Chapter 17. Creating New Domains

Authors: Mike Chen
Christopher Hylands
Thomas M. Parks

Other Contributors: Wan-Teh Chang
Michael C. Williamson

17.1 Introduction

One of Ptolemy’s strengths is the ability to combine heterogeneous models of compu-
tation into one system. In Ptolemy, a model of computation correspondSdmain. The
code for eaclbomain interacts with the Ptolemy kernel. This overview describes the general
structure of the various classes that are usedyn@in in its interaction with the kernel.
The PtolemyJser’'s Manualhas a more complete overview of this information.

A functional block, such as an adder or an FFT, is calle@ra in Ptolemy terminol-
ogy, (see “Writing Stars for Simulation” on page 2-1 for more information). A collection of
connectedstar s form aGalaxy (see Chapter 2 of théser’'s Manualfor more information).
Ptolemy supports graphical hierarchy so that an eGtitaxy can be formed and used as a
single function block icon. Th@alaxy can then be connected to otlsegir s orGalaxies
to create anothasalaxy . Usually, all theStar s of aGalaxy are from the samBomain but
it is possible to conne&tar s of one domain to @alaxy of another domain using\velorm-

Hole .

A Universe is a complete executable systemUAiverse can be either a single
Galaxy or a collection of disconnected Galaxies. To rudniverse , eachGalaxy also
needs ararget . In simulation domains, @arget is essentially a collection of methods to
compute a schedule and run the varigtes s of aGalaxy . SomeDomains have more than
one possible scheduling algorithm available andTidaget is used to select the desired
scheduler. In code generation domainsa@et also computes a schedule and runs the indi-
vidual Star s, but eaclstar only generates code to be executed later. Code generation
gets also handle compiling, loading, and running the generated code on the target
architecture.

At a lower level are the connections betw8é@tk s. ABlock is aStar or Galaxy .
EachBlock has a number of input and output terminals which are attachedlmla
through itsPortHole s. A specialPortHole , called aMultiPortHole , is used to make
multiple connections but with only one terminal. TBtwck s are not directly connected
through theirPortHole s. Rather, theiPortHole s are connected to an intermediary object
called aGeodesic . In simulation domains, data is passed betwaetHole s (through the
Geodesic) using container objects call@drticle s. Ptolemy uses a system wheeeti-
cle s are used and recycled instead of created and deleted when rmtied. s are
obtained from a production and storage class callddsana , which creates neRarticle s
if there are no old ones to reuBarticle s that have completed their task are returned to the

17-2 Creating New Domains

Plasma , which may reissue them at a later request. Graphicallgtdneto Star connection
is depicted below:

Block Geodesic

* initialize() « initialize()

e run() « setSourcePort()
« wrapup() » setDestPort()

PortHrtHoIe PortHole PortHole

PortHole @ Particle Particle

« initialize() * type()

* receiveData() * print()

» sendData() * initialize()
* type()

FIGURE 17-1: Block objects in Ptolemy can send and receive data encapsulated in Particles
through Portholes. Buffering and transport is handled by the Geodesic and gar-
bage collection by the Plasma. Some methods are shown.

The classes defined above provide most of the functionality necessary for a working
domain. One additional class needed by all domainseheduler to compute the order of
execution of thestar s in theGalaxy .

Therefore, creating a new Ptolemy simulation domain will typically involve writing
new classes fastar s,PortHole s,WormHoles, Targets , andSchedulers

Creating a new domain is a fairly involved process, and not to be done lightly. The first
thing that many users want to do when they see Ptolemy is create a new domain. However, it is
often the case that the functionality they need is already in either the SDF or DE domains, or
they can merely add®arget or Scheduler rather than an entire domain.

17.2 A closer look at the various classes

A simulationDomain can use the various classes mentioned above as they exist in the
Ptolemy kernel or it can redefine them as needed. For example, in the SDF domain, the classes
SDFStar , SDFPortHole , SDFScheduler , SDFDomain, SDFTarget , and SDFWormhole
have all been defined. Most of those classes inherit much of their functionality from the corre-
sponding kernel classes but themain creator is free to make major changes as well. The
kernelGeodesic , Plasma, andParticle classes are used without modification, but other
domains such as the CG domain have derived a subclas&#otesic . TheDomain cre-
ator needs to decide whether or not existing Ptolemy classes can be used without change,
therefore it is a good idea to understand what functionality the kernel classes provide.

The following is a brief description of the various classes that either need to be defined
or are used by Bomain. Note that we only provide a functional description of some of the
major methods of each class and not a complete description of all methods.

U. C. Berkeley Department of EECS

The Almagest 17-3

17.2.1 Target
A Target is an object that manages the execution oSthes in aDomain.
Major methods:

run() Called to execute a schedule.
wrapup() Called at the end of an execution to clean up.
setup() Called byinitialize() (which is inherited from th&lock

class, which is a common base class for many of Ptolemy’s
classes). Sets eaGhar to point to thisTarget and sets up the
Scheduler

Major objects contained are:
gal A pointer to theGalaxy being executed.
sched A pointer to the Scheduler that is being used.

For further information abottarget s, see some of the existing domains.

17.2.2 Domain

Declares the type of various components ofRbenain, like which type ofworm-
Hole , PortHole |, Star , etc. is used by th@omain .

Major methods:
newWorm() Create avormHole of the appropriate type for thixmain.

newFrom() Create arkventHorizon (an object that is used to interface to
other Domains, used withWormHoles) that translates data
from a Universal format to Romain specific one.

newTo() Create arkEventHorizon that translates data fromCamain
specific format to a Universal one.
newNode() Returns aeodesic of the appropriate type for thixomain.
17.2.3 Star

A Star is an object derived from claB&ck that implements an atomic function.
Major methods:

run() What to do to run the star.

For example, thBataFlowStar class (a parent class to many of the dataflow domain
stars such aSDFStar andDDFStar) defines this function to make each inpwttHole
obtain Particles from theGeodesic , execute thggo() method of eaclstar , and then
have each outpuirortHole put itsParticles into theGeodesic .

17.2.4 PortHole

PortHole s are data members®far s and are where streamsRaitticle s enter or
leave theStar s. EachPortHole always handleBarticle s of one type, so two connected
PortHole s need to decide which data type they will use if they are not the same. There is a

Ptolemy Last updated: 10/17/97

17-4

Creating New Domains

base class calleGenericPort ~ which provides some basic methods that derived classes
should redefine as well as some data members commonly neede@&dyHalle types.

Major methods:

isltinput()
isltOutput()
isltMulti()

connect()

initialize()

receiveData()
sendData()
putParticle()
getParticle()

numXfer()

numTokens()

numlinitDelays()

geo()

setDelay()

ReturnTRUEIf the PortHole class is an input type.
ReturnTRUEIf the PortHole class is an output type.
ReturnTRUEIf the PortHole class is aMultiPorthole

Connect thiPortHole to aGeodesic (create one if needed)
and tell thatGeodesic to connect itself to both thiBortHole
and the destinatioRPortHole . Also provides the number of
delays on this connection.

Initialize thePortHole . In the case of outptortHole s, this
function will usually initialize the connecteGeodesic as
well. Resolve the type dfarticle s with thePortHole it is
connected to.

What to do to receive data from tBeodesic .

What to do to send data to tBeodesic .

Put a particle from the buffer into tk@=odesic .

Get a particle from theeodesic and put it into the buffer.

Returns numberTokens , the number ofParticle s trans-
ferred per execution.

Returns the number ffarticle s inside the&seodesic .
Returns the number of initial delay on feodesic .

Returns a pointer to th@eodesic thisPortHole is connected
to.

Set the delay on th®&eodesic .

Major data members:

myType
myGeodesic
myPlasma

myBuffer

farSidePort

bufferSize

numberTokens

Data type of particles in this porthole.
TheGeodesic that thisPortHole is connected to
A pointer to thePlasma used to request nearticle s.

Usually aCircularBuffer
ing Particle s.

used to store incoming or outgo-

ThePortHole that we are connected to.
The size of th®uffer

The number oParticle s consumed or generated each time
we access théeodesic .

Note thatPortHole s are generally separated into infRdrtHole s and output

U. C. Berkeley

Department of EECS

The Almagest 17-5

PortHole s. They aren’t designed to handle bidirectional traffic.

17.2.5 Geodesic
Models a FIFO buffer (usually) between tRortHole s. Major methods:

setSourcePort() Set the sourc@ortHole and the delay on this connection. A
delay is usually implemented as an initidrticle in the
Geodesic s buffer, but this can be changed depending on the
desired functionality.

setDestPort() Set the destinatioRortHole

disconnect() Disconnect from the givelhortHole

setDelay() Set the number of delays on this connection.

initialize() Initialize the buffer in thisseodesic . This means either clear it

or insert the number of initid#article s needed to match the
number of delays on this connection (théseticle s are
taken from the sourdeortHole s’s Plasma).

put() Put aParticle into the buffer

get() Get aParticle from the bufferincCount() and
decCount() are used by &cheduler to simulate an execu-
tion.

numlinit() Return the number of initial particles.

Major data members:

originatingPort A pointer to the sourceortHole
destinationPort A pointer to the destinatioPortHole
pstack The buffer, implemented asParticleStack
sz The number oParticle s in the buffer.

numinitialParticles
The number of initial delays.

17.2.6 Plasma

There are container object for unugeaticle s. There is one global instance of a
Plasma for each type Particle defined in the kernel. This class is usually only used by the
Domains and not changed by the authors of D®mains.

Major methods:
put() Return an unuse@article to thePlasma .
get() Get an unuseBarticle (or create one if needed).

17.2.7 Particle
The variousParticle types supported by Ptolemy. Currently, the typesFara |,

Ptolemy Last updated: 10/17/97

17-6 Creating New Domains

Int , Complex, Fix , andMessage. The Message Particle is used to carrylessages
(insideEnvelopes) which can be almost anything. For example,Nlagrix class is trans-
ferred usingVlessage Particle s. These classes are also only used as-is iyotihain s and
not redefined for new domains.

17.2.8 Scheduler

Sets up the execution by determining the order in which &ach of theGalaxy will
fire. Execution is performed using two main methodsetap() andrun() . Schedulers
can be timed or untimed, depending onDoenain’s model of execution. This class will usu-
ally be different for each domain, although some domains reusgchieduler of another
domain, if theScheduler is appropriate for the new domain’s model of computation.

Major methods:

setup() Checks thestar s in theGalaxy , initializes them, and creates a
schedule.
run() Run the schedule computed in setup()

Major data members
myGalaxy The pointer to th&alaxy that the Scheduler is working on.
myTarget The pointer to th&@arget which is controlling the execution.

17.3 What happens when a Universe is run

Now that you have some idea of what classes exist in the Ptolemy kernel, this section
will try to explain flow of control when &niverse is run. By knowing this, you will get an
idea of what additions or changes might be needed to get the functionality you desire and how
the code of your new domain will fit in.

First off, a little more about the basics of Ptolemy classes. Almost every object class in
Ptolemy is derived from thedamedObj class. This class simply provides support fivaae
field, a longeDescription field, and a pointer toRarent Block . Also, the methothi-
tialize() is declared here to be purely virtual, so every object should have some kind of
initialization function.

TheBlock class is derived frorNamedObj and is the main base class for most actors
in Ptolemy. It has I/O constructs likeortHole s andMultiPortHoles , State/parameter
constructs likeState , and defines execution methods suckesp() , run() andwra-
pup() . TheBlock also provides a virtual function to access an associated Scheduler.

A simulation universe is generally of typataFlowStar . When a universe is run,
the flow of control is as follows, using the SDF domain as an example:

PTcl::dispatcher()

PTcl::run()

PTcl::computeSchedule()
Runnable::initTarget()
Block::initialize()
SDFTarget::setup()
Target::setup()
SDFScheduler::setup()

U. C. Berkeley Department of EECS

The Almagest 17-7

Notice at this point that we have called two domain-specific methods, namely
SDFTarget::setup() andSDFScheduler::setup() . TheTarget can have a choice of
more than on&cheduler and in this case it called the defasiliFScheduler . We continue
here with a more detailed description of a very important function:

SDFScheduler::setup()

checkConnectivity() /I Checks that the galaxy is
/[properly connected.
prepareGalaxy() /l Initializes the portHoles of each star and
/I the geodesics that connect them.
checkStars() /I Verifies that the type of the Stars are
/I compatible with this Scheduler.
repetitions() /I Solves the balance equations for the

/I system and calculates how many times

/I each star should be fired for

/I one iteration (specific to dataflow).
computeSchedule() /l Compute the actual schedule
adjustSampleRates() // Set the number of tokens transferred

I between EventHorizons if this schedule

/Il is for a WormHole.

The order of various operations can be different for each scheduler. For example, a
new domain may require that tRertHole s be initialized after the repetitions were calcu-
lated but before the schedule was computed. The domain writer may wish to define a new
function prepareForScheduling() that would call thesetup() function of eaclstar
without initializing theStar s PortHole s.

ExpandingprepareGalaxy() in more detalil:
SDFScheduler:: prepareGalaxy()
galaxy()->initialize() // Initialize the galaxy.
InterpGalaxy::initialize() // Causes the initialization of delays

/I and the setup of bus widths.

Galaxy::initSubblocks() /I Calls initialize() of each star.

DataFlowStar::initialize()// This is a general initialize.
/l function for data flow stars.
/I Your own Star class might
/Il redefine it. Sets the number
/[of input Ports and clears
/I some parameters.
Block::initialize() /I Initializes the PortHoles and States
/I of the Block/Star. Calls the user
/I defined setup() function of each
/I star after the portholes and
/I geodesics have been initialized.
PortHole::initialize() // General PortHole initialization;
/I again you can redefine it for a
/I domain specific PortHole.
I Resolves the type of Particles
/I to be sent. Allocates a
/I buffer and a Plasma. Request
/I empty Particles from the Plasma
/I toinitialize the buffer.
Geodesic::initialize() // General Geodesic initialization,

Ptolemy Last updated: 10/17/97

17-8 Creating New Domains

I called by output PortHole only.
I Clears the buffer and adds any
I initial Particles for delays.

After the schedule is set up and all the actors irUtiieerse have been initialized,

the flow of control is as follows:
PTcl::run()
PTcl::computeSchedule() /I Described above.
PTcl::cont()
universe->setStopeTime() // Used to set the number of
/I iterations to be run.
universe->run()
InterpUniverse::run()
Runnable::run()
target->run()
sched->run()
SDFScheduler::run() // The domain specific Scheduler’s
/I run() function.

Let's look at what a typical scheduler does when it runs a star.
SDFScheduler::run() /I Checks if there has been an error
I in the last iteration. Calls
/I runOnce() for each iteration.
runOnce() /I Goes through each Star on the
/I schedule (which is a list of Stars
/I computed by setup()) and calls
/[star->run().
star->run()
DataFlowStar::run() /l The SDF domain uses the general
/I DataFlowStar
/I run() function. A new Domain
I might want to redefine this.
..Ports->receiveData() /I Calls receiveData() for each of
/I the PortHoles for this Star.
/I Output PortHoles would do nothing
/I in this case but input PortHoles
/I would get Particles from the
/I Geodesic.

Star::run()
SimControl::doPreActions()// Execute pre-actions for a star.
go() /I Call the Star specific go() function

/I that will process the input data

/I and generate data to be put in the

/[output PortHoles.
SimControl::doPostActions() // Execute post-actions for a star
..Ports->sendData() /I Calls sendData() for each of the

1 PortHoles for this Star.

/I Input PortHoles would do nothing

/I in this case but output PortHoles

/[would put their Particles into

/I the Geodesic and refill their

/I buffers with empty Particles

/[from the Plasma.

U. C. Berkeley Department of EECS

The Almagest 17-9

17.4 Recipe for writing your own domain

This section describes some of the template files we have made so that you don’t have
to start coding from scratch. We also discuss which classes and methods of those classes that a
new domain must define.

17.4.1 Introduction

The first thing to do is to think through what you want this domain to do. You should
have some idea of how the yastar s will exchange data and what kind ®dheduler is
needed. You should also understand the existing Ptolemy domains so that you can decide
whether your domain can reuse some of the code that already exists. Also, read Chapter 1 so
you understand the general classes in the Ptolemy kernel and how the domain methods inter-
act.

17.4.2 Creating the files

Themkdomscript attPTOLEMY/bin/mkdom can be used to generate template files for
a new domainmkdomtakes one argument, the name of the domain, which case insensitive,
mkdomconverts the what ever you pass to it as a domain name to upper and lower case inter-
nally. Here, we assume that you have set up a parallel development tree, as documented in
chapter 1, or you are working in the directory tree where Ptolemy was untar'd.

1. To usemkdom create a directory with the name of your domain in sivé
domains directory. In this example, we are creating a domain cgjled

mkdir SPTOLEMY/src/domains/yyy
2. cd to that directory and then rorkdom

cd $PTOLEMY/src/domains/yyy
$PTOLEMY/bin/mkdom yyy

17.4.3 Required classes and methods for a new domain

mkdomwill create copies of key files BPTOLEMY/src/domains/yyy/kernel and
a Nop star in$PTOLEMY/src/domains/yyy/stars . The template files have various com-
ments about which methods you need to redefine. The template files also define many function
for you automatically. If you aren't clear as to how to define the methods in each class, it is
best to try look at the existing Ptolemy domains as examples.

YYYDomain.cc This file will be setup for you automatically so that you
shouldn’t need to modify much. The various methods here
return WormHoles and EventHorizons ~ which should be
defined inYYWormhole . A node is usually a type @eode-
sic that allows multiple connections, suchfagoForkNode .

You can define your owlYYGeodesic or simply use the ker-
nel’'s AutoForkNode if that is suitable (this is what SDF does).

YYYWormhole.{h,cc}
Various methods to interface your new domain with others must
be defined if you wish to use your domain with other domains.

Ptolemy Last updated: 10/17/97

17-10 Creating New Domains

However, if you don’t need to mix domains, then you may skip

these files. Wormholes translate different notions of time or

concurrency. Since some domains are timed (like DE) and oth-
ers are not (like SDF), you must be able to convert from one to
another.

YYYGeodesic.{h,cc}
Currently we set th&eodesic to be the kernel'sutoForkN-
ode. If the kernel'sGeodesic class offers all the functionality
you need, then this doesn’t need to be changed. Otherwise try
looking at some of the pre-existing domains for examples.

YYYPortHole.{h,cc}
Define inputPortHole s and outputPortHole s, as well as
MultiPortHole s, specific to your domain. The only required
methods are generated for you, but you'll likely want to define
many more support methods. Look at the kePmtHole
DFPortHole , andSDFPortHole for examples.

YYYStar.{h,cc} Domain -specific class definition. Again, all the required meth-
ods have been defined but you’ll want to add much more. Refer
to Star , DataFlowStar , andSDFStar as examples.

YYYScheduler.{h,cc}
This is where much of the action goes. You'll need to define the
functionsetup() ,run() , andsetStopTime()

17.4.4 Building an object directory tree

Ptolemy can support multiple machine architectures from one source tree, the object
files from each architecture go ind® TOLEMY/obj.$PTARCH directories. Currently, there
are two ways to build th8PTOLEMY/obj.$PTARCH directory tree MAKEARCHINd mkP-
tolemyTree . To build object files for your new domain $#TOLEMY/obj.$PTARCH, you
will have to set up either or both of these ways. Typically, you firskgeEARCIHecause it
can operate on an existing Ptolemy tree, and once everything works, then you and other users
runmkPtolemyTree to setup parallel development trees on the new domain.

MAKEARCH

$PTOLEMY/MAKEARCIS a/bin/csh script that creates or updates the object tree in
an already existing Ptolemy tree. To add a domaMABEARCHedit the file and look for a
similar domain, and add appropriately. A little trial and error may be necessary, but the basic
idea is simpleMAKEARCHraverses directories and creates subdirectories as it sees fit. Note
that if MAKEARCI$ under version control, you may need tachmod a+x MAKEARCH when
you check it back out, or it won't be executable.

Continuing with our example:
3. EditMAKEARCINnd add your domain yyy to the list of experimental domains:
set EXPDOMAINS=(cg56 cgc vhdib vhdl mdsdf hof ipus yyy)

U. C. Berkeley Department of EECS

The Almagest 17-11

This will cause astars andkernel directory to be created I®PTOLEMY/
obj.$PTARCH/domains/lyyy =~ whenMAKEARCI run.

4. RunMAKEARCH
cd $PTOLEMY; csh -f MAKEARCH
If you get a message like:

cxh@watson 181% csh -f MAKEARCH

making directory /users/ptolemy/obj.sol2/domains/yyy
mkdir: Failed to make directory "yyy"; Permission denied
yyy: No such file or directory

The you may need to remove yahj.$PTARCH tree, asMAKEARCHas probably
traversed down a parallel tree creatednPtolemyTree and come up in a direc-
tory that you do not own.

mkPtolemyTree

$PTOLEMY/bin/mkPtolemyTree is atclsh script that creates a new parallel
Ptolemy tree. Note thatkPtolemyTree cannot be run in an already existing Ptolemy devel-
opment tree. The filBPTOLEMY/mk/stars.mk controls what directorieskPtolemyTree
creates, you need not actually edit thiePtolemyTree script. To creat@igiRpc binaries
with your new domain in it, you will need to mod#tars.mk , so adding support fankP-
tolemyTree s fairly trivial.

$PTOLEMY/mk/stars.mk

Follow the style for domain addition that you see in this file for the other domains. A
few things to keep in mind:

* You should list the new domain before any other domain library that the new domain
depends on.

* You should make sure to define the make variables to pull in other domain libraries as
necessary. You may nestbSDF=1definition for example.

e mkPtolemyTree uses theCUSTOM_DIRSnakefile variable to determine what direc-
tories to create, so be sure to add your directories here.

Continuing with our example of adding the yyy domain:
5. Edit$PTOLEMY/mk/stars.mk and add your entry:

YYYDIR = $(CROOT)/src/domains/cg56
ifdef YYY
CUSTOM_DIRS += $(YYYDIR)/kernel $(YYYDIR)/stars
Have to create this eventually
PALETTES += PTOLEMY/src/domains/yyy/icons/main.pal
STARS += $(LIBDIR)/yyystars.o
LIBS += -lyyystars -lyyy
LIBFILES += $(LIBDIR)/libyyystars.$(LIBSUFFIX) \
$(LIBDIR)/libyyy.$(LIBSUFFIX)
endif

Ptolemy Last updated: 10/17/97

17-12 Creating New Domains

$PTOLEMY/mk/ptbin.mk
In $PTOLEMY/mk/ptbin.mk , add your domain to theULL definition. This causes

your domain to be built in whenever a fpiyjiRpc binary is created.
Building a pigiRpc

6. To build apigiRpc with your domain, first build and install your domain’s kernel
and star libraries:

cd $PTOLEMY/obj.$PTARCH/domains/yyy
make depend
make install

If your domain depends on other domains, you will have to build in those directo-
ries as well. You may find it easier to ctb$PTOLEMY; make install , though

this could take 3 hours. An alternative would be to create a parallel directory tree
usingmkPtolemyTree

7. If you have not recompiled from scratch, or rokPtolemyTree , you may also
need to do:

cd $PTOLEMY/obj.$PTARCH/pigilib; make ptkRegisterCmds.o

8. Then build youmigiRpc . You can either build a fulpigiRpc with all of the
domains, or you can create aaerride.mk in $PTOLEMY/obj.$PTARCH/
pigiRpc which will pull in only the domains you want.

$PTOLEMY/obj.$PTARCH)/pigiRpc/override.mk could contain:

YYvy=1

DEFAULT_DOMAIN=YYY
USERFLAGS=
VERSION_DESC="YYY Domain Only"

To build your binary, do:
cd $PTOLEMY/obj.$PTARCH/pigiRpc; make
If you don’t have all the libraries built, you may get an error message:

make: *** No rule to make target "../../lib.sol2/libcg56dspstars.so’,
needed by “pigiRpc’. Stop.

The workaround is to do:
cd $PTOLEMY/obj.$PTARCH/pigiRpc; make PIGI=pigiRpc

9. See “Creating a pigiRpc that includes your own stars” on page 1-7 for details on
how to use your new pigiRpc binary.

10. To verify that your new domain has been installed, gigirt with the-console
option:

cd $PTOLEMY; pigi -rpc $SPTOLEMY/obj.$PTARCH/pigiRpc/pigiRpc -console

U. C. Berkeley Department of EECS

The Almagest 17-13

and then type:
domains

into the console window prompt. Below is the sample output for the yyy example
domain:

pigi> domains
YYY
pigi> knownlist
Nop
pigi>

Ptolemy Last updated: 10/17/97

17-14 Creating New Domains

U. C. Berkeley Department of EECS

