <=, >, < are all written in terms of a function
int compare(const Fix& a, const Fix& b)
This functions returns -1 ifa < b, 0 if a = b, and 1 ifa > b. The comparison is exact
(every bit is checked) if the two values have the same precision format. If the preci-
sions are different, the arguments are converted to doubles and compared. Sincedou-
ble  values only have an accuracy of about 53 bits on most machines, this may cause
false equality reports forFix  values with many bits.

Conversions:

operator int() const
Return the value of theFix  number as an integer, truncating towards
zero.

operator float() const

operator double() const
Convert to a float or a double, creating an exact result when possible.

void complement()
Replace the current value by its complement.

Fix overflow, rounding, and errors.

TheFix  class defines the following enumerated values for overflow handling:

Fix::ovf_saturate

Fix::ovf_zero_saturate

Fix::ovf_wrapped

Fix::ovf_warning

They may be used as arguments to theset_overflow  method, as in the following example:

out.set_overflow(Fix::ovf_saturate);

The member function
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int overflow() const;

returns the overflow type. This returned result can be compared against the above enumerated
values. Overflow types may also be specified as strings, using the method

void set_ovflow(const char* overflow_type);

the overflow_type  argument may be one ofsaturate , zero_saturate , wrapped , or
warning .

The rounding behavior of aFix  value may be set by calling

void set_rounding(int value);

If the argument is false, or has the valueFix::mask_truncate , truncation will occur. If the
argument is nonzero (for example, if it has the valueFix::mask_truncate_round , round-
ing will occur. The older nameSet_MASK is a synonym forset_rounding .

The following functions access the error bits of aFix  result:

int ovf_occurred() const;

int invalid() const;

int dbz() const;

The first function returnsTRUE if there have been any overflows in computing the value. The
second returnsTRUE if the value is invalid, because of invalid precision parameters or a divide
by zero. The third returnsTRUE only for divide by zero.

4.3  Defining New Data Types
The Ptolemy heterogeneous message interface provides a mechanism for stars to trans-

mit arbitrary objects to other stars. Our design satisfies the following requirements:

     • Existing stars (stars that were written before the message interface was added) that
handleANYTYPE work with message particles without change.

     • Message portholes can send different types of messages during the same simulation.
This is especially useful for modeling communication networks.

     • It avoids copying large messages by using a reference count mechanism, as in many
C++ classes (for example, string classes).

     • It is possible to safely modify large messages without excessive memory allocation
and deallocation.

     • It is (relatively) easy for users to define their own message types; no change to the ker-
nel is required to support new message types.

The “message” type is understood by Ptolemy to mean a particle containing a message. There
are three classes that implement the support for message types:

     • TheMessage  class is the base class from which all other message data types are
derived. A user who wishes to define an application-specific message type derives a
new class fromMessage .

     • TheEnvelope  class contains a pointer to an derived fromMessage . When anEnve-
lope  objects is copied or duplicated, the new envelope simply sets its own pointer to
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the pointer contained in the original. Several envelopes can thus reference the same
Message  object. EachMessage  object contains a reference count, which tracks how
manyEnvelope  objects reference it; when the last reference is removed, theMes-
sage  is deleted.

     • TheMessageParticle  class is a type ofParticle  (like IntParticle , Float-
Particle , etc.); it contains aEnvelope . Ports of type “message” transmit and
receive objects of this type.

Class Particle  contains two member functions for message support:getMessage , to
receive a message, and the<< operator with anEnvelope  as the right argument, to load a
message into a particle. These functions return errors in the base class; they are overridden in
theMessageParticle  class with functions that perform the expected operation.

4.3.1  Defining a new Message class

Every user-defined message is derived from classMessage . Certain virtual functions
defined in that class must be overridden; others may optionally be overridden. Here is an
example of a user-defined message type:

// This is a simple vector message object. It stores
// an array of integer values of arbitrary length.
// The length is specified by the constructor.
#include "Message.h"
class IntVecData: public Message {
private:

int len;
init(int length,int *srcData) {

len = length;
data = new int[len];
for (int i = 0; i < len; i++)

data[i] = *srcData++;
}

public:
// the pointer is public for simplicity
int *data;

int length() const { return len;}

// functions for type-checking
const char* dataType() const { return "IntVecData";}
// isA responds TRUE if given the name of the class or
// of any baseclass.
int isA(const char* typ) const {

if (strcmp(typ,"IntVecData") == 0) return TRUE;
else return Message::isA(typ);

}
// constructor: makes an uninitialized array
IntVecData(int length): len(length) {

data = new int[length];
}
// constructor: makes an initialized array from a int array
IntVecData(int length,int *srcData) { init(length,srcData);}
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// copy constructor
IntVecData(const IntVecData& src) { init(src.len,src.data);}

// clone: make a duplicate object
Message* clone() const { return new IntVecData(*this);}

// destructor
~IntVecData() {

delete data;
}

};

This message object can contain a vector of integers of arbitrary length. Some functions in the
class are arbitrary and the user may define them in whatever way is most convenient; however,
there are some requirements.

The class must redefine thedataType  method from classMessage . This function
returns a string identifying the message type. This string should be identical to the name of the
class. In addition, theisA  method must be defined. TheisA  method responds withTRUE (1)
if given the name of the class or of any base class; it returnsFALSE (0) otherwise. This mech-
anism permits stars to handle any of a whole group of message types, even for classes that are
defined after the star is written.

Because of the regular structure ofisA  function bodies, macros are provided to gener-
ate them. TheISA_INLINE  macro expands to an inline definition of the function; for exam-
ple,

ISA_INLINE(IntVecData,Message)

could have been written above instead of the definition ofisA  to generate exactly the same
code. Alternatively, to put the function body in a.cc  file, one can write

int isA(const char*) const;

in the class definition and put

ISA_FUNC(IntVecData,Message)

in the.cc  file (or wherever the methods are defined).

The class must define a copy constructor, unless the default copy constructor generated
by the compiler, which does memberwise copying, will do the job.

The class must redefine theclone  method of classMessage . Given that the copy
constructor is defined, the form shown in the example, where a new object is created with the
new operator and the copy constructor, will suffice.

In addition, the user may optionally define type conversion and printing functions if
they make sense. If a star that produces messages is connected to a star that expects integers
(or floating values, or complex values), the appropriate type conversion function is called. The
base class,Message , defines the virtual conversion functionsasInt() , asFloat() , and
asComplex()  and the printing methodprint()  — see the file$PTOLEMY/src/kernel/
Message.h  for their exact types. The base class conversion functions assert a run-time error,
and the default print function returns aStringList  saying

<type>: no print method
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wheretype is whatever is returned bydataType() .

By redefining these methods, you can make it legal to connect a star that generates
messages to a star that expects integer, floating, or complex particles, or you can connect to a
Printer  or XMgraph  star (forXMgraph  to work, you must define theasFloat  function; for
Printer  to work, you must define theprint  method).

4.3.2  Use of the Envelope class

The Envelope  class references objects of classMessage  or derived classes. Once a
message object is placed into an envelope object, the envelope takes over responsibility for
managing its memory: maintaining reference counts, and deleting the message when it is no
longer needed.

The constructor (which takes as its argument a reference to aMessage ), copy con-
structor, assignment operator, and destructor ofEnvelope  manipulate the reference counts of
the referencesMessage  object. Assignment simply copies a pointer and increments the refer-
ence count. When the destructor of aEnvelope  is called, the reference count of theMessage
object is decremented; if it becomes zero, theMessage  object is deleted. Because of this dele-
tion, aMessage  must never be put inside aEnvelope  unless it was created with thenew
operator. Once aMessage  object is put into anEnvelope  it must never be explicitly deleted;
it will “live” as long as there is at least oneEnvelope  that contains it, and it will then be
deleted automatically.

It is possible for anEnvelope  to be “empty”. If it is, theempty  method will return
TRUE, and the data field will point to a special “dummy message” with typeDUMMY that has no
data in it.

ThedataType  method ofEnvelope  returns the datatype of the containedMessage
object; the methodsasInt() , asFloat() , asComplex() , andprint()  are also “passed
through” in a similar way to the contained object.

Two Envelope  methods are provided for convenience to make type checking simpler:
typeCheck  andtypeError . A simple example illustrates their use:

if (!envelope.typeCheck("IntVecData")) {
Error::abortRun(*this, envelope.typeError("IntVecData"));
return;

}

The methodtypeCheck  calls isA  on the message contents and returns the result, so an error
will be reported if the message contents are notIntVecData  and are not derived fromIntV-
ecData . Since the above code segment is so common in stars; a macro is included inMes-
sage.h  to generate it; the macro

TYPE_CHECK(envelope,"IntVecData");

expands to essentially the same code as above. ThetypeError  method generates an appro-
priate error message:

Expected message type ’ arg ’, got ’ type ’

To access the data, two methods are provided:myData()  andwritableCopy() . The
myData  function returns a pointer to the containedMessage -derived object.The data pointed
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to by this pointer must not be modified, since otherEnvelope  objects in the program may
also contain it. If you convert its type, always make sure that the converted type is a pointer to
const  (see the programming example forUnPackInt  below). This ensures that the compiler
will complain if you do anything illegal.

ThewritableCopy  function also returns a pointer to the contained object, but with a
difference. If the reference count is one, the envelope is emptied (set to the dummy message)
and the contents are returned. If the reference count is greater than one, aclone of the contents
is made (by calling itsclone()  function) and returned; again the envelope is zeroed (to pre-
vent the making of additional clones later on).

In some cases, a star writer will need to keep a receivedMessage  object around
between executions. The best way to do this is to have the star contain a member of type
Envelope , and to use this member object to hold the message data between executions. Mes-
sages should always be kept in envelopes so that the user does not have to worry about manag-
ing their memory.

4.3.3  Use of the MessageParticle class

If a porthole is of type “message”, then its particles are objects of the classMes-
sageParticle . A MessageParticle  is simply a particle whose data field is anEnve-
lope , which means that it can hold aMessage  in the same way thatEnvelope  objects do.

Many methods of theParticle  class are redefined in theMessageParticle  class
to cause a run-time error; for example, it is illegal to send an integer, floating, or complex
number to the particle with the<< operator. The conversion operators (conversion to type
int , double , or Complex ) return errors by default, but can be made legal by redefining the
asInt , asFloat , or asComplex  methods for a specific message type.

The principal operations onMessageParticle  objects are<< with an argument of
type Envelope , to load a message into the particle, andgetMessage(Envelope&) , to
transfer message contents from the particle into a user-supplied message. ThegetMessage
method removes the message contents from the particle1. In cases where the destructive
behavior of getMessage  cannot be tolerated, an alternative interface,accessMes-
sage(Envelope&) , is provided. It does not remove the message contents from the particle.
Promiscuous use ofaccessMessage  in systems where large-sized messages may be present
can cause the amount of virtual memory occupied to grow (though all message will be deleted
eventually).

4.3.4  Use of messages in stars

Here are a couple of simple examples of stars that produce and consume messages. For
more advanced samples, look in the Ptolemy distribution for stars that produce or consume
messages. The image processing classes and stars, which are briefly described below in
“Image particles” on page 4-40, provide a particularly rich set of examples. The matrix classes
described on page 4-21 are also good examples. The matrix classes are recognized in the
Ptolemy kernel, and supported bypigi  andptlang .

1. The reason for this “aggressive reclamation” policy (both here and in other places) is to minimize the
number of no-longer-needed messages in the system and to prevent unnecessary clones from being
generated by writableCopy() by eliminating references to Message objects as soon as possible.
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defstar {
name { PackInt }
domain { SDF }
desc { Accept integer inputs and produce IntVecData messages.}
defstate {

name { length }
type { int }
default { 10 }
desc { number of values per message }

}
input {

name { input }
type { int }

}
output {

name { output }
type { message }

}
ccinclude { "Message.h", "IntVecData.h" }
start {

input.setSDFParams(int(length),int(length-1));
}
go {

int l = length;
IntVecData * pd = new IntVecData(l);
// Fill in message. input%0 is newest, must reverse
for (int i = 0; i < l; i++)

pd->data[l-i-1] = int(input%i);
Envelope pkt(*pd);
output%0 << pkt;

}
}

Since this is an SDF star, it must produce and consume a constant number of tokens on each
step, so the message length must be fixed (though it is controllable with a state). See “Setting
SDF porthole parameters” on page 7-1 for an explanation of thesetSDFParams  method.
Notice that the output porthole is declared to be of typemessage . Notice also theccin-
clude  statement; we must include the fileMessage.h  in all message-manipulating stars, and
we must also include the definition of the specific message type we wish to use.

The code itself is fairly straightforward—anIntVecData  object is created withnew,
is filled in with data, and is put into anEnvelope  and sent. Resist the temptation to declare
the IntVecData  object as a local variable: it will not work. It must reside on the heap. Here
is a star to do the inverse operation:

defstar {
name { UnPackInt }
domain { SDF }
desc {

Accept IntVecData messages and produce integers. The first ’length’
values from each message are produced.
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}
defstate {

name { length }
type { int }
default { 10 }
desc { number of values output per message }

}
input {

name { input }
type { message }

}
output {

name { output }
type { int }

}
ccinclude { "Message.h", "IntVecData.h" }
start {

output.setSDFParams(int(length),int(length-1));
}
go {

Envelope pkt;
(input%0).getMessage(pkt);
if (!pkt.typeCheck("IntVecData")) {

Error::abortRun(*this,pkt.typeError("IntVecData"));
return;

}
const IntVecData * pd = (const IntVecData *)pkt.myData();
if (pd.length() < int(length)) {

Error::abortRun(*this,
"Received message is too short");

return;
}
for (i = 0; i < int(length); i++) {

output%(int(length)-i-1) << pd->data[i];
}

}
}

Because the domain is SDF, we must always produce the same number of outputs regardless
of the size of the messages. The simple approach taken here is to require at least a certain
amount of data or else to trigger an error and abort the run.

The operations here are to declare an envelope, get the data from the particle into the
envelope withgetMessage , check the type, and then access the contents. Notice the cast
operation; this is needed becausemyData  returns a const pointer to classMessage . It is
important that we converted the pointer toconst IntVecData * and notIntVecData*
because we have no right to modify the message through this pointer. Many C++ compilers
will not warn by default about “casting away const”; we recommend turning on compiler
warnings when compiling code that uses messages to avoid getting into trouble (for g++, say
-Wcast-qual ; for cfront-derived compilers, say+w).

If we wished to modify the message and then send the result as an output, we would
call writableCopy  instead ofmyData , modify the object, then send it on its way as in the
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previous star.

4.4  The Matrix Data Types
The primary support for matrix types in Ptolemy is thePtMatrix  class.PtMatrix  is

derived from theMessage  class, and uses the various kernel support functions for working
with theMessage  data type as described in Section 4.3 on page 4-14. This section discusses
thePtMatrix  class and how to write stars and programs using this class.

4.4.1  Design philosophy

The PtMatrix  class implements two dimensional arrays. There are four key classes
derived fromPtMatrix : ComplexMatrix , FixMatrix , FloatMatrix , andIntMatrix .
(Note thatFloatMatrix  is a matrix of C++double s.) A review of matrix classes imple-
mented by other programmers revealed two main styles of implementation: a vector of vec-
tors, or a simple array. In addition, there are two main formats of storing the entries: column-
major ordering, where all the entries in the first column are stored before the entries of the sec-
ond column, and row-major ordering, where the entries are stored starting with the first row.
Column-major ordering is how Fortran stores arrays whereas row-major ordering is how C
stores arrays.

The PtolemyPtMatrix  class stores data as a simple C array, and therefore uses row-
major ordering. Row-major ordering also seems more natural for operations such as image
and video processing, but it might make it more difficult to interface Ptolemy’sPtMatrix
class with Fortran library calls. The limits of interfacing Ptolemy’sPtMatrix  class with other
software is discussed in Section 4.4.5 on page 4-33.

The design decision to store data entries in a C array rather than as an array of vector
objects has a greater effect on performance than the decision whether to use row major or col-
umn major ordering. There are a couple of advantages to implementing a matrix class as an
array of vector class objects: referencing an entry may be faster, and it is easier to do opera-
tions on a whole row or column of the matrix, depending on whether the format is an array of
column vectors or an array of row vectors. An entry lookup in an array of row vectors requires
two index lookups: one to find the desired row vector in the array and one to find the desired
entry of that row. A linear array, in contrast, requires a multiplication to find the location of
first element of the desired row and then an index lookup to find the column in that row. For
example,A[row][col]  is equivalent to looking up&data + (row*numRows + col)  if
the entries are stored in a C arraydata[] , whereas it is *(&rowArray + row) + col  if
looking up the entry in an array of vectors format.

Although the array of vectors format has faster lookups, it is also more expensive to
create and delete the matrix. Each vector of the array must be created in the matrix construc-
tor, and each vector must also be deleted by the matrix destructor. The array of vectors format
also requires more memory to store the data and the extra array of vectors.

With the advantages and disadvantages of the two systems in mind, we chose to imple-
ment thePtMatrix  class with the data stored in a standard C array. Ptolemy’s environment is
such that matrices are created and deleted constantly as needed by stars: this negates much of
the speedup gained from faster lookups. Also, we felt it was important to keep the design of
the class simple and the memory usage efficient because of Ptolemy’s increasing size and
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complexity.

4.4.2  The PtMatrix class

The PtMatrix  base class is derived from theMessage  class so that we can use
Ptolemy’sEnvelope  class and message-handling system. However, theMessageParticle
class is not used by thePtMatrix  class; instead, there are specialMatrixEnvParticle
classes defined to handle type checking between the various types of matrices. This allows the
system to automatically detect when two stars with different matrix type inputs and outputs
are incorrectly connected together.1 Also, theMatrixEnvParticle  class has some special
functions not found in the standardMessageParticle  class to allow easier handling of
PtMatrix  class messages. A discussion of how to passPtMatrix  class objects using the
MatrixEnvParticles  can be found in a following section.

As explained previously, there are currently four data-specific matrix classes:Com-
plexMatrix , FixMatrix , FloatMatrix , andIntMatrix . Each of these classes stores its
entries in a standard C array nameddata , which is an array of data objects corresponding to
thePtMatrix  type:Complex , Fix , double , or int . These four matrix classes implement a
common set of operators and functions; in addition, theComplexMatrix  class has a few spe-
cial methods such asconjugate()  andhermitian()  and theFixMatrix  class has a num-
ber of special constructors that allow the user to specify the precision of the entries in the
matrix. Generally, all entries of aFixMatrix  will have the same precision.

The matrix classes were designed to take full advantage of operator overloading in
C++ so that operations on matrix objects can be written much like operations on scalar ones.
For example, the two-operand multiplyoperator *  has been defined so that ifA andB are
matrices,A * B will return a third matrix that is the matrix product ofA andB.

4.4.3  Public functions and operators for the PtMatrix class

The functions and operators listed below are implemented by all matrix classes (Com-
plexMatrix , FixMatrix , FloatMatrix , and IntMatrix ) unless otherwise noted. The
symbols used are:

     • XXX refers to one of the following:Complex , Fix , Float , or Int

     • xxx  refers to one of the following:Complex , Fix , double , or int

Functions and Operators to access entries of the Matrix:

xxx& entry(int i)
Example: A.entry(i)
Return thei th entry of the matrix when its data storage is considered to
be a linear array. This is useful for quick operations on every entry of
the matrix  without regard for the specific (row,column) position of
that entry. The total number of entries in the matrix is defined to be
numRows() * numCols() , with indices ranging from 0 tonum-

1. We recommend, however, that you do not adapt this method to your own types, but use the standard
method of adding new message types described in Section 4.3. The method currently used for the
matrix classes may not be supported in future releases.
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Rows() * numCols() - 1 . This function returns a reference to the
actual entry in the matrix so that assignments can be made to that entry.
In general, functions that wish to linearly reference each entry of a
matrix A should use this function instead of the expressionA.data[i]
because classes which are derived fromPtMatrix can then overload
theentry()  method and reuse the same functions.

xxx* operator [] (int row)
Example: A[row][column]
Return a pointer to the start of the row in the matrix’s data storage.
(This operation is different to matrix classes defined as arrays of vec-
tors, in which the[]  operator returns the vector representing the
desired row.) This operator is generally not used alone but with the[]
operator defined on C arrays, so thatA[i][j]  will give you the entry
of the matrix in thei th row andj th column of the data storage. The
range of rows is from 0 tonumRows()-1  and the range of columns is
from 0 tonumCols()-1 .

Constructors:

XXXMatrix()
Example: IntMatrix A ;
Create an uninitialized matrix. The number of rows and columns are set
to zero and no memory is allocated for the storage of data.

XXXMatrix(int numRow, int numCol)
Example: FloatMatrix A(3,2) ;
Create a matrix with dimensionsnumRow by numCol . Memory is allo-
cated for the data storage but the entries are uninitialized.

XXXMatrix(int numRow, int numCol, PortHole& p)
Example: ComplexMatrix(3,3,myPortHole)
Create a matrix of the given dimensions and initialize the entries by
assigning to them values taken from the portholemyPortHole . The
entries are assigned in a rasterized sequence so that the value of the first
particle removed from the porthole is assigned to entry (0,0), the sec-
ond particle’s value to entry (0,1), etc. It is assumed that the porthole
has enough particles in its buffer to fill all the entries of the new matrix.

XXXMatrix(int numRow, int numCol, XXXArrayState& dataArray)
Example:IntMatrix A(2,2,myIntArrayState);
Create a matrix with the given dimensions and initialize the entries to
the values in the givenArrayState . The values of theArrayState
fill the matrix in rasterized sequence so that entry (0,0) of the matrix is
the first entry of theArrayState , entry (0,1) of the matrix is the sec-
ond, etc. An error is generated if theArrayState  does not have
enough values to initialize the whole matrix.

XXXMatrix(const XXXMatrix& src)
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Example: FixMatrix A(B);
This is the copy constructor. A new matrix is formed with the same
dimensions as the source matrix and the data values are copied from the
source.

XXXMatrix(const XXXMatrix& src, int startRow, int startCol, int
numRow, int numCol)
Example: IntMatrix A(B,2,2,3,3);
This special “submatrix” constructor creates a new matrix whose val-
ues come from a submatrix of the source. The argumentsstartRow
and startCols  specify the starting row and column of the source
matrix. The valuesnumRow andnumCol  specify the dimensions of the
new matrix. The sumstartRow + numRow  must not be greater than
the maximum number of rows in the source matrix; similarly,start-
Col + numCol  must not be greater than the maximum number of col-
umns in the source. For example, ifB is a matrix with dimension (4,4),
thenA(B,1,1,2,2)  would create a new matrixA that is a (2,2) matrix
with data values from the center quadrant of matrixB, so thatA[0][0]
== B[1][1] , A[0][1] == B[1][2] , A[1][0] == B[2][1] , and
A[1][1] == B[2][2] .

The following are special constructors for theFixMatrix  class that allow the programmer to
specify the precision of the entries of theFixMatrix .

FixMatrix(int numRow, int numCol, int length, int intBits)
Example: FixMatrix A(2,2,14,4);
Create aFixMatrix  with the given dimensions such that each entry is
a fixed-point number with precision as given by thelength  andint-
Bits  inputs.

FixMatrix(int numRow, int numCol, int length, int intBits,
PortHole& myPortHole)
Example: FixMatrix A(2,2,14,4);
Create aFixMatrix  with the given dimensions such that each entry is
a fixed-point number with precision as given by thelength  andint-
Bits  inputs and initialized with the values that are read from the parti-
cles contained in the portholemyPortHole .

FixMatrix(int numRow, int numCol, int length, int intBits, Fix-
ArrayState& dataArray)
Example: FixMatrix A(2,2,14,4);
Create aFixMatrix  with the given dimensions such that each entry is
a fixed-point number with precision as given by thelength  andint-
Bits  inputs and initialized with the values in the givenFixArray-
State .

There are also special copy constructors for theFixMatrix  class that allow the programmer
to specify the precision of the entries of theFixMatrix  as they are copied from the sources.
These copy constructors are usually used for easy conversion between the other matrix types.
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The last argument specifies the type of masking function (truncate, rounding, etc.) to be used
when doing the conversion.

FixMatrix(const XXXMatrix& src, int length, int intBits,
int round)
Example: FixMatrix A(CxMatrix,4,14,TRUE);
Create aFixMatrix  with the given dimensions such that each entry is
a fixed-point number with precision as given by thelength  andint-
Bits  arguments. Each entry of the new matrix is copied from the cor-
responding entry of the src matrix and converted as specified by the
round  argument.

Comparison operators:

int operator == (const XXXMatrix& src)
Example: if(A == B) then  ...
ReturnTRUE if the two matrices have the same dimensions and every
entry inA is equal to the corresponding entry inB. ReturnFALSE other-
wise.

int operator != (const XXXMatrix& src)
Example: if(A != B) then  ...
ReturnTRUE if the two matrices have different dimensions or if any
entry ofA differs from the corresponding entry inB. ReturnFALSE oth-
erwise.

Conversion operators:

Each matrix class has a conversion operator so that the programmer can explicitly cast
one type of matrix to another (this casting is done by copying). It would have been possible to
make conversions occur automatically when needed, but because these conversions can be
quite expensive for large matrices, and because unexpected results might occur if the user did
not intend for a conversion to occur, we chose to require that these conversions be used explic-
itly.

operator XXXMatrix () const
Example: FloatMatrix C = A * (FloatMatrix)B;
Convert a matrix of one type into another. These conversions allow the
various arithmetic operators, such as*  and+, to be used on matrices of
different type. For example, ifA in the example above is a (3,3)
FloatMatrix  andB is a (3,2)IntMatrix , thenC is aFloatMatrix
with dimensions (3,2).

Destructive replacement operators:

These operators are member functions that modify the current value of the object. In
the following examples,A is usually the lvalue (*this ). All operators return*this :

XXXMatrix& operator = (const XXXMatrix& src)
Example: A = B;
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This is the assignment operator: makeA into a matrix that is a copy of
B. If A already has allocated data storage, then the size of this data stor-
age is compared to the size ofB. If they are equal, then the dimensions
of A are simply set to those ofB and the entries copied. If they are not
equal, the data storage is freed and reallocated before copying.

XXXMatrix& operator = (xxx value)
Example: A = value;
Assign each entry ofA to have the givenvalue . Memory management
is handled as in the previous operator.
Note: this operator is targeted for deletion. Do not use it.

XXXMatrix& operator += (const XXXMatrix& src)
Example: A += B;
Perform the operationA.entry(i) += B.entry(i)  for each entry in
A. A andB must have the same dimensions.

XXXMatrix& operator += (xxx value)
Example: A += value;
Add the scalarvalue  to each entry in the matrix.

XXXMatrix& operator -= (const XXXMatrix& src)
Example: A -= B;
Perform the operationA.entry(i) -= B.entry(i)  for each entry in
A. A andB must have the same dimensions.

XXXMatrix& operator -= (xxx value)
Example: A -= value;
Subtract the scalarvalue  from each entry in the matrix.

XXXMatrix& operator *= (const XXXMatrix& src)
Example: A *= B;
Perform the operationA.entry(i) *= B.entry(i)  for each entry in
A. A andB must have the same dimensions. Note: this is an elementwise
operation and isnot equivalent to A = A * B.

XXXMatrix& operator *= (xxx value)
Example: A *= value ;
Multiply each entry of the matrix by the scalarvalue .

XXXMatrix& operator /= (const XXXMatrix& src)
Example: A /= B;
Perform the operationA.entry(i) /= B.entry(i)  for each entry in
A. A andB must have the same dimensions.

XXXMatrix& operator /= (xxx value)
Example: A /= value
Divide each entry of the matrix by the scalarvalue . The scalar value
must be non-zero.
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XXXMatrix& operator identity()
Example: A.identity();
ChangeA to be an identity matrix so that each entry on the diagonal is 1
and all off-diagonal entries are 0.

Non-destructive operators (these return a new matrix):

XXXMatrix operator - ()
Example: B = -A;
Return a new matrix such that each element is the negative of the ele-
ment of the source.

XXXMatrix operator ~ ()
Example: B = ~A;
Return a new matrix that is the transpose of the source.

XXXMatrix operator ! ()
Example: B = !A;
Return a new matrix which is the inverse of the source.

XXXMatrix operator ^ (int exponent)
Example: B = A^2;
Return a new matrix which is the source matrix to the givenexponent
power. Theexponent  can be negative, in which case theexponent  is
first treated as a positive number and the final result is then inverted. So
A^2 == A*A  andA^(-3) == !(A*A*A) .

XXXMatrix transpose()
Example: B = A.transpose();
This is the same as the~ operator  but called by a function name
instead of as an operator.

XXXMatrix inverse()
Example: B = A.inverse();
This is the same as the! operator  but called by a function name
instead of as an operator.

ComplexMatrix conjugate()
Example: ComplexMatrix B = A.conjugate();
Return a new matrix such that each element is the complex conjugate of
the source. This function is defined for theComplexMatrix  class only.

ComplexMatrix hermitian()
Example: ComplexMatrix B = A.hermitian();
Return a new matrix which is the Hermitian Transpose (conjugate
transpose) of the source. This function is defined for theComplexMa-
trix  class only.
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Non-member binary operators:

XXXMatrix operator + (const XXXMatrix& left, const XXXMatrix&
right)
Example: A = B + C;
Return a new matrix which is the sum of the first two. Theleft  and
right  source matrices must have the same dimensions.

XXXMatrix operator + (const xxx& scalar, const XXXMatrix&
matrix)
Example: A = 5 + B;
Return a new matrix that has entries of thesource  matrix added to a
scalar  value.

XXXMatrix operator + (const XXXMatrix& matrix, const xxx& sca-
lar)
Example: A = B + 5;
Return a new matrix that has entries of the source matrix added to a
scalar value. (This is the same as the previous operator but with the
scalar  on the right.)

XXXMatrix operator - (const XXXMatrix& left, const XXXMatrix&
right)
Example: A = B - C;
Return a new matrix which is the difference of the first two. Theleft
andright  source matrices must have the same dimensions.

XXXMatrix operator - (const xxx& scalar, const XXXMatrix&
matrix)
Example: A = 5 - B;
Return a new matrix that has the negative of the entries of the source
matrix  added to ascalar  value.

XXXMatrix operator - (const XXXMatrix& matrix, const xxx& sca-
lar)
Example: A = B - 5;
Return a new matrix such that each entry is the corresponding entry of
the sourcematrix  minus thescalar  value.

XXXMatrix operator * (const XXXMatrix& left, const XXXMatrix&
right)
Example: A = B * C;
Return a new matrix which is the matrix product of the first two. The
left  and right  source matrices must have compatible dimensions
(i.e. A.numCols() == B.numRows() .

XXXMatrix operator * (const xxx& scalar, const XXXMatrix&
matrix)
Example: A = 5 * B;
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Return a new matrix that has entries of the sourcematrix  multiplied
by ascalar  value.

XXXMatrix operator * (const XXXMatrix& matrix, const xxx& sca-
lar)
Example: A = B * 5;
Return a new matrix that has entries of the source matrix multiplied
by a scalar value. (This is the same as the previous operator but with the
scalar  on the right.)

Miscellaneous functions:

int numRows()
Return the number of rows in the matrix.

int numCols()
Return the number of columns in the matrix.

Message* clone()
Example:IntMatrix *B = A.clone();
Return a copy of*this.

StringList print()
Example: A.print()
Return a formattedStringList  that can be printed to display the con-
tents of the matrix in a reasonable format.

XXXMatrix& multiply (const XXXMatrix& left, const XXXMatrix&
right, XXXMatrix& result)
Example: multiply(A,B,C);
This is a faster 3 operand form of matrix multiply such that the result
matrix is passed as an argument so that we avoid the extra copy step
that is involved when we writeC = A * B .

const char* dataType()
Example: A.dataType()
Return a string that specifies the name of the type of matrix. The strings
are “ComplexMatrix ”, “ FixMatrix ”, “ FloatMatrix ”, and “Int-
Matrix ”.

int isA(const char* type)
Example: if(A.isA("FixMatrix")) then ...
Return TRUE if the argument string matches the type string of the
matrix.

4.4.4  Writing stars and programs using the PtMatrix class

This section describes how to use the matrix data classes when writing stars. Some
examples will be given here but the programmer should refer to the stars in$PTOLEMY/src/
domains/sdf/matrix/stars/*.pl  and $PTOLEMY/src/domains/sdf/image/
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stars/*.pl  for more examples

Memory management

The most important thing to understand about the use of matrix data classes in the
Ptolemy environment is that stars that intend to output the matrix in a particle should allocate
memory for the matrixbut never delete that matrix. Memory reclamation is done automati-
cally by the reference-counting mechanism of theMessage  class. Strange errors will occur if
the star deletes the matrix before it is used by another star later in the execution sequence.

Naming conventions

Stars that implement general-purpose matrix operations usually have names with the
_M suffix to distinguish them from stars that operate on scalar particles. For example, the
SDFGain_M star multiplies an input matrix by a scalar value and outputs the resulting matrix.
This is in contrast toSDFGain, which multiplies an input value held in aFloatParticle  by
a double and puts that result in an outputFloatParticle .

Include files

For a star to use thePtMatrix  classes, it must include the fileMatrix.h  in either its
.h  or .cc  file. If the star has a matrix data member, then the declaration

hinclude { "Matrix.h" }

needs to be in theStar  definition. Otherwise, the declaration

ccinclude { "Matrix.h" }

is sufficient.

To declare an input porthole that accepts matrices, the following syntax is used:

input {
name { inputPortHole }
type { FLOAT_MATRIX_ENV }

}

The syntax is the same for output portholes. The type field can beCOMPLEX_MATRIX_ENV,
FLOAT_MATRIX_ENV, FIX_MATRIX_ENV, or INT_MATRIX_ENV. The icons created by
Ptolemy will have terminals that are thicker and that have larger arrow points than the termi-
nals for scalar particle types. The colors of the terminals follow the pattern of colors for scalar
data types (e.g., blue representsFloat  andFloatMatrix ).

Input portholes

The syntax to extract a matrix from the input porthole is:

Envelope inPkt;
(inputPortHole%0).getMessage(inPkt);
const FloatMatrix& inputMatrix =

*(const FloatMatrix *)inPkt.myData();

The first line declares anEnvelope , which is used to access the matrix. Details of theEnve-
lope  class are given in “Use of the Envelope class” on page 4-17. The second line fills the
envelope with the input matrix. Note that, because of the reference-counting mechanism, this
line does not make a copy of the matrix. The last two lines extract a reference to the matrix
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from the envelope. It is up to the programmer to make sure that the cast agrees with the defini-
tion of the input port.

Because multiple envelopes might reference the same matrix, a star is generally not
permitted to modify the matrix held by theEnvelope . Thus, the functionmyData()  returns
aconst Message * . We cast that to be aconst FloatMatrix *  and then de-reference it
and assign the value toinputMatrix . It is generally better to handle matrices by reference
instead of by pointer because it is clearer to write “A + B ” rather than “*A + *B ” when
working with matrix operations. Stars that wish to modify an input matrix should access it
using thewritableCopy  method, as explained in “Use of the Envelope class” on page 4-17.

Allowing delays on inputs

The cast to(const FloatMatrix *)  above is not always safe. Even if the source
star is known to provide matrices of the appropriate type, a delay on the arc connecting the
two stars can cause problems. In particular, delays in dataflow domains are implemented as
initial particles on the arcs. These initial particles are given the value “zero” as defined by the
type of particle. ForMessage  particles, a “zero” is an uninitializedMessage  particle contain-
ing a “dummy” data value. This dummyMessage  will be returned by themyData  method in
the third line of the above code fragment. The dummy message is not aFloatMatrix , ren-
dering the above cast invalid. A star that expects matrix inputs must have code to handle
empty particles. An example is:

if(inPkt.empty()) {
FloatMatrix& result = *(new FloatMatrix(int(numRows),

int(numCols)));
result = 0.0;
output%0 << result;

}

There are many ways that an empty input can be interpreted by a star that operates on matri-
ces. For example, a star multiplying two matrices can simply output a zero matrix if either
input is empty. A star adding two matrices can output whichever input is not empty. Note
above that we create an output matrix that has the dimensions as set by the state parameters of
the star so that any star that uses this output will have valid data.

A possible alternative to outputting a zero matrix is to simply pass that emptyMes-
sageParticle  along. This approach, however, can lead to counterintuitive results. Suppose
that empty message reaches a display star likeTkText , which will attempt to call the
print()  method of the object. An empty message has aprint()  method that results in a
message like

<type>: no print method

This is likely to prove extremely confusing to users, so we strongly recommend that each
matrix star handle the empty input in a reasonable way, and produce a non-empty output.

Matrix outputs

To put a matrix into an output porthole, the syntax is:

FloatMatrix& outMatrix =*(new FloatMatrix(someRow,someCol));
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// ... do some operations on the outMatrix
outputPortHole%0 << outMatrix;

The last line is similar to outputting a scalar value. This is because we have overloaded the<<
operator  for MatrixEnvParticles  to supportPtMatrix  class inputs. The standard use
of theMessageParticle  class requires you to put your message into an envelope first and
then use<< on the envelope (see “Use of the Envelope class” on page 4-17), but we have spe-
cialized this so that the extra operation of creating an envelope first is not explicit.

Here is an example of a complete star definition that inputs and outputs matrices:

defstar {
name { Mpy_M }
domain { SDF }
desc {

Does a matrix multiplication of two input Float matrices A and B to
produce matrix C.

Matrix A has dimensions (numRows,X).
Matrix B has dimensions (X,numCols).
Matrix C has dimensions (numRows,numCols).

The user need only specify numRows and numCols. An error will be
generated automatically if the number of columns in A does not match
the number of columns in B.

}
input {

name { Ainput }
type { FLOAT_MATRIX_ENV }

}
input {

name { Binput }
type { FLOAT_MATRIX_ENV }

}
output {

name { output }
type { FLOAT_MATRIX_ENV }

}
defstate {

name { numRows }
type { int }
default { 2 }
desc { The number of rows in Matrix A and Matrix C.}

}
defstate {

name { numCols }
type { int }
default { 2 }
desc { The number of columns in Matrix B and Matrix C}

}
ccinclude { "Matrix.h" }
go {

// get inputs
Envelope Apkt;
(Ainput%0).getMessage(Apkt);
const FloatMatrix& Amatrix =
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*(const FloatMatrix *)Apkt.myData();

Envelope Bpkt;
(Binput%0).getMessage(Bpkt);
const FloatMatrix& Bmatrix =

*(const FloatMatrix *)Bpkt.myData();

// check for “null” matrix inputs, which could be
// caused by delays on the input line
if(Apkt.empty() || Bpkt.empty()) {

// if either input is empty, return a zero
// matrix with the state dimensions
FloatMatrix& result =

*(new FloatMatrix(int(numRows),
int(numCols)));

result = 0.0;
output%0 << result;

}
else {

// Amatrix and Bmatrix are both valid
if((Amatrix.numRows() != int(numRows)) ||

(Bmatrix.numCols() != int(numCols))) {
Error::abortRun(*this,
"Dimension size of FloatMatrix inputs do ",
"not match the given state parameters.");
return;

}
// do matrix multiplication
FloatMatrix& result =

*(new FloatMatrix(int(numRows),
int(numCols)));

// we could write
// result = Amatrix * Bmatrix;
// but the following is faster
multiply(Amatrix,Bmatrix,result);

output%0 << result;
}

}
}

4.4.5  Future extensions

After reviewing the libraries of numerical analysis software that is freely available on
the Internet, it is clear that it would be beneficial to extend thePtMatrix  class by adding
those well-tested libraries as callable functions. Unfortunately, many of those libraries are cur-
rently only available in Fortran, and there are some incompatibilities with Fortran’s column
major ordering and C’s row major ordering. Those problems would still exist even if the For-
tran code was converted to C. There are a few groups which are currently working on C++
ports of the numerical analysis libraries. One notable group is the Lapack++1 project which is

1. LAPACK++: A Design Overview of Object-Oriented Extensions for High Performance Linear
Algebra, by Jack J. Dongarra, Roldan Pozo, and David W. Walker, available onnetlib.
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developing a flexible matrix class of their own, besides porting the Fortran algorithms of
Lapack into C++. This might possibly be incorporated in a future release.

4.5  The File and String Types
There are two experimental types in Ptolemy that support non-numeric computation.

These types represent the beginnings of an effort to extend Ptolemy’s dataflow model to “non-
dataflow” problems such as scheduling and design flow. Their interfaces are still being devel-
oped, so should be expected to change in future releases. We would welcome suggestions on
how to improve the interface and functionality of these two types.

4.5.1  The File type

The file type is implemented by the classesFileMessage  and FileParticle ,
which are derived fromMessage  andParticle . It uses the reference-counting mechanism
of the Message  andEnvelope  classes to ensure that files are not deleted until no longer
needed. Although we created a new particle type to allow these types to appear in thepigi
graphical interface, we recommend that you use theMessage  interface described in
Section 4.3 for your own types.

TheFile  type adds the following functions toMessage :

Constructors

FileMessage()
Create a new file message with a unique filename. By default, the file
will be deleted when no file messages reference it.

FileMessage(const char* name)
Create a new file message with the given filename. By default, the file
will not be deleted when no file messages reference it.

FileMessage(const FileMessage& src)
Create a new file message containing the same filename as the given
file message. By default, the file will not be deleted when no file mes-
sages reference it.

Operations

const char* fileName()
Return the file name contained in this message.

StringList print()
Return the file name contained in this message in aStringList
object.

const char* fileName()
Return the file name contained in this message.

void setTransient(int transient)
Set the status of the file. If transient isTRUE, the file will be deleted
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when no file messages reference it; ifFALSE, then it will not be
deleted.

4.5.2  The String type

The string type is implemented by the classesStringMessage  andStringParti-
cle , which are derived fromMessage  andParticle . It contains anInfString  object—
InfString  is a version ofStringList  that allows limited modification, and is used to
interface C++ to Tcl. Again, It uses the reference-counting mechanism of theMessage  and
Envelope  classes to ensure that strings are not deleted until no longer needed.StringMes-
sage  is currently very simple—it adds the following functions toMessage :

Constructors

StringMessage()
Create a new string message an empty string.

StringMessage(const char* name)
Create a new string message with a copy of the given string. The given
string can be deleted, since the new message does not reference it.

StringMessage(const StringMessage& src)
Create a new string message containing the same string as the given
string message. Again, the string is copied.

Operations

StringList print()
Return the string contained in this message in aStringList  object.

4.6  Writing Stars That Manipulate Any Particle Type
Ptolemy allows stars to declare that inputs and outputs are of typeANYTYPE. A star

may need to do this, for example, if it simply copies its inputs without regard to type, as in the
case of aFork  star, or if it calls a generic function that is overloaded by every data type, such
as sink stars which call the print method of the type.

The following is an example of a star that operates onANYTYPE particles:

defstar {
name {Fork}
domain {SDF}
desc { Copy input particles to each output. }
input {

name{input}
type{ANYTYPE}

}
outmulti {

name{output}
type{= input}

}
go {
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MPHIter nextp(output);
PortHole* p;
while ((p = nextp++) != 0)

(*p)%0 = input%0;
}

}

Notice how in the definition of the output type, the star simply says that its output type
will be the same as the input type. ptlang translates this definition into anANYTYPE output
porthole and a statement in the star constructor that reads

output.inheritTypeFrom(input);

as you can see by examining the.cc  file generated forSDFFork .

During galaxy setup, the Ptolemy kernel assigns actual types toANYTYPE portholes,
making use of the types of connected portholes and inheritTypeFrom connections. For exam-
ple, if a Fork’s input is connected to an output porthole of typeINT , the Fork’s input becomes
type INT , and then so do its output(s) thanks to the inheritTypeFrom connection. At runtime
there is no such thing as anANYTYPE porthole; every porthole has been resolved to some spe-
cific data type, which can be obtained from the porthole using theresolvedType()  method.
(However, this mechanism does not distinguish among the various subclasses ofMessage , so
if you are usingMessage  particles you still need to check the actual type of eachMessage
received.)

Porthole type assignment is really a fairly complex and subtle algorithm, which is dis-
cussed further in the Ptolemy Kernel Manual. The important properties for a star writer to
know are these:

     • If an input port has a specific declared type, it is guaranteed to receive particles of that
type. For reasons mentioned in “Reading inputs and writing outputs” on page 2-17, it
is safest to explicitly cast input particles to the desired type, as in

go {
double value = double(in%0);
...

}

but this is not strictly necessary in the current system.

     • In simulation domains, an output port is NOT guaranteed to transmit particles of its
declared type; the actual resolved type of the porthole will be determined by the con-
nected input porthole. Therefore, you should always allow for type conversion of the
value computed by the star into the actual type of the output particle. This happens
implicitly when you write something like

out%0 << t;
because this expands into a call of the particle’s virtual method for loading a value of
the given type. But assuming that you know the exact type of particle in the porthole --
- say by writing something like(FloatParticle&) (out%0)  --- is very unsafe.

     • In code generation domains, it is usually critical that the output porthole’s actual type
be what the star writer expected. Most codegen domains therefore splice type conver-
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sion stars into the schematic when input and output ports of different declared types
are connected. In this way, both connected stars will see the data type they expect, and
the necessary type conversion is handled transparently.

     • The component portholes of a multiporthole are type-resolved separately. Thus, if an
input multiporthole is declaredANYTYPE, its component portholes might have differ-
ent types at runtime. (This was not true in Ptolemy versions preceding 0.7.) The com-
ponent portholes of an output multiporthole can have different resolved types in any
case, because they might be connected to inputs of different types.

     • It is rarely a good idea to declare a pureANYTYPE output porthole; rather, its type
should be equated to some input porthole using the ptlang= port  notation or an
explicit inheritTypeFrom call. This ensures that the type resolution algorithm can suc-
ceed. A “pureANYTYPE” output will work only if connected to an input of determin-
able type; if it’s connected to anANYTYPE input, the kernel will be unable to resolve a
type for the connection. By providing an= type  declaration, you allow the kernel to
choose an appropriate particle type for anANYTYPE-to-ANYTYPE connection.

4.7  Unsupported Types
There are a number of data types in Ptolemy that we recommend not be used by exter-

nal developers because they are either insufficiently mature or likely to change. This section
briefly describes those classes.

4.7.1  Sub-matrices

The Ptolemy kernel contains a set of matrices to support efficient computation with
sub-matrices. These classes were developed specifically for the experimental multidimen-
sional SDF (MDSDF) domain and will probably be implemented differently in a future
release.

There are four sub-matrix classes, one for each concrete matrix class:ComplexSub-
Matrix , FixSubMatrix , FloatSubMatrix , andIntSubMatrix , each of which inherits
from the correspondingPtMatrix  class. A sub-matrix contains a reference to a “parent”
matrix of the same type, and modifies its internal data pointers and matrix size parameters to
reference a rectangular region of the parent’s data. The constructors for the submatrix classes
have arguments that specify the region of the parent matrix referenced by the sub-matrix.

As for matrices, the description of sub-matrices uses the convention thatXXX means
Complex , Fix , Float , or Int , andxxx  meansComplex , Fix , double , or int .

The submatrix constructors are:

XXXSubMatrix()
Create an uninitialized matrix.

XXXSubMatrix(int numRow, int numCol)
Create a regular matrix with dimensionsnumRow by numCol ; return a
new submatrix with this matrix as its parent. Memory is allocated for
the data storage but the entries are uninitialized.

XXXSubMatrix(XXXSubMatrix& src, int sRow, int sCol, int nRow,
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int nCol)
Create a sub-matrix of the given dimensions and initialize it to refer-
ence the region of the parent matrix starting at (sRow, sCol ) and of size
(nRow, nCol ). The parent matrix is the same as the parent matrix of
src . The given dimensions must fit into the parent matrix, or an error
will be flagged. Unlike the “sub-matrix” constructors in the regular
matrix classes, this constructor does not copy matrix data.

XXXSubMatrix(const XXXSubMatrix& src)
Make a duplicate of thesrc  sub-matrix. The parent of the new matrix
is the same as the parent ofsrc .

Submatrices support all operations supported by the regular matrix classes. Because
the matrix classes uniformly use only theentry()  andoperator []  member functions to
access the data, the sub-matrix classes need only to override these functions, and all matrix
operations become available on sub-matrices.

xxx& entry(int i)
Return thei th entry of the sub-matrix when its data storage is consid-
ered to be a linear array.

xxx* operator [] (int row)
Return a pointer to the start of the row of the sub-matrix’s data storage.

Using sub-matrices in stars

Sub-matrices are not currently useful in general-purpose dataflow stars. Rather, they
were developed to provide an efficient means of referencing portions of a single larger matrix
in the multi-dimensional synchronous dataflow (MDSDF) domain. We give here a summary.
For more details, see [Che94] and the MDSDF sources in$PTOLEMY/src/domains/
mdsdf/kernel  and$PTOLEMY/src/domains/mdsdf/stars .

Unlike other domains, the MDSDF kernel does not transfer particles through FIFO
buffers. Instead, each geodesic keeps a single copy of a “parent” matrix, that represents the
“current” two-dimensional datablock. Each time a star fires, it obtains a sub-matrix that refer-
ences this parent matrix with thegetOutput()  function of the MDSDF input port class. For
example, a star might contain:

FloatSubMatrix* data = (FloatSubMatrix*)(input.getInput());

Note that this is not really getting a matrix, but a sub-matrix that references a region of
the current data matrix. The size of the sub-matrix has been set by the star in its initialization
code by calling thesetMDSDFParams()  function of the port.

To write data to the output matrix, the star gets a sub-matrix which references a region
of the current output matrix and writes to it with a matrix operator. For example,

FloatSubMatrix* result = (FloatSubMatrix*)(output.getOutput());
result = -data;
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Because the sub-matrices are only references to the current matrix on each arc they
must be deleted after use:

delete &input;
delete &result;

Here is a simplified example of a complete MDSDF star:

defstar {
name { Add }
domain { MDSDF }
desc {

Matrix addition of two input matrices A and B to
produce matrix C. All matrices must have the same
dimensions.

}
version { %W% %G% }
author { Mike J. Chen }
location  { MDSDF library }
input {

name { Ainput }
type { FLOAT_MATRIX }

}
input {

name { Binput }
type { FLOAT_MATRIX }

}
output {

name { output }
type { FLOAT_MATRIX }

}
defstate {

name { numRows }
type { int }
default { 2 }
desc { The number of rows in the input/output matrices. }

}
defstate {

name { numCols }
type { int }
default { 2 }
desc { The number of columns in the input/output

matrices. }
}
ccinclude { “SubMatrix.h” }
setup {
    Ainput.setMDSDFParams(int(numRows), int(numCols));
    Binput.setMDSDFParams(int(numRows), int(numCols));
    output.setMDSDFParams(int(numRows), int(numCols));
}
go {
// get a SubMatrix from the buffer

FloatSubMatrix& input1
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= *(FloatSubMatrix*)(Ainput.getInput());
FloatSubMatrix& input2

= *(FloatSubMatrix*)(Binput.getInput());
FloatSubMatrix& result

= *(FloatSubMatrix*)(output.getOutput());

// compute product, putting result into output

result = input1 + input2;

delete &input1;
delete &input2;
delete &result;

}
}

The sub-matrix “particles”

The ptlang  type of submatrices isFLOAT_MATRIX, INT_MATRIX, and so on. (This
is not documented in theUser’s Manual and is likely to change in a future release.) Each of
these ptlang types is implemented by a sub-class of Particle:IntMatrixParticle , Float-
MatrixParticle , FixMatrixParticle  andComplexMatrixParticle . These particle
classes exist only for setting up the portholes and performing type-checking—they are never
created or passed around during a simulation. Instead, sub-matrices are created and destroyed
by the MDSDF kernel and stars as described above.

4.7.2  Image particles

A set of experimental image data types, designed to make it convenient to manipulate
images and video sequences in Ptolemy, were defined by Paul Haskell. They are based on
Ptolemy’s built-inMessage  type, described above. A library of stars that uses these image
data types can be found in the image library of the DE domain.

This set of classes is being replaced by thePtMatrix  classes, and the SDF image
classes now all usePtMatrix . We give here a brief introduction to the image data types used
in the DE domain, although new work should consider usingPtMatrix  classes instead. Class
definitions can be found in$PTOLEMY/src/domains/de/kernel .

The base class of all the image classes is calledBaseImage . It has some generic
methods and members for manipulating images. Most of the methods are redefined in the
derived classes. Thefragment  method partitions an image into many smaller images, which
together represent the same picture as the original. Theassemble  method combines many
small images which make up a single picture into a single image that contains the picture. The
fragment method works recursively, so an image that has been produced by a previous
fragment  call can be further fragmented. Assembly always produces a full-sized image from
fragments, however small.

Use of thesize , fullSize , andstartPos  members varies within each subclass.
Typically thesize  variable holds the number of pixels that an object is storing. If an object is
not produced byfragment() , then (size == fullSize ). If the object is produced by a
fragment()  call, size  may be less than or equal tofullSize . An objects’sfullSize
may be bigger or smaller thanwidth*height . It would be bigger, for example, inDCTIm-
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age , where the amount of allocated storage must be rounded up to be a multiple of the block-
size. It would be smaller, for example, for an object that contains run-length coded video.

The frameId  variable is used during assembly. Fragments with the sameframeId ’s
are assembled into the same image. So, it is important that different frames from the same
source have different frameIds.

The comparison functions {==, != , <, >, etc.} compare two objects’frameId ’s. They
can be used to resequence images or to sort image fragments.

The copy constructor andclone  methods have an optional integer argument. If a non-
zero argument is provided, then all state values of the copied object are copied to the created
object, but none of the image data is copied. If no argument or a zero argument is provided,
then the image data is copied as well. Classes derived fromBaseImage  should maintain this
policy.

The GrayImage  class, derived fromBaseImage , is used to represent gray-scale
images. TheDCTImage class is used to represent images or image fragments that have been
encoded using the discrete-cosine transform. TheMVImage class is a bit more specialized; it
stores a frame’s worth of motion vectors.

4.7.3  “First-class” types

All of the types built-in to the Ptolemy kernel are “first-class” in the sense that they are
understood bypigi  andptlang . We recommend that users create their own types using the
mechanism described in “Defining New Data Types” on page 4-14. This approach has the dis-
advantage that all user-defined types are seen bypigi  andptlang  as being of type “mes-
sage.” If this is not acceptable, then it is possible to create your own first-class types by sub-
classing Particle and adding the new types to VEM. The following instructions briefly
describes this process. We stress, however, that this method is not officially supported and that
types created this way will probably have to be reworked in a future release of Ptolemy. You
will need to use some other color—sayfileColor —as a sample to follow when modifying
the various source files.

     • Sub-classParticle  and Message . Use the classes in$PTOLEMY/src/kernel/
FileMessage.h/cc  and $PTOLEMY/src/kernel/FileParticle.{h,cc}  as
examples. You will need to create a static instance of yourParticle  and static
Plasma  and PlasmaGate  instances to hold your particles, as demonstrated by
FileParticle .

     • Modify $PTOLEMY/src/pigilib/mkTerm.c . There are three switch statements
where you will need to insert a new case.

     • In the directory$PTOLEMY/lib/colors/ptolemy , editbw.pat  andcolors.pat
to add the new color. The color is in RBG format, with 1000 being full-scale.

     • Run the OcttoolsinstallColors  program. It will ask you a series of mysterious and
strangely beautiful questions. To start with, use the defaults, except for “Output dis-
play type”, where you answerGENERIC-COLOR. Run the same program again with
the following output display types:GENERIC-BW, Postscript-Color , andPost-
script-BW .

     • To support monochrome screens (whenpigi  is started with the-bw  option), repeat
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the above, but specify$PTOLEMY/lib/colors/ptolemy/bw.pat  as the pattern
file, $PTOLEMY/lib/bw_patterns  as the directory in which to install,GENERIC-
COLOR as the display device, and answerYES to the question about color output
device.

     • After rebuildingpigilib  and restarting, create an icon for a star that has your new
type as an input or output. The terminal should be of the new color.


