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Thomas M. Parks, José Luis Pino and Edward A. Lee
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
fparks,pino,ealg@EECS.Berkeley.EDU

Abstract

We compare synchronous dataflow (SDF) and cyclo-static
dataflow (CSDF), which are each special cases of a model
of computation we call dataflow process networks. In SDF,
actors have static firing rules: they consume and produce
a fixed number of data tokens in each firing. This model is
well suited to multirate signal processing applications and
lends itself to efficient, static scheduling, avoiding the run-
time scheduling overhead incurred by general implementa-
tions of process networks. In CSDF, which is a generaliza-
tion of SDF, actors have cyclicly changing firing rules. In
some situations, the added generality of CSDF can unnec-
essarily complicate scheduling. We show how higher-order
functions can be used to transform a CSDF graph into a
SDF graph, simplifying the scheduling problem. In other
situations, CSDF has a genuine advantage over SDF: sim-
pler precedence constraints. We show how this makes it pos-
sible to eliminate unnecessary computations and expose ad-
ditional parallelism. We use digital sample rate conversion
as an example to illustrate these advantages of CSDF.

1 Dataflow process networks

In the process network model of computation [4, 5], concur-
rent processes communicate through unidirectional FIFO
channels. Communication channels are represented mathe-
matically by streams (sequences of data elements or tokens),
possibly infinite in length, and processes are functional map-
pings from a set of input streams to a set of output streams.
This is a convenient model for describing audio and video
signal processing systems which must operate on infinite
streams of data samples.

Dataflow actors have firing rules that determine when
enough data tokens are available to enable the actor. When
the firing rules are satisfied the actor fires; it consumes a fi-
nite number of input tokens and produces a finite number of
output tokens. For example, when applied to an infinite in-

put stream, a firing function f may consume just one token
and produce one output token:

f([x1;x2;x3 : : :]) = f(x1)

To produce an infinite output stream, the actor must be fired
repeatedly. A processes formed from repeated firings of a
dataflow actor is called a dataflow process [7]. The higher-
order function map converts an actor firing function into a
process:

map(f)[x1;x2;x3 : : :] = [f(x1); f(x2); f(x3) : : :]

A higher-order function takes a function as an argument and
returns another function. When the function returned by
map(f) is applied to the input stream [x1;x2;x3 : : :], the re-
sult is a stream in which the firing function f is applied point-
wise to each element of the input stream. The map function
can also be described recursively using the stream-building
function cons, which inserts an element at the head of a
stream:

map(f)[x1;x2;x3 : : :] = cons(f(x1);map(f)[x2;x3 : : :])

The use of map can be generalized so that f can consume and
produce multiple tokens on multiple streams [7].

Breaking a process down into smaller units of execution,
such as dataflow actor firings, makes efficient implemen-
tations of process networks possible. Restricting the type
of dataflow actors to those that have predictable token con-
sumption and production patterns makes it possible to per-
form static, off-line scheduling and to bound the memory re-
quired to implement the communication channels.

In synchronous dataflow (SDF) [6] the number of tokens
consumed and produced by an actor is constant for each fir-
ing. This property makes it possible to statically construct
a finite schedule that can be periodically repeated to imple-
ment a process network that operates on infinite streams of
data tokens. Cyclo-static dataflow (CSDF) [3, 1] general-
izes SDF by allowing the number of tokens consumed and
produced by an actor to vary from one firing to the next in
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Figure 1: The commutator in synchronous, cyclo-

static and state-dependent forms.

a cyclic pattern. Because these patterns are periodic and
predictable, it is still possible to statically construct peri-
odic schedules using techniques based on those developed
for SDF [1]. CSDF has been extended to more general dy-
namic dataflow actors by allowing a data-dependent number
of firings in a cycle [2]. In this more general case, it is not
always possible to construct a finite schedule that can be re-
peated, nor is it always possible to put bounds on the mem-
ory required to implement the communication channels. In
this paper we restrict our discussion to a comparison of SDF
and CSDF, both of which can be used to implement process
networks with periodic schedules and bounded memory.

1.1 Firing rules

Firing rules define the consumption of data from input
streams when a dataflow process is constructed with map.
For example, the SDF form of the commutator actor, shown
in figure 1(a), has one firing rule: f([x]; [y]) = [x;y]. It con-
sumes a single token from each of two input streams, and
produces a two-element sequence on the output. Both input
streams must have at least one token available before f can
fire.

The CSDF form of the commutator, shown in figure 1(b),
has two firing rules: f1([x]; [ ]) = [x] and f2([ ]; [y]) = [y]. In
the first firing it consumes a single token x from one input
stream and copies it to the output. In the second firing it
copies a token y from the other input to the output. This fir-
ing sequence then repeats cyclicly. In general, CSDF actors
have one rule for each firing of a cyclicly repeated sequence.

An internal state variable could serve as an index to en-
force the proper firing sequence of a CSDF actor. If instead
we follow a purely functional dataflow model in which ac-
tors are not allowed to have internal state, we must mod-
ify the firing rules so that the sequence index is shown ex-
plicitly as a function argument. The modified actor, shown
in figure 1(c), has the firing rules f([1]; [x]; [ ]) = ([2]; [x])
and f([2]; [ ]; [y])= ([1]; [y]). Each firing rule is enabled only
when the proper value is available on the index stream, and
produces the appropriate index value to enable the next fir-
ing in the sequence.

The self-loop used to keep track of the sequence index is
a form of state feedback. SDF actors are a trivial example of
such state-dependent firing rules — there is only one state,

H
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Figure 2: The composition h = f�g.

so the history of the index stream is a sequence of tokens
all with the same value. In CSDF the history of the index
stream is a cyclicly repeating pattern. Because this pattern
can be predicted completely, it is possible to compute a static
schedule and optimize away the state feedback.

1.2 Composition

Functional processes in a process network can be composed
just like conventional functions. Two processes that are con-
nected by a communication channel can be composed to
form a functionally equivalent process, as shown in figure 2.

h(x) = f(g(x))() h = f�g

Dataflow actors can be composed in a similar manner, but
it is necessary to define a firing of the new composite actor.
Assuming that the actors f and g shown in figure 2 each con-
sume and produce a single token, then a natural definition
for one firing of the composite actor h would be a firing of
g followed by a firing of f. The graph in this figure is “well-
ordered” because there is only one topological sort — one
natural execution order. The graph in figure 3, however, is
not well-ordered because once actor A has fired, both actors
B and C are enabled and could fire in any order or even in
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Figure 3: A graph that is not well-ordered.
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Figure 4: Deadlock introduced by imposing the SDF

model on a composite data
ow actor.

parallel.
If we require that tokens be available on all inputs before

execution begins, then a composite actor follows the SDF
model. This gives the greatest possible flexibility in imple-
menting a composite actor’s internal schedule because data
is available for any sequential or parallel schedule. How-
ever, imposing the SDF model on a composite actor leaves
the least flexibility for the rest of the system, which must in-
teract with that actor. All input tokens must be available si-
multaneously even if the tokens are actually consumed se-
quentially. This can introduce deadlock as illustrated in fig-
ure 4. A new directed cycle is introduced in figure 4(b) by
combining actors A and B, and there is an insufficient num-
ber of tokens initially on the arcs of this cycle for any of the
actors to be enabled. Composition can also introduce dead-
lock in other similar situations [8].

If instead we allow composite actors to follow the CSDF
model, we can strike a balance between flexibility for the in-
ternal and external schedules. If the graph is well-ordered
and there is only one natural execution order for the internal
system, then the cyclo-static model describes the behavior of
the composite actor completely — tokens are consumed and
produced in the same order as in the original graph. Thus no
parallelism is lost and deadlock is not introduced, as in fig-
ure 4(c).

2 Synchronous dataflow scheduling

A SDF graph can be described by a topology matrix Γ,
where the element Γi j is defined as the number of tokens pro-
duced on the ith arc by the jth actor [6]. A negative value
indicates that the actor consumes tokens on that arc. There
is one row in this matrix for each arc in the graph, with one
positive element for the actor that produces tokens and one
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Figure 5: A multirate SDF graph with an exponential

number of actor �rings in a complete cycle.

negative element for the actor that consumes tokens. All the
other elements in the row are zero.

Figure 5 shows an example of a multirate SDF graph.
The topology matrix for this graph is:

Γ =

2
4

M �1 0 0
0 M �1 0
0 0 M �1

3
5

For the system to be balanced, a non-trivial positive repeti-
tion vector~r must be found that satisfies the balance equa-
tions:

Γ~r =~0

where each element r j of the repetition vector specifies the
number of firings of the jth SDF actor, and~0 is the zero vec-
tor. In this example, the minimal integer solution for the bal-
ance equations is:

~r =
�

1 M M2 M3
�T

When each actor is fired the number of times specified by~r,
the total number of tokens produced on each arc is equal to
the total number of tokens consumed. We define this to be a
complete cycle. In a complete cycle, a balanced system re-
turns to its initial state with the same number of tokens on
each arc. Thus the total memory required for the buffers as-
sociated with the arcs is bounded. If the balance equations
have a non-trivial solution and a complete cycle can be ex-
ecuted (i.e. there is no deadlock), then this firing sequence
can be repeated infinitely in bounded memory.

3 Cyclo-static dataflow scheduling

Unlike the scalar token consumption and production pa-
rameters Γi j for SDF, these parameters are vectors~γi j for
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Figure 6: A CSDF system that becomes deadlocked

when transformed to SDF.
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CSDF [3]. Figure 6 shows an example of a simple CSDF
graph using a commutator and a distributor. The distributor
is the counterpart to the commutator: it distributes tokens
from its input stream to several output streams. The first in-
put token goes to the first output, the second input token goes
to the second output, and so on. In this example, the token
production parameters are:~γ11 =~γ12 = [1],~γ21 =~γ22 = [1;0]
and~γ31 =~γ32 = [0;1].

Let pi j = dim(~γi j) be the length or period of the token
production pattern for the ith arc connected to the jth actor.
If there is no connection, then pi j = 1. The jth actor fires in
a cycle with period Pj = lcm(pi j), the least common mul-
tiple of the consumption and production periods for all the
arcs connected to that actor. In our example, p11 = p12 = 1
and p21 = p22 = p31 = p32 = 2. The cycle periods for the
commutator and distributor in figure 6 are P1 = P2 = 2.

If we let σi j be the sum of the elements in~γi j, then the to-
tal number of tokens produced on an arc in a cycle of firings
is given by:

Γi j = Pj
σi j

pi j

We can now solve the balance equations as described pre-
viously for SDF. For our example in figure 6 the topology
matrix and repetition vector are:

Γ =

2
4
�2 2

1 �1
1 �1

3
5

~r =
�

1 1
�T

In CSDF, however, the repetition vector~r represents not the
number of actor firings, but the number of cycles. The num-
ber of actor firings is r jPj .

4 Transforming CSDF to SDF

The number of actor firings that must be scheduled can
be exponential relative to the number of nodes in an SDF
graph [8]. Figure 5 is an example of such a graph. If there
are N nodes in the graph, then there are more than MN actor
firings that must be scheduled. This exponential explosion
in the number of actor firings is only made worse by having a
cycle of Pj firings for CSDF actors. Remember that the bal-
ance equations determine the number of cycles for a CSDF
actor. The number of firings is the repetition count r j mul-
tiplied by the cycle period Pj . If all the periods pi j for the
arcs leading into a node are relatively prime, then Pj can be
quite large. The problem with this explosion is that the par-
allelism expressed in the dataflow graph can far exceed the
parallelism available in the target hardware. It is counter-
productive to expose hundreds or thousands of operations
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Figure 7: Deadlock is caused by a directed cycle in

the precedence graph.

that can execute in parallel when there are many fewer pro-
cessors available.

Incremental compilation heuristics have been developed
to make parallel SDF scheduling tractable [8]. We would
like to simplify CSDF scheduling and take advantage of all
the scheduling techniques that already exist for SDF. To do
this, we can transform a cycle of CSDF actor firings into a
single SDF actor firing with a higher-order function. Instead
of using the map function to form a process from an infinite
number of actor firings, we use the loop function to define a
new actor g that is equivalent to N consecutive firings of the
original actor f.

loop(f;N)[x1;x2;x3 : : :] = [f(x1); f(x2); f(x3) : : : ; f(xN)]

By choosing N = Pj , we force all firings of a cycle to be
scheduled together and transform the CSDF actor into a SDF
actor that implements a cycle of firings.

One pitfall of this transformation is that it may introduce
deadlock, as in figure 6. The repetition vector for this graph,
~r = [ 1 1 ]T , specifies that there should be one cycle of
each actor, and each actor has two firings in a cycle. The
precedence relationships for this CSDF graph are shown in
figure 7(a). When the firings of a cycle are combined into a
single firing, deadlock is caused by the introduction of a di-
rected cycle in the precedence graph in figure 7(b). We can
safely transform CSDF actors that are not in a directed cycle
of the dataflow graph. However, when an actor is part of a
directed cycle, we might introduce deadlock as just demon-
strated. In such cases, we must test the resulting CSDF
graph for deadlock using more sophisticated methods [1].

This transformation from CSDF to SDF reduces the num-
ber of operations that must be scheduled, and allows us to
use the many existing SDF scheduling techniques. But we
have seen that transforming a CSDF graph into a SDF graph
can introduce deadlock. There are other situations where it
is undesirable to perform this transformation, as we shall see
in the following examples.
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downsampler.

5 Dead code elimination

Consider the simple 1:3 downsampling operation shown in
figure 8. Actor A implements a low-pass finite impulse re-
sponse (FIR) filter to prevent aliasing. In SDF the downsam-
pling actor D consumes 3 input tokens and produces 1 out-
put token. The precedence graph for this system is shown
in figure 9(a): three firings of A precede a single firing of D.
Notice that the output is not available until after all firings
of A and D.

In CSDF the downsampling actor D has a cycle of 3 fir-
ings. It consumes 1 input token and produces 1 output token
in the first firing, then it consumes 1 input token and pro-
duces no output tokens in the next 2 firings. Thus the single
firing of D in figure 9(a) expands to a cycle of 3 firings in fig-
ure 9(b). Notice that now the output is available as soon as A
and D have each fired once and that the results from the re-
maining firings of A are unused. Thus, not only can CSDF
reduce the critical path by making the result available ear-
lier, it may also uncover unnecessary computations that can
be eliminated.

To eliminate unnecessary computations, or dead code,
find the nodes in the precedence graph that have no succes-
sors — sink nodes. If these nodes have no side effects (such
as input/output operations on an external device) then they
can be removed from the graph. By removing these nodes,
we may create new sink nodes. If these new sink nodes have
no side effects, then they can also be removed. This pruning
operation can continue following the precedence graph.

Actors with internal state, like actors with side effects,
cannot be removed from the precedence graph. Internal
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Figure 9: The SDF and CSDF precedence graphs for

downsampling.
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Figure 10: Polyphase 1:3 downsampling.

state can be made explicit with an external self-loop in the
dataflow graph, as shown in figure 1(c). This self-loop in-
troduces dependencies between the successive firings of an
actor, as we will see later in figure 14. These nodes cannot
be eliminated because they always have a successor in the
precedence graph and do not appear as sinks. However, the
internal state used to enforce the firing sequence of a CSDF
actor is an artifact that can be optimized away.

Dead code elimination can also be applied directly to a
dataflow graph before constructing its precedence graph —
any sink nodes with no side effects and no internal state can
be removed from the dataflow graph. Only for CSDF can
additional dead code be eliminated by examining the prece-
dence graph. This is another example where the CSDF to
SDF transformation may be undesirable.

6 Parallelism

To overcome the limitations that SDF places on dead
code elimination, we can use a polyphase filtering al-
gorithm [11] for downsampling as shown in figure 10.
This polyphase implementation is more efficient because it
avoids the computation of unused results. There is no dead
code to eliminate. Upsampling is a different problem and
dead code elimination does not apply. In a direct implemen-
tation, zero-valued samples are inserted between the original
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Figure 11: Polyphase 2:1 upsampling.
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samples of a stream, and then a filter performs interpolation.
This is inefficient because multiplications and additions are
being performed on many zero-valued inputs. A polyphase
implementation of upsampling is shown in figure 11. Up-
sampling and downsampling can be combined to provide ra-
tional sample rate conversion, as shown in figure 12.

Compare the precedence graphs for SDF and CSDF im-
plementations polyphase filtering in figure 13. Notice that
for SDF the each firing of X, Y and Z depends on four firings
of A and B while for CSDF the precedence relationships are
much simpler: each firing of X, Y and Z depends only on one
firing of A or B. There is more exploitable parallelism in the
CSDF implementation of this system. If every actor had in-
ternal state, the CSDF precedence graph would be as shown
in figure 14. Notice that now the second firing of Z depends
on all firings of A and B. Knowing which actors do not have
internal state is crucial. Actors with internal state must be
fired sequentially instead of in parallel, severely limiting the
opportunities for optimization.
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Figure 13: The SDF and CSDF precedence graphs

for polyphase �ltering.

7 Conclusion

We showed how CSDF actors can be transformed into SDF
actors through the use of the higher-order function loop.
This transformation reduces the number of actor firings that
must be scheduled, and allows us to make use of exist-
ing SDF scheduling techniques. However, care must be
taken when applying this transformation to avoid introduc-
ing deadlock .

There are some genuine advantages that CSDF has over
SDF. We showed how to eliminate dead code and how to ex-
pose additional parallelism. These advantages could be lost
if we transformed every CSDF actor into an SDF actor, so
this transformation is not always beneficial. Previous work
on CSDF [3, 1] has made the restrictive assumption that all
actors have internal state, effectively adding a self-loop in
the dataflow graph, as in figure 1(c), and additional depen-
dencies in the precedence graph, as in figure 14. In the ab-
sence of additional information about which actors do or do
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Figure 14: Added constraints in the CSDF prece-

dence graph when every actor is assumed to have

internal state.
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Figure 15: The CSDF mixer and an equivalent com-

bination of the commutator and distributor.

not have internal state or side effects that require sequential
execution, this is the safest way to ensure a correct execu-
tion order. However, this hides many of the advantages of
the simpler precedence relationships of CSDF. None of the
optimizationswe have discussed are possible without know-
ing which actors have internal state and/or side effects. In
the Ptolemy system[9], our approach is to have the designer
of an actor specify attributes for it. Thus the designer can as-
sert whether or not an actor has internal state or side effects.

Our loop transformation allows us to use existing SDF
scheduling techniques for CSDF graphs. But it also hides
some important advantages of CSDF. Instead of developing
schedulers that exploit the full generality of CSDF, we could
extend existing SDF schedulers to treat certain multirate ac-
tors as special cases. In fact, we need only one multirate
actor: the mixer [10], shown in figure 15(a). The mixer is
a generalization of the distributor and commutator. It can
have any number of inputs and outputs, and is functionally
equivalent to a combination of a commutator and distributor,
as shown in figure 15(b). Because commutators and distrib-
utors are sufficient for building any multirate system [11],
we could use a simple dataflow model where the mixer is the
only multirate actor. This would give us all the advantages
of CSDF without the need to support its full generality.
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