
Chapter 17. Creating New Domains

Authors: Mike Chen
Christopher Hylands
Thomas M. Parks

Other Contributors: Wan-Teh Chang
Michael C. Williamson

17.1 Introduction
One of Ptolemy’s strengths is the ability to combine heterogeneous models of compu-

tation into one system. In Ptolemy, a model of computation corresponds to aDomain . The
code for eachDomain interacts with the Ptolemy kernel. This overview describes the general
structure of the various classes that are used by aDomain in its interaction with the kernel.
The PtolemyUser’s Manual has a more complete overview of this information.

A functional block, such as an adder or an FFT, is called aStar in Ptolemy terminol-
ogy, (see “Writing Stars for Simulation” on page 2-1 for more information). A collection of
connectedStar s form aGalaxy (see Chapter 2 of theUser’s Manual for more information).
Ptolemy supports graphical hierarchy so that an entireGalaxy can be formed and used as a
single function block icon. TheGalaxy can then be connected to otherStar s orGalaxies
to create anotherGalaxy . Usually, all theStar s of aGalaxy are from the sameDomain but
it is possible to connectStar s of one domain to aGalaxy of another domain using aWorm-
Hole .

A Universe is a complete executable system. AUniverse can be either a single
Galaxy or a collection of disconnected Galaxies. To run aUniverse , eachGalaxy also
needs aTarget . In simulation domains, aTarget is essentially a collection of methods to
compute a schedule and run the variousStar s of aGalaxy . SomeDomain s have more than
one possible scheduling algorithm available and theTarget is used to select the desired
scheduler. In code generation domains, aTarget also computes a schedule and runs the indi-
vidual Star s, but eachStar only generates code to be executed later. Code generationTar-
gets also handle compiling, loading, and running the generated code on the target
architecture.

At a lower level are the connections betweenBlock s. A Block is aStar or Galaxy .
Each Block has a number of input and output terminals which are attached to aBlock
through itsPortHole s. A specialPortHole , called aMultiPortHole , is used to make
multiple connections but with only one terminal. TwoBlock s are not directly connected
through theirPortHole s. Rather, theirPortHole s are connected to an intermediary object
called aGeodesic . In simulation domains, data is passed betweenPortHole s (through the
Geodesic) using container objects calledParticle s. Ptolemy uses a system whereParti-
cle s are used and recycled instead of created and deleted when needed.Particle s are
obtained from a production and storage class called aPlasma , which creates newParticle s
if there are no old ones to reuse.Particle s that have completed their task are returned to the

17-2 Creating New Domains

U. C. Berkeley Department of EECS

Plasma , which may reissue them at a later request. Graphically, theStar to Star connection
is depicted below:

The classes defined above provide most of the functionality necessary for a working
domain. One additional class needed by all domains is aScheduler to compute the order of
execution of theStar s in theGalaxy .

Therefore, creating a new Ptolemy simulation domain will typically involve writing
new classes forStar s,PortHole s,WormHoles , Targets , andSchedulers .

Creating a new domain is a fairly involved process, and not to be done lightly. The first
thing that many users want to do when they see Ptolemy is create a new domain. However, it is
often the case that the functionality they need is already in either the SDF or DE domains, or
they can merely add aTarget or Scheduler rather than an entire domain.

17.2 A closer look at the various classes
A simulationDomain can use the various classes mentioned above as they exist in the

Ptolemy kernel or it can redefine them as needed. For example, in the SDF domain, the classes
SDFStar , SDFPortHole , SDFScheduler , SDFDomain, SDFTarget , andSDFWormhole
have all been defined. Most of those classes inherit much of their functionality from the corre-
sponding kernel classes but theDomain creator is free to make major changes as well. The
kernelGeodesic , Plasma , andParticle classes are used without modification, but other
domains such as the CG domain have derived a subclass fromGeodesic . TheDomain cre-
ator needs to decide whether or not existing Ptolemy classes can be used without change,
therefore it is a good idea to understand what functionality the kernel classes provide.

The following is a brief description of the various classes that either need to be defined
or are used by aDomain . Note that we only provide a functional description of some of the
major methods of each class and not a complete description of all methods.

FIGURE 17-1: Block objects in Ptolemy can send and receive data encapsulated in Particles
through Portholes. Buffering and transport is handled by the Geodesic and gar-
bage collection by the Plasma. Some methods are shown.

PortHole PortHole

Block
• initialize()
• run()
• wrapup()

PortHole
• initialize()
• receiveData()
• sendData()
• type()

PortHole PortHole

Geodesic

Plasma

Geodesic
• initialize()
• setSourcePort()
• setDestPort()

Particle
• type()
• print()
• initialize()

Particle

Block Block

The Almagest 17-3

Ptolemy Last updated: 10/17/97

17.2.1 Target

A Target is an object that manages the execution of theStars in aDomain .

 Major methods:

run() Called to execute a schedule.

wrapup() Called at the end of an execution to clean up.

setup() Called byinitialize() (which is inherited from theBlock
class, which is a common base class for many of Ptolemy’s
classes). Sets eachStar to point to thisTarget and sets up the
Scheduler .

 Major objects contained are:

gal A pointer to theGalaxy being executed.

sched A pointer to the Scheduler that is being used.

For further information aboutTarget s, see some of the existing domains.

17.2.2 Domain

Declares the type of various components of theDomain , like which type ofWorm-
Hole , PortHole , Star , etc. is used by theDomain .

 Major methods:

newWorm() Create aWormHole of the appropriate type for thisDomain.

newFrom() Create anEventHorizon (an object that is used to interface to
other Domains , used withWormHoles) that translates data
from a Universal format to aDomain specific one.

newTo() Create anEventHorizon that translates data from aDomain
specific format to a Universal one.

newNode() Returns aGeodesic of the appropriate type for thisDomain .

17.2.3 Star

A Star is an object derived from classBlock that implements an atomic function.

 Major methods:

run() What to do to run the star.

For example, theDataFlowStar class (a parent class to many of the dataflow domain
stars such asSDFStar andDDFStar) defines this function to make each inputPortHole
obtainParticles from theGeodesic , execute thego() method of eachStar , and then
have each outputPortHole put itsParticles into theGeodesic .

17.2.4 PortHole

PortHole s are data members ofStar s and are where streams ofParticle s enter or
leave theStar s. EachPortHole always handlesParticle s of one type, so two connected
PortHole s need to decide which data type they will use if they are not the same. There is a

17-4 Creating New Domains

U. C. Berkeley Department of EECS

base class calledGenericPort which provides some basic methods that derived classes
should redefine as well as some data members commonly needed by allPortHole types.

 Major methods:

isItInput() ReturnTRUE if the PortHole class is an input type.

isItOutput() ReturnTRUE if the PortHole class is an output type.

isItMulti() ReturnTRUE if the PortHole class is aMultiPorthole .

connect() Connect thisPortHole to aGeodesic (create one if needed)
and tell thatGeodesic to connect itself to both thisPortHole
and the destinationPortHole . Also provides the number of
delays on this connection.

initialize() Initialize thePortHole . In the case of outputPortHole s, this
function will usually initialize the connectedGeodesic as
well. Resolve the type ofParticle s with thePortHole it is
connected to.

receiveData() What to do to receive data from theGeodesic .

sendData() What to do to send data to theGeodesic .

putParticle() Put a particle from the buffer into theGeodesic .

getParticle() Get a particle from theGeodesic and put it into the buffer.

numXfer() Returns numberTokens , the number ofParticle s trans-
ferred per execution.

numTokens() Returns the number ofParticle s inside theGeodesic .

numInitDelays() Returns the number of initial delay on theGeodesic .

geo() Returns a pointer to theGeodesic thisPortHole is connected
to.

setDelay() Set the delay on theGeodesic .

Major data members:

myType Data type of particles in this porthole.

myGeodesic TheGeodesic that thisPortHole is connected to

myPlasma A pointer to thePlasma used to request newParticle s.

myBuffer Usually aCircularBuffer used to store incoming or outgo-
ing Particle s.

farSidePort ThePortHole that we are connected to.

bufferSize The size of theBuffer .

numberTokens The number ofParticle s consumed or generated each time
we access theGeodesic .

 Note thatPortHole s are generally separated into inputPortHole s and output

The Almagest 17-5

Ptolemy Last updated: 10/17/97

PortHole s. They aren’t designed to handle bidirectional traffic.

17.2.5 Geodesic

Models a FIFO buffer (usually) between twoPortHole s. Major methods:

setSourcePort() Set the sourcePortHole and the delay on this connection. A
delay is usually implemented as an initialParticle in the
Geodesic ’s buffer, but this can be changed depending on the
desired functionality.

setDestPort() Set the destinationPortHole .

disconnect() Disconnect from the givenPortHole .

setDelay() Set the number of delays on this connection.

initialize() Initialize the buffer in thisGeodesic . This means either clear it
or insert the number of initialParticle s needed to match the
number of delays on this connection (theseParticle s are
taken from the sourcePortHole s’s Plasma).

put() Put aParticle into the buffer

get() Get aParticle from the buffer.incCount() and
decCount() are used by aScheduler to simulate an execu-
tion.

numInit() Return the number of initial particles.

Major data members:

originatingPort A pointer to the sourcePortHole .

destinationPort A pointer to the destinationPortHole .

pstack The buffer, implemented as aParticleStack .

sz The number ofParticle s in the buffer.

numInitialParticles
The number of initial delays.

17.2.6 Plasma

There are container object for unusedParticle s. There is one global instance of a
Plasma for each type ofParticle defined in the kernel. This class is usually only used by the
Domain s and not changed by the authors of newDomain s.

 Major methods:

put() Return an unusedParticle to thePlasma .

get() Get an unusedParticle (or create one if needed).

17.2.7 Particle

The variousParticle types supported by Ptolemy. Currently, the types areFloat ,

17-6 Creating New Domains

U. C. Berkeley Department of EECS

Int , Complex , Fix , andMessage . The Message Particle is used to carryMessages
(insideEnvelopes) which can be almost anything. For example, theMatrix class is trans-
ferred usingMessage Particle s. These classes are also only used as-is by theDomain s and
not redefined for new domains.

17.2.8 Scheduler

Sets up the execution by determining the order in which eachStar of theGalaxy will
fire. Execution is performed using two main methods --setup() andrun() . Schedulers
can be timed or untimed, depending on theDomain ’s model of execution. This class will usu-
ally be different for each domain, although some domains reuse theScheduler of another
domain, if theScheduler is appropriate for the new domain’s model of computation.

 Major methods:

setup() Checks theStar s in theGalaxy , initializes them, and creates a
schedule.

run() Run the schedule computed in setup()

Major data members

myGalaxy The pointer to theGalaxy that the Scheduler is working on.

myTarget The pointer to theTarget which is controlling the execution.

17.3 What happens when a Universe is run
Now that you have some idea of what classes exist in the Ptolemy kernel, this section

will try to explain flow of control when aUniverse is run. By knowing this, you will get an
idea of what additions or changes might be needed to get the functionality you desire and how
the code of your new domain will fit in.

First off, a little more about the basics of Ptolemy classes. Almost every object class in
Ptolemy is derived from theNamedObj class. This class simply provides support for aName
field, a longerDescription field, and a pointer to aParent Block . Also, the methodini-
tialize() is declared here to be purely virtual, so every object should have some kind of
initialization function.

TheBlock class is derived fromNamedObj and is the main base class for most actors
in Ptolemy. It has I/O constructs likePortHole s andMultiPortHoles , state/parameter
constructs likeState , and defines execution methods such assetup() , run() andwra-
pup() . TheBlock also provides a virtual function to access an associated Scheduler.

A simulation universe is generally of typeDataFlowStar . When a universe is run,
the flow of control is as follows, using the SDF domain as an example:

PTcl::dispatcher()
PTcl::run()

PTcl::computeSchedule()
Runnable::initTarget()

Block::initialize()
SDFTarget::setup()

Target::setup()
SDFScheduler::setup()

The Almagest 17-7

Ptolemy Last updated: 10/17/97

Notice at this point that we have called two domain-specific methods, namely
SDFTarget::setup() andSDFScheduler::setup() . TheTarget can have a choice of
more than oneScheduler and in this case it called the defaultSDFScheduler . We continue
here with a more detailed description of a very important function:

SDFScheduler::setup()
checkConnectivity() // Checks that the galaxy is

// properly connected.
prepareGalaxy() // Initializes the portHoles of each star and

// the geodesics that connect them.
checkStars() // Verifies that the type of the Stars are

// compatible with this Scheduler.
repetitions() // Solves the balance equations for the

// system and calculates how many times
// each star should be fired for
// one iteration (specific to dataflow).

computeSchedule() // Compute the actual schedule
adjustSampleRates() // Set the number of tokens transferred

// between EventHorizons if this schedule
// is for a WormHole.

The order of various operations can be different for each scheduler. For example, a
new domain may require that thePortHole s be initialized after the repetitions were calcu-
lated but before the schedule was computed. The domain writer may wish to define a new
function prepareForScheduling() that would call thesetup() function of eachStar
without initializing theStar ’s PortHole s.

ExpandingprepareGalaxy() in more detail:
SDFScheduler:: prepareGalaxy()

galaxy()->initialize() // Initialize the galaxy.
InterpGalaxy::initialize() // Causes the initialization of delays

// and the setup of bus widths.
Galaxy::initSubblocks() // Calls initialize() of each star.

DataFlowStar::initialize()// This is a general initialize.
// function for data flow stars.
// Your own Star class might
// redefine it. Sets the number
// of input Ports and clears
// some parameters.

Block::initialize() // Initializes the PortHoles and States
// of the Block/Star. Calls the user
// defined setup() function of each
// star after the portholes and
// geodesics have been initialized.

PortHole::initialize() // General PortHole initialization;
// again you can redefine it for a
// domain specific PortHole.
// Resolves the type of Particles
// to be sent. Allocates a
// buffer and a Plasma. Request
// empty Particles from the Plasma
// to initialize the buffer.

Geodesic::initialize() // General Geodesic initialization,

17-8 Creating New Domains

U. C. Berkeley Department of EECS

// called by output PortHole only.
// Clears the buffer and adds any
// initial Particles for delays.

After the schedule is set up and all the actors in theUniverse have been initialized,
the flow of control is as follows:

PTcl::run()
PTcl::computeSchedule() // Described above.

PTcl::cont()
universe->setStopeTime() // Used to set the number of

// iterations to be run.
universe->run()

InterpUniverse::run()
Runnable::run()

target->run()
sched->run()

SDFScheduler::run() // The domain specific Scheduler’s
// run() function.

Let’s look at what a typical scheduler does when it runs a star.
SDFScheduler::run() // Checks if there has been an error

// in the last iteration. Calls
// runOnce() for each iteration.

runOnce() // Goes through each Star on the
// schedule (which is a list of Stars
// computed by setup()) and calls
// star->run().

star->run()
DataFlowStar::run() // The SDF domain uses the general

// DataFlowStar
// run() function. A new Domain
// might want to redefine this.

..Ports->receiveData() // Calls receiveData() for each of
// the PortHoles for this Star.
// Output PortHoles would do nothing
// in this case but input PortHoles
// would get Particles from the
// Geodesic.

Star::run()
SimControl::doPreActions()// Execute pre-actions for a star.
go() // Call the Star specific go() function

// that will process the input data
// and generate data to be put in the
// output PortHoles.

SimControl::doPostActions() // Execute post-actions for a star
..Ports->sendData() // Calls sendData() for each of the

// PortHoles for this Star.
// Input PortHoles would do nothing
// in this case but output PortHoles
// would put their Particles into
// the Geodesic and refill their
// buffers with empty Particles
// from the Plasma.

The Almagest 17-9

Ptolemy Last updated: 10/17/97

17.4 Recipe for writing your own domain
This section describes some of the template files we have made so that you don’t have

to start coding from scratch. We also discuss which classes and methods of those classes that a
new domain must define.

17.4.1 Introduction

The first thing to do is to think through what you want this domain to do. You should
have some idea of how the yourStar s will exchange data and what kind ofScheduler is
needed. You should also understand the existing Ptolemy domains so that you can decide
whether your domain can reuse some of the code that already exists. Also, read Chapter 1 so
you understand the general classes in the Ptolemy kernel and how the domain methods inter-
act.

17.4.2 Creating the files

Themkdom script at$PTOLEMY/bin/mkdom can be used to generate template files for
a new domain.mkdom takes one argument, the name of the domain, which case insensitive,
mkdom converts the what ever you pass to it as a domain name to upper and lower case inter-
nally. Here, we assume that you have set up a parallel development tree, as documented in
chapter 1, or you are working in the directory tree where Ptolemy was untar’d.

1. To usemkdom, create a directory with the name of your domain in thesrc/
domains directory. In this example, we are creating a domain calledyyy :

mkdir $PTOLEMY/src/domains/yyy

2. cd to that directory and then runmkdom:

cd $PTOLEMY/src/domains/yyy
$PTOLEMY/bin/mkdom yyy

17.4.3 Required classes and methods for a new domain

mkdom will create copies of key files in$PTOLEMY/src/domains/yyy/kernel and
a Nop star in$PTOLEMY/src/domains/yyy/stars . The template files have various com-
ments about which methods you need to redefine. The template files also define many function
for you automatically. If you aren’t clear as to how to define the methods in each class, it is
best to try look at the existing Ptolemy domains as examples.

YYYDomain.cc This file will be setup for you automatically so that you
shouldn’t need to modify much. The various methods here
return WormHoles and EventHorizons which should be
defined inYYYWormhole . A node is usually a type ofGeode-
sic that allows multiple connections, such asAutoForkNode .
You can define your ownYYYGeodesic or simply use the ker-
nel’s AutoForkNode if that is suitable (this is what SDF does).

YYYWormhole.{h,cc}
Various methods to interface your new domain with others must
be defined if you wish to use your domain with other domains.

17-10 Creating New Domains

U. C. Berkeley Department of EECS

However, if you don’t need to mix domains, then you may skip
these files. Wormholes translate different notions of time or
concurrency. Since some domains are timed (like DE) and oth-
ers are not (like SDF), you must be able to convert from one to
another.

YYYGeodesic.{h,cc}
Currently we set theGeodesic to be the kernel’sAutoForkN-
ode . If the kernel’sGeodesic class offers all the functionality
you need, then this doesn’t need to be changed. Otherwise try
looking at some of the pre-existing domains for examples.

YYYPortHole.{h,cc}
Define inputPortHole s and outputPortHole s, as well as
MultiPortHole s, specific to your domain. The only required
methods are generated for you, but you’ll likely want to define
many more support methods. Look at the kernelPortHole ,
DFPortHole , andSDFPortHole for examples.

YYYStar.{h,cc} Domain -specific class definition. Again, all the required meth-
ods have been defined but you’ll want to add much more. Refer
to Star , DataFlowStar , andSDFStar as examples.

YYYScheduler.{h,cc}
This is where much of the action goes. You’ll need to define the
functionsetup() , run() , andsetStopTime() .

17.4.4 Building an object directory tree

Ptolemy can support multiple machine architectures from one source tree, the object
files from each architecture go into$PTOLEMY/obj.$PTARCH directories. Currently, there
are two ways to build the$PTOLEMY/obj.$PTARCH directory tree:MAKEARCH and mkP-
tolemyTree . To build object files for your new domain in$PTOLEMY/obj.$PTARCH , you
will have to set up either or both of these ways. Typically, you first useMAKEARCH because it
can operate on an existing Ptolemy tree, and once everything works, then you and other users
run mkPtolemyTree to setup parallel development trees on the new domain.

MAKEARCH

$PTOLEMY/MAKEARCH is a/bin/csh script that creates or updates the object tree in
an already existing Ptolemy tree. To add a domain toMAKEARCH, edit the file and look for a
similar domain, and add appropriately. A little trial and error may be necessary, but the basic
idea is simple:MAKEARCH traverses directories and creates subdirectories as it sees fit. Note
that if MAKEARCH is under version control, you may need to dochmod a+x MAKEARCH when
you check it back out, or it won’t be executable.

Continuing with our example:

3. EditMAKEARCH and add your domain yyy to the list of experimental domains:

set EXPDOMAINS=(cg56 cgc vhdlb vhdl mdsdf hof ipus yyy)

The Almagest 17-11

Ptolemy Last updated: 10/17/97

This will cause astars and kernel directory to be created in$PTOLEMY/
obj.$PTARCH/domains/yyy whenMAKEARCH is run.

4. RunMAKEARCH:

cd $PTOLEMY; csh -f MAKEARCH

If you get a message like:

cxh@watson 181% csh -f MAKEARCH
making directory /users/ptolemy/obj.sol2/domains/yyy
mkdir: Failed to make directory "yyy"; Permission denied
yyy: No such file or directory

The you may need to remove yourobj.$PTARCH tree, asMAKEARCH has probably
traversed down a parallel tree created bymkPtolemyTree and come up in a direc-
tory that you do not own.

mkPtolemyTree

$PTOLEMY/bin/mkPtolemyTree is a tclsh script that creates a new parallel
Ptolemy tree. Note thatmkPtolemyTree cannot be run in an already existing Ptolemy devel-
opment tree. The file$PTOLEMY/mk/stars.mk controls what directoriesmkPtolemyTree
creates, you need not actually edit themkPtolemyTree script. To createpigiRpc binaries
with your new domain in it, you will need to modifystars.mk , so adding support formkP-
tolemyTree is fairly trivial.

$PTOLEMY/mk/stars.mk

Follow the style for domain addition that you see in this file for the other domains. A
few things to keep in mind:

 • You should list the new domain before any other domain library that the new domain
depends on.

 • You should make sure to define the make variables to pull in other domain libraries as
necessary. You may needMDSDF=1 definition for example.

 • mkPtolemyTree uses theCUSTOM_DIRS makefile variable to determine what direc-
tories to create, so be sure to add your directories here.

Continuing with our example of adding the yyy domain:

5. Edit$PTOLEMY/mk/stars.mk and add your entry:

YYYDIR = $(CROOT)/src/domains/cg56
ifdef YYY

CUSTOM_DIRS += $(YYYDIR)/kernel $(YYYDIR)/stars
Have to create this eventually
PALETTES += PTOLEMY/src/domains/yyy/icons/main.pal
STARS += $(LIBDIR)/yyystars.o
LIBS += -lyyystars -lyyy
LIBFILES += $(LIBDIR)/libyyystars.$(LIBSUFFIX) \

$(LIBDIR)/libyyy.$(LIBSUFFIX)
endif

17-12 Creating New Domains

U. C. Berkeley Department of EECS

$PTOLEMY/mk/ptbin.mk

In $PTOLEMY/mk/ptbin.mk , add your domain to theFULL definition. This causes
your domain to be built in whenever a fullpigiRpc binary is created.

Building a pigiRpc

6. To build apigiRpc with your domain, first build and install your domain’s kernel
and star libraries:

cd $PTOLEMY/obj.$PTARCH/domains/yyy
make depend
make install

If your domain depends on other domains, you will have to build in those directo-
ries as well. You may find it easier to docd $PTOLEMY; make install , though
this could take 3 hours. An alternative would be to create a parallel directory tree
usingmkPtolemyTree .

7. If you have not recompiled from scratch, or runmkPtolemyTree , you may also
need to do:

cd $PTOLEMY/obj.$PTARCH/pigilib; make ptkRegisterCmds.o

8. Then build yourpigiRpc . You can either build a fullpigiRpc with all of the
domains, or you can create aoverride.mk in $PTOLEMY/obj.$PTARCH/
pigiRpc which will pull in only the domains you want.

$PTOLEMY/obj.$PTARCH/pigiRpc/override.mk could contain:

YYY=1
DEFAULT_DOMAIN=YYY
USERFLAGS=
VERSION_DESC="YYY Domain Only"

To build your binary, do:

cd $PTOLEMY/obj.$PTARCH/pigiRpc; make

If you don’t have all the libraries built, you may get an error message:

make: *** No rule to make target ̀ ../../lib.sol2/libcg56dspstars.so’,
needed by `pigiRpc’. Stop.

The workaround is to do:

cd $PTOLEMY/obj.$PTARCH/pigiRpc; make PIGI=pigiRpc

9. See “Creating a pigiRpc that includes your own stars” on page 1-7 for details on
how to use your new pigiRpc binary.

10. To verify that your new domain has been installed, startpigi with the-console
option:

cd $PTOLEMY; pigi -rpc $PTOLEMY/obj.$PTARCH/pigiRpc/pigiRpc -console

The Almagest 17-13

Ptolemy Last updated: 10/17/97

and then type:

domains

into the console window prompt. Below is the sample output for the yyy example
domain:

pigi> domains
YYY
pigi> knownlist
Nop
pigi>

17-14 Creating New Domains

U. C. Berkeley Department of EECS

