
Chapter 3. Infrastructure for Star
Writers

Authors: Joseph T. Buck
Soonhoi Ha
Edward A. Lee

3.1 Introduction
The Ptolemy kernel provides a number of C++ classes that are fairly generic and often

prove useful to star writers. Some of these are essential, such as those that handle errors. Com-
plete documentation of the kernel classes is given inThe Kernel Manualvolume of The
Almagest. Here, we summarize only the most generic of these classes, i.e., the ones that are
generally useful to star programmers. All of the classes described here may be used in stars,
provided that the star writer includes the appropriate header files. For instance, the entry

ccinclude { "pt_fstream.h" }

will permit the star to create instances of the basic stream classes (described below) in the
body of functions that are defined in the star. If the user wishes to create such an instance as a
private , protected , or public member of the star, then the header file needs to be
included in the.h file, specified as done in the line

hinclude { "pt_fstream.h" }

in the Printer star defined on page 2-28.

The source code for most of classes and functions described in this section can be
found in $PTOLEMY/src/kernel . The source code is the ultimate reference. Moreover,
since this directory is automatically searched for include files when a star is dynamically
linked, no special effort is required to specify where to find the include files.

3.2 Handling Errors
Uniform handling of errors is provided by theError class. TheError class provides

four static methods, summarized in table 3-1. From within a star definition, it is not necessary
to explicitly include theError.h header file. A typical use of the class is shown below:

Error::abortRun(*this,"this message is displayed");

The notation “Error::abortRun ” is the way static methods are invoked in C++ without
having a pointer to an instance of theError class. The first argument tells the error class
which object is flagging the error; this is strongly recommended. The name of the object will
be printed along with the error message. Note that theabortRun call does not cause an
immediate halt. It simply marks a flag that the scheduler must test for.

The table uses standard C++ notation to indicate how to use the methods. The type of
the return value and the type of the arguments is given, together with an explanation of each.
When an argument has the annotation “=something,” then this argument is optional. If it is

3-2 Infrastructure for Star Writers

U. C. Berkeley Department of EECS

omitted from the call, then the value used will besomething.

TABLE 3-1: A summary of the static methods in the Error class. Each method has two tem-
plates, as shown only for the abortRun method. The others are the same.

3.3 I/O Classes
Star programmers often need to communicate with the user. The most flexible way to

do this is to build a customized, window-based interface, as described in “Using Tcl/Tk” on
page 5-1. Often, however, it is sufficient to plot some data or to just construct strings and out-
put them to files or to the standard output1. To do the latter, use the classespt_ifstream and
pt_ofstream , which are derived from the standard C++ stream classesifstream and
ofstream , respectively. More sophisticated output can be obtained with theXGraph class,
the histogram classes, and classes that interface to Tk for generating animated, interactive dis-
plays. All of these classes are summarized in this section.

3.3.1 Extended input and output stream classes

Thept_ofstream class is used in thePrinter star on page 2-28. Include the header
file pt_fstream.h . Thept_ofstream constructor is invoked in thesetup method with

1. Note that when users run pigi, the standard output may appear on a window that is buried. The
-console option to pigi helps, in that it creates a specific window for the standard output and other
interactions with the user. The standard output is much more useful with ptcl, the textual interpreter.

 Error class #include "Error.h"

method description

static void abortRun (signal a fatal error, and request a halt to the run
const NamedObj&
obj,

the object triggering the error

const char*, the error message
const char* = 0, optional additional message to concatenate to the error mes-

sage
const char* = 0) optional additional message to concatenate to the error mes-

sage
static void abortRun signal a fatal error, and request a halt to the run

const char*, the error message
const char* = 0, optional additional message to concatenate to the error mes-

sage
const char* = 0) optional additional message to concatenate to the error mes-

sage
static void error

(...)
signal an error, without requesting a halt to the run

static void message
(...)

output a message to the user

static void warn
(...)

generate a warning message

The Almagest 3-3

Ptolemy Last updated: 10/17/97

the call tonew. It would not do to invoke it in the constructor for the star, since thefileName
state would not have been initialized. Notice that thesetup method reclaims the memory
allocated in previous runs (or previous invocations of thesetup method) before creating a
new pt_ofstream object. Notice that we are not using awrapup method to reclaim the
memory, since this method is not invoked if an error occurs during a run.

The classespt_ifstream and pt_ofstream are only a slight extension of the
classesifstream andofstream. They add the following features:

 • First, certain special file names are recognized as arguments to the constructor or to the
open method. These file names are<cin> , <cout> , <cerr> , or <clog> (the angle
brackets must be part of the string), then the corresponding standard stream of the
same name is used for input (pt_ifstream) or output (pt_ofstream). In addition,
C standard I/O fans can specify<stdin> , <stdout> , or <stderr> .

 • Second, the PtolemyexpandPathName (see table3-7 on page 3-8) is applied to
the filename before it is opened, permitting it to start with~user or $VAR.

 • Finally, if a failure occurs when the file is opened,Error::abortRun is called with
an appropriate error message, including the Unix error condition.

These classes can be used for binary character data as well as ASCII.

3.3.2 Generating graphs using the XGraph class

The XGraph class provides an interface to thepxgraph program, used for plotting
data on an X window system display. Thepxgraph program and all its options are docu-
mented in theUser’s Manual. An example of the output frompxgraph is shown in figure 3-
1.The most useful methods of the class are summarized in table 3-2.

Using theXGraph class involves an invocation of theinitialize method, some
number of invocations of theaddPoint method, followed by an invocation of thetermi-

FIGURE 3-1: An example of the output from the pxgraph program, which can be accessed using
the XGraph class.

3-4 Infrastructure for Star Writers

U. C. Berkeley Department of EECS

nate method. Multiple data sets (currently up to 64) may be plotted together. They will each
be given a distinctive color and/or line pattern. Within each data set, it is possible to break the
connecting lines between points by calling thenewTrace method.

3.3.3 Classes for displaying animated bar graphs

TheBarGraph class creates a Tk window that displays a bar graph that can be modi-
fied dynamically, while a simulation runs. An example with 12 data sets and 8 bars per data
set is shown in figure 3-2. The most useful methods of the class are summarized in table 3-3.
This class is directly usable only by stars linked into apigi process, not to stars linked into
the interpreter,ptcl . The reason for this is thatptcl does not have the Tk code linked into it.
Correspondingly, the class definition source code is in$PTOLEMY/src/pigilib , rather than
the more usual$PTOLEMY/src/kernel .

 XGraph class #include "Display.h"

method description

void initialize (start a fresh plot
Block* parent, pointer to the block using the class
int noGraphs, the number of data sets to plot
const char*
options,

options to pass to the pxgraph program

const char*
title,

title to put on the graph

const char*
saveFile = 0,

name of a file to save data to

int ignore = 0) number of initial points to ignore
void addPoint (add the next point to the first data set with implicit x position

float y) the vertical position
void addPoint (add a single point to the first data set

float x, the horizontal position of the point to plot
float y) the vertical position of the point to plot

void addPoint (add a single point to a particular data set
int dataSet, the number of the data set (starting with 1)
float x, the horizontal position of the point to plot
float y) the vertical position of the point to plot

void newTrace (start a new trace disconnected from the previous trace
int dataSet = 1) the data set for the new trace

void terminate () plot the data using the pxgraph program

TABLE 3-2: A summary of the most useful methods of the XGraph class, which provides a simple
interface to the pxgraph program, used for plotting data.

The Almagest 3-5

Ptolemy Last updated: 10/17/97

3.3.4 Collecting statistics using the histogram classes

The Histogram class constructs a histogram of data supplied. TheXHistogram

FIGURE 3-2: An example of an animated bar graph created using the BarGraph class. This class
uses Tk, so it is available under pigi , but not under ptcl .

 BarGraph class #include "BarGraph.h"

method description

int setup (start a fresh plot; return FALSE if setup fails
Block* parent, pointer to the block using the class
char* desc, label for the bar graph
int numInputs, the number of data sets to plot
int numBars the number of bars per data set to show at once
double top, the numerical value that will produce the highest bar
double bottom, the numerical value that will produce the lowest bar
char* geometry, the starting position for the window (e.g. “+0+0” or “-0-0”)
double width, the starting width of the window (in cm)
double height) the starting height of the window (in cm)

int update (modify or add a bar; return FALSE if it fails
int dataSet, the number of the data set (starting with 0)
int bar, the horizontal position of the point to plot
double y) the requested height of the bar

TABLE 3-3: A summary of the most useful methods of the BarGraph class, which creates ani-
mated bar graph charts in a window, and is available to stars running under pigi .

3-6 Infrastructure for Star Writers

U. C. Berkeley Department of EECS

class also constructs a histogram, but then plots it using thepxgraph program. An example of
such a plot is shown in figure 3-3. The most useful methods of both classes are summarized in
tables 3-4 and 3-5.

TheHistogram class counts the number of occurrences of data values that fall within
each of a number of bins. Each bin represents a range of numbers. All bins have the same
width, and the center of each bin will be an integer multiple of this width. Bin number 0 is
always that with the smallest center. Bins are added if new data arrives that does not fit within
any of the existing bins. ThegetData method is used to read out the contents of a bin. If you
start with bin number 0, and proceed untilgetData returnsFALSE, you will have read all the
bins.

FIGURE 3-3: An example of a histogram generated using the XHistogram class.

 Histogram class #include "Histogram.h"

description

Histogram (constructor
double width =
1.0,

the width of each bin; bins are centered at integer multiples of
this

int maxBins =
1000)

since bins are added as needed, it is wise to limit their number

void add (add to the count of the bin within which the given data falls
double x) a data point for the histogram

int numCounts () return the number of data values used so far in the histogram
double mean () return the average value of all observed data so far
double variance () return the variance of the observed data so far
int getData (get the count for a given bin; return FALSE if the bin is out of

range
int binno, starting at 0, the bin number
int& count, place to store the count for the given bin
double& bin-
Center)

place to store the center of the given bin

TABLE 3-4: A summary of the most useful methods of the Histogram class, which creates his-
togram charts in a window, and is available to stars running under pigi .

The Almagest 3-7

Ptolemy Last updated: 10/17/97

 XHistogram class #include "Histogram.h"

method description

void initialize (start a fresh histogram
Block* parent, pointer to the block using the class
double binWidth, the width of each bin; bins are centered at integer multiples of

this
const char*
options,

options to pass to the pxgraph program, in addition to -bar -nl
-brw

const char*
title,

title to put on the histogram

const char*
saveFile,

name of a file to save data to (or 0 if none)

int maxBins =
1000)

since bins are added as needed, it is wise to limit their number

void addPoint (add to the count of the bin within which the given data falls
double y) a data point for the histogram

int numCounts () return the number of data values used so far in the histogram
double mean () return the average value of all observed data so far
double variance () return the variance of the observed data so far
void terminate () plot the histogram using the pxgraph program

TABLE 3-5: A class for displaying histograms.

3-8 Infrastructure for Star Writers

U. C. Berkeley Department of EECS

3.4 String Functions and Classes
The Ptolemy kernel defines some ordinary functions (not classes) plus two classes that

are useful for building and manipulating strings. The non-class string functions are summa-
rized in table 3-6.. These include functions for copying strings, adding strings to a system-

wide hash table, creating temporary file names. The non-class pathname functions are summa-
rized in table 3-7. These functions are for expanding file names that might begin with a refer-
ence to a user’s home directory ("~username") or an shell environment variable
("$VARIABLE"). Also provided is a function for verifying that an external program to be
invoked is available, and a function for searching the user’s path.

 ordinary functions for strings #include "miscFuncs.h"

method description

char* savestring (create a new copy of the given text and return a
pointer to it; the caller must eventually delete the
string.

const char* text)

const char* hashstring (save a copy of the text in a system-wide hash table,
if it isn’t already there, and return a pointer to the
entry.

const char* text)

char* tempFileName () return a new, unique temporary file name; the
caller must eventually delete the string.

const char* expandPathName (return an expanded version of the filename argu-
ment, which may start with “~”, “~user”, or
“$var”; the expanded result is in static storage, and
will be overwritten by the next call.

const char* filename)

TABLE 3-6: Non-class (ordinary) functions available in the Ptolemy kernel for string manipulation

 ordinary functions for path search #include "paths.h"

method description

int progNotFound (flag an error and return TRUE if a program is not
found

const char* program, the name of the program to find in the user’s path
const char* extramsg =
0)

message to add to error message if the program
isn’t found

const char* pathSearch (find a file in a Unix-style path, returning the direc-
tory name

const char* file, file name to find in the path
const char* path = 0) if non-zero, the path to use instead of the user’s

path

TABLE 3-7: Non-class (ordinary) functions available in the Ptolemy kernel for certain pathname
manipulations.

The Almagest 3-9

Ptolemy Last updated: 10/17/97

Two classes are provided for manipulating strings,InfString , andStringList, these
classes are summarized in figure 3-8.

 StringList class #include "StringList.h"

method description

StringList constructors can take any of the following possible argu-
ments

none return an empty StringList
const StringList&
s

copy s and return a new, identical StringList

char c return a StringList with one string of one character
const char* string copy the string and makes a one element StringList contain-

ing it
int i create an ASCII representation of the number and return a

one element StringList with that number as the elementdouble x

unsigned u

StringList& operator =
arg

assignment takes the same types of arguments as the con-
structors, except “none”

StringList& operator
<< arg

add one or more elements to a StringList; this takes the
same types of arguments as the constructors, except “none”

operator const char* join all elements together and return as a single string;
void initialize () delete all elements, making the StringList empty
int length () return the length in characters (sum of the lengths of the

elements)
int numPieces () return the number of elements
const char* head () return the first element
char* newCopy () return the concatenated elements in a single newly allo-

cated string; the caller must free the memory allocated.

 InfString class #include "InfString.h"

method description

all StringList methods see above
operator char* join all elements together and return as a single string;

TABLE 3-8: A summary of the most useful methods of the StringList and InfString
classes. The InfString class inherits all of the methods from StringList , add-
ing only the cast to char* .

3-10 Infrastructure for Star Writers

U. C. Berkeley Department of EECS

Although these two classes are almost identical in design, their recommended uses are
quite different. The first is designed for building up strings without having to be concerned about
the ultimate size of the string. New characters can be appended to the string at any time, and
memory will be allocated to accommodate them. When you are ready to use the string, perhaps
by passing it to a function that expects the standard character array representation of the string,
then simply cast the object tochar* .

In fact, InfString is publicly derived fromStringList , adding only the cast to
char* . StringList is implemented as a list of strings, where the size of the list is not
bounded ahead of time.StringList is recommended for applications where the list structure
is to be preserved. The cast tochar* in InfString destroys the list structure, consolidating all
its strings into one contiguous string.

The most useful methods for both classes are summarized in table . SinceInfString
differs by only one operator, we show only that one operator.

A word of warning is in order. If a function or expression returns aStringList or
InfString , and that value is not assigned to aStringList or InfString variable or refer-
ence, and the(const char*) or (char*) cast is used, it is possible (likely under g++) that
the StringList or InfString temporary will be destroyed too soon, leaving theconst
char* or char* pointer pointing to garbage. The solution is to assign the returned value to a
local StringList or InfString before performing the cast. Suppose, for example, that the
function foo returns anInfString . Further, suppose the functionbar takes achar* argu-
ment. Then the following code will fail:

bar(foo());

(Note that the cast tochar* is implicit). The following code will succeed:
InfString x = foo();
bar(x);

3.5 Iterators
TheStringList class is one of several list classes in the Ptolemy kernel. A basic oper-

ation on list classes is to sequentially access their members one at a time. This is accomplished
using an iterator class, companion to the list class. For theStringList class, the iterator is
calledStringListIter . Its methods are summarized in table 3-9. An example program frag-

ment using this is given below:
StringListIter item(myList);
const char* string;

 Str ingListIter class #include "Str ingList.h"

method description

StringList (constructor
StringList& list) the list over which the iterator will iterate

const char* next () return the next string on the list, or 0 if there are no more
const char* operator
++ ()

a synonym for “next”

void reset () reset the iterator to start at the head again

TABLE 3-9: An example of an iterator class, used to access the elements of a list class.

The Almagest 3-11

Ptolemy Last updated: 10/17/97

while ((string = item++) != 0) cout << string << "\n";

In this fragment,myList is assumed to be aStringList previously set up.

3.6 List Classes
The StringList class is privately derived from theSequentialList class, an

extremely useful class used throughout Ptolemy. This class implements a linked list with a
running count of the number of elements. It uses the generic pointer technique, with

typedef void* Pointer

Thus, items in a sequential list can be pointers to any object, with a generic pointer used to
access the object. In derived classes, likeStringList , this generic pointer is converted to a
specific type of pointer, likeconst char* . The methods are summarized in table 3-10.

An important point to keep in mind when using aSequentialList is that its
destructor does not delete the elements in the list. It would not be possible to do so, since it has
only a generic pointer. Also, note that random access (by element number, or any other
method) can be very inefficient, since it would require sequentially chaining down the list.

SequentialList has an iterator class calledListIter . The++ operator (ornext
member function) returns aPointer .

In table 3-11 are two classes privately derived fromSequentialList , Queue and
Stack . The first of these can implement either a first-in, first-out (FIFO) queue, or a last-in,

TABLE 3-10: The most useful basic list structure defined in the Ptolemy kernel.

 SequentialList class #include "DataStruct.h"

method description

void append (Pointer p) add the element p to the end of the list
Pointer elem (int n) return the n-th element on the list (zero if there are

fewer than n)
int empty () return 1 if empty, 0 if not
Pointer getAndRemove () return and remove the first element on the list

(return zero if empty)
Pointer getTailAndRemove () return and remove the last element on the list (return

zero if empty)
Pointer head () return the first element on the list (zero if empty)
void initialize () remove all elements from the list
int member (Pointer p) return 1 if the list has a pointer equal to p, 0 if not
void prepend (Pointer p) add the element p to the beginning of the list
int remove (Pointer p) if the list has a pointer equal to p, remove it, and

return 1; 0 if not
int size () return the number of elements on the list
Pointer tail () return the last element on the list (zero if empty)

3-12 Infrastructure for Star Writers

U. C. Berkeley Department of EECS

first-out (LIFO) queue. The second implements a stack, which is also a LIFO queue.

TABLE 3-11: Two classes derived from SequentialList.

 Queue class #include "DataStruct.h"

method description

Pointer getHead () return and remove the first element on the list (return zero if
empty)

Pointer getTail () return and remove the last element on the list (return zero if
empty)

void initialize () remove all elements from the list
void putHead (Pointer
p)

add the element p to the beginning of the list

void putTail (Pointer
p)

add the element p to the end of the list

int size () return the number of elements on the list

 Stack class #include "DataStruct.h"

method description

Pointer accessTop () return the top of the stack without removing it (return zero if
empty)

void initialize () remove all elements from the list
Pointer popTop () return and remove the top element from the stack (zero if

empty)
void pushBottom
(Pointer p)

add the element p to the bottom of the stack

void pushTop (Pointer
p)

add the element p to the top of the stack

int size () return the number of elements on the list

The Almagest 3-13

Ptolemy Last updated: 10/17/97

3.7 Hash Tables
Hash tables are lists that are indexed by an ASCII string. A “hashing function” is com-

puted from the string to make random accesses reasonably efficient; they are much more effi-
cient, for example, than a linear search over aSequentialList . Two such classes are
provided in the Ptolemy kernel. The first,HashTable , is generic, in that the table entries are
of typePointer , and thus can point to any user-defined data structure. The second,TextTa-
ble , is more specialized; the entries are strings. It is derived fromHashTable .

The HashTable class is summarized in table 3-12 andTextTable class is summa-

rized in table 3-13. Only the most useful (and easily used) methods are described. You may
want to refer to the source code for more information. TheHashTable class has a standard
iterator calledHashTableIter , where thenext method and++ operator return a pointer to
classHashEntry . This class has aconst char* key() method that returns the key for the
entry, and aPointer value() method that returns a pointer to the entry.TextTable has an
iterator calledTextTableIter , where thenext method and++ operator return typeconst
char* .

Sophisticated users will often want to derive new classes fromHashTable . The rea-
son is that the methods that look up data in the table can be defined to return pointers of the
appropriate type. Moreover, the deallocation of memory when an entry is deleted or the table
itself is deleted can be automated.TextTable is a good example of such a derived class. This
is not possible with the genericHashTable class, because thePointer type does not give
enough information to know what destructor to invoke. Thus, when using the genericHash-
Table class, the user should explicitly delete the objects pointed to by thePointer if they
were dynamically created and are no longer needed. A detailed example that directly uses the
HashTable class, without defining a derived class, is given in the next section. In that exam-

 HashTable class #include "HashTable.h"

method description

void clear () empty the table
virtual void cleanup (

Pointer p)
does nothing; in derived classes, this might deallocate
memory

int hasKey (
const char* key)

return 1 if the given key is in the table, 0 otherwise

void insert (insert an entry; any previous entry with the same key is
replaced, and the cleanup method is called so that in
derived classes, its memory can be deallocated.

const char* key,

Pointer data)

Pointer lookup (lookup an entry; in a derived class, this could be over-
loaded to return a pointer of a more specific type.const char* key)

int remove (remove the entry with the given key from the table; note
that the object pointed to by the entry is not deallocated.const char* key)

int size () return the number of entries in the hash table

TABLE 3-12: A summary of the most useful methods of the HashTable class

3-14 Infrastructure for Star Writers

U. C. Berkeley Department of EECS

ple, thePointer entries point to stars in a universe, so they should not be deleted when the
entries in the table are deleted. Their memory will be deallocated when the universe is deleted.

In some future version,HashTable might be reimplemented using templates.

3.8 Sharing Data Structures Across Multiple Stars
It is sometimes desirable to have a set of stars that share and manipulate a common

data structure1. A simple way to accomplish this is to define a star that contains a static mem-
ber. Suppose, for example, you wish to define a class of stars that create a shared list of point-
ers, one to each instance of this type of star. Thus, every star of this type would be able to
access every other star of this type. Consider the following implementation:

defstar {
name { Share }
domain { SDF }
desc { A star with a shared data structure }
hinclude { “DataStruct.h” }
private {
 static SequentialList starList;
}
output {
 name { howmany }
 type { int }
}
code {

1. See the SDFWriteVar and SDFReadVar stars for a similar implementation.

 TextTable class #include "HashTable.h"

method description

void clear () empty the table
void cleanup (

Pointer p)
deallocate the string pointed to by p

int hasKey (
const char* key)

return 1 if the given key is in the table, 0 otherwise

void insert (create an entry containing a copy of string; any previous
entry with the same key is replaced, and the cleanup
method is called to deallocate its memory.

const char* key,

const char* string
)

const char* lookup (lookup an entry with the given key; return 0 if there is no
such entry.const char* key)

int remove (remove the entry with the given key from the table and
deallocated its memory.const char* key)

int size() return the number of entries in the hash table

TABLE 3-13: A summary of the most useful methods of the HashTable and TextTab l
classes.

The Almagest 3-15

Ptolemy Last updated: 10/17/97

 SequentialList SDFShare::starList;
}
begin {
 starList.append(this);
}
go {
 howmany%0 << starList.size();
}
wrapup {
 starList.initialize();
}

}

This star has a static private member of typeSequentialList with namestarList. The
“static ” in C++ ensures that there will be no more than one instance of theSequential-
List object. That instance will be accessible to every instance of the star, but not to any other
object (because the member is private). That one instance is actually declared by the lines:

code {
 SequentialList SDFShare::starList;
}

The declaration will get put into the fileSDFShare.cc by the preprocessor. Notice that the
class name of the star isSDFShare not justShare . Thebegin method simply adds to the
sequential list a pointer to the star that invoked thebegin method (this). Note that you
should use thebegin method here rather than thesetup method because thebegin method
is always invoked exactly once, while thesetup method might be invoked more than once
when the simulation starts up. Thego method sends to the output (namedhowmany) the size
of the list. This will be equal to the number of stars of this type in the universe.

Thewrapup method has the only tricky part of this code. It reinitializes theSequen-
tialList so that subsequent runs do not just simply add to a list created by previous runs.
However, note that the wrapup method will not be invoked if an error occurs during the run.
Pigi ensures correct operation nonetheless by deleting all instances of the stars and recreat-
ing them if an error occurred on the previous run. Thus, between invocations of thebegin
method, either thewrapup method or the constructor for the star (and all its members) will
be invoked. The constructor forSequentialList also initializes the list, so the list is always
initialized before the firstbegin method is called.

The above approach is somewhat limited. You may want more than one type of star to
share a data structure. In this case, you should create a common base class for all the stars that
will share the data structure. The shared data structure should be a protected member, rather
than a private member, so that it is accessible to derived stars.

Alternatively, you might want arbitrary subsets of stars to share distinct data struc-
tures, one for each subset. This can be accomplished by defining a static list that is indexed by
a string, and using a parameter in the star to identify to which subset it belongs. An efficient
data structure to use for this is theHashTable . So for example, suppose we wanted to modify
the above star to create lists of stars with common values of a parameter “mySubset”, and to
output the number of stars in their subset. The above code becomes:

defstar {

3-16 Infrastructure for Star Writers

U. C. Berkeley Department of EECS

name { BetterShare }
domain { SDF }
desc { A star with a shared data structure }
hinclude { "DataStruct.h" }
hinclude { "HashTable.h" }
output {
 name { howmany }
 type { int }
}
state {
 name { mySubset }
 default { "subset A" }
 type { string }
}
private {
 static HashTable listOfLists;
 SequentialList* myList;
}
code {
 HashTable SDFBetterShare::listOfLists;
}
begin {
 if (listOfLists.hasKey((char*)mySubset)) {

myList = listOfLists.lookup((char*)mySubset);
 } else {

myList = new SequentialList;
listOfLists.insert((char*)mySubset,myList);

 }
 myList->append(this);
}
go {
 howmany%0 << myList->size();
}
wrapup {
 if (listOfLists.hasKey((char*)mySubset)) {

listOfLists.remove((char*)mySubset);
delete myList;

 }
}

}

In addition to the static private memberlistOfLists , we also have a pointermyList to a
SequentialList . Thebegin method is a bit more complicated now. It first checks to see
whether an entry in the hash table has already been created with a key equal to the value of the
state “mySubset”. If it has, then theSequentialList pointermyList is set equal to the
value of that entry. If it has not, then a newSequentialList is allocated and inserted into
the hash table with the appropriate key. The last action is simply to insert a pointer to the star
instance intomyList .

Thego method is similar to before.

Thewrapup method is slightly more complicated, because it needs to free the mem-
ory allocated when the newSequentialList was allocated. However, it should free that

The Almagest 3-17

Ptolemy Last updated: 10/17/97

memory only once, and there may be several star instances pointing to it. Thus, it first checks
the hash table to see whether there exists an entry with key equal tomySubset . If there does,
then it removes that entry and deletes theSequentialList myList .

3.9 Using Random Numbers
Ptolemy uses the Gnu library routines for the random number generation. Refer to Vol-

ume II of the Art of Computer Programming by Knuth for details about the method. There are
built-in classes for some popular distributions: uniform, exponential, geometric, discrete uni-
form, normal, log-normal, and so on. These classes use a common basic random number gen-
eration routine which is realized in theACG class. Here are some examples of using random
numbers.

The first example is the part of the DEPoisson star. See the DE chapter for details on
how to write DE stars.

hinclude { <NegExp.h> }
ccinclude { <ACG.h> }
protected {

NegativeExpntl *random;
}
// declare the static random-number generator in the .cc file
code {

extern ACG* gen;
}
constructor {

random = NULL;
}
destructor {

if(random) delete random;
}
setup {

if(random) delete random;
random = new NegativeExpntl(double(meanTime),gen);
DERepeatStar :: setup();

}
go {

// Generate an exponential random variable.
double p = (*random)();

}

The built-in class for an exponentially distributed random numbers isNegativeExpntl .

The Ptolemy kernel provides a single object to generate a stream of random numbers;
the global variablegen (a poor choice of name, perhaps) is a pointer to it. We create an
instance of theNegativeExpntl class in thesetup method, not in the constructor since
Ptolemy allows you to change the seed of the random number generator. When the user
changes the seed of the random number generator, the object pointed to bygen is deleted and
re-created, so all objects such as the one pointed to byrandom in this star become invalid.

3-18 Infrastructure for Star Writers

U. C. Berkeley Department of EECS

Finally, we can read a random number of the specific type by calling operator() of the
NegativeExpnl class.

This example uses a uniformly distributed random number.

hinclude { <Uniform.h> }
ccinclude { <ACG.h> }
protected {

Uniform *random;
}
// declare the extern random-number generator in the .cc file
code {

extern ACG* gen;
}
constructor {

random = NULL;
}
destructor {

if(random) delete random;
}
setup {

if(random) delete random;
random = new Uniform(0,double(output.numberPorts()),gen);

}
go {

......
double p = (*random)();
......

}

You may notice that the two examples above are very similar in nature. You can get another
kind of distribution for the random numbers, by including the appropriate library file in the.h
file and by creating the instance with the right parameters in thesetup method.

