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Abstract

We compare synchronous dataflow (SDF) and cyclo-static
dataflow (CSDF), which are each special cases of a model
of computation we call dataflow process networks. In SDF,
actors have static firing rules: they consume and produce
a fixed number of data tokens in each firing. This modd is
well suited to multirate signal processing applicationsand
lends itself to efficient, static scheduling, avoiding the run-
time scheduling overhead incurred by general implementa-
tions of process networks. In CSDF, which is a generaliza-
tion of SDF, actors have cyclicly changing firing rules. In
some situations, the added generality of CSDF can unnec-
essarily complicate scheduling. WWe show how higher-order
functions can be used to transform a CSDF graph into a
SDF graph, simplifying the scheduling problem. In other
situations, CSDF has a genuine advantage over SDF: sim-
pler precedence constraints. We show howthismakesit pos-
sibleto eliminate unnecessary computationsand expose ad-
ditional parallelism. We use digital sample rate conversion
as an example to illustrate these advantages of CSDF.

1 Dataflow process networks

In the process network model of computation [4, 5], concur-
rent processes communicate through unidirectiona FIFO
channels. Communication channels are represented mathe-
matically by streams (sequences of dataelementsor tokens),
possibly infinitein length, and processes are functiona map-
pingsfrom a set of input streamsto a set of output streams.
Thisis a convenient model for describing audio and video
signal processing systems which must operate on infinite
streams of data samples.

Dataflow actors have firing rules that determine when
enough data tokens are available to enable the actor. When
thefiring rules are satisfied the actor fires; it consumes afi-
nite number of input tokensand produces afinite number of
output tokens. For example, when applied to an infinitein-

put stream, afiring function f may consume just one token
and produce one output token:

f([x1,%,X%3...]) = f(x1)

To produce an infinite output stream, the actor must befired
repeatedly. A processes formed from repeated firings of a
dataflow actor is called a dataflow process[7]. The higher-
order function map converts an actor firing function into a
process:

map(f)[Xq, X2, X3...] = [f(X1), f(%2),f(X3) . ..]

A higher-order function takes afunction as an argument and
returns another function. When the function returned by
map(f) is applied to the input stream [x1, X2, X3. ..], the re-
sultisastreaminwhichthefiringfunctionf isapplied point-
wiseto each element of theinput stream. The map function
can also be described recursively using the stream-building
function cons, which inserts an element at the head of a
stream:

map(f)[Xq, X2, X3.. . .] = cons(f(x1), map(f)[%2, X3 ..])

The use of map can be generalized so that f can consume and
produce multiple tokens on multiple streams [7].

Breaking a process down into smaller units of execution,
such as dataflow actor firings, makes efficient implemen-
tations of process networks possible. Restricting the type
of dataflow actors to those that have predictable token con-
sumption and production patterns makes it possible to per-
form static, off-linescheduling and to bound the memory re-
quired to implement the communication channels.

In synchronous dataflow (SDF) [6] the number of tokens
consumed and produced by an actor is constant for each fir-
ing. This property makes it possible to statically construct
afinite schedule that can be periodically repeated to imple-
ment a process network that operates on infinite streams of
data tokens. Cyclo-static dataflow (CSDF) [3, 1] general-
izes SDF by allowing the number of tokens consumed and
produced by an actor to vary from one firing to the next in
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Figure 1: The commutator in synchronous, cyclo-
static and state-dependent forms.

a cyclic pattern. Because these patterns are periodic and
predictable, it is still possible to statically construct peri-
odic schedules using techniques based on those devel oped
for SDF [1]. CSDF has been extended to more general dy-
namic dataflow actors by all owing adata-dependent number
of firingsin acycle[2]. In thismore general case, it isnot
always possibleto construct afinite schedul e that can be re-
peated, nor isit aways possibleto put bounds on the mem-
ory required to implement the communication channels. In
thispaper werestrict our discussion to acomparison of SDF
and CSDF, both of which can be used to implement process
networkswith periodic schedules and bounded memory.

1.1 Firingrules

Firing rules define the consumption of data from input
streams when a dataflow process is constructed with map.
For example, the SDF form of the commutator actor, shown
infigure 1(a), has one firing rule: f([x], [y]) = [x,y]. It con-
sumes a single token from each of two input streams, and
produces a two-el ement sequence on the output. Both input
streams must have at |east one token available before f can
fire

The CSDF form of the commutator, showninfigure 1(b),
hastwo firing rules: f1([x],[]) = [X] and f2([],[y]) = [V]. In
the first firing it consumes a single token x from one input
stream and copies it to the output. In the second firing it
copies atoken y from the other input to the output. Thisfir-
ing sequence then repeats cyclicly. In general, CSDF actors
have onerulefor each firing of acyclicly repeated sequence.

An internal state variable could serve as an index to en-
force the proper firing sequence of a CSDF actor. If instead
we follow a purely functiona dataflow model in which ac-
tors are not allowed to have internal state, we must mod-
ify the firing rules so that the sequence index is shown ex-
plicitly as a function argument. The modified actor, shown
in figure 1(c), has the firing rules f([1],[X],[ 1) = ([2],[X])
andf([2],[],[¥]) = ([1], [V]). Each firing ruleis enabled only
when the proper value is available on the index stream, and
produces the appropriate index value to enable the next fir-
ing in the sequence.

The self-loop used to keep track of the sequenceindexis
aform of state feedback. SDF actorsare atrivial example of
such state-dependent firing rules — thereis only one state,

Figure 2: The composition h=fog.

so the history of the index stream is a sequence of tokens
all with the same value. In CSDF the history of the index
stream is a cyclicly repeating pattern. Because this pattern
can bepredicted completely, itispossibleto computeastatic
schedule and optimize away the state feedback.

1.2 Composition

Functional processesin aprocess network can be composed
justlikeconventional functions. Two processesthat are con-
nected by a communication channel can be composed to
form afunctionally equivalent process, asshowninfigure 2.

h(x) = f(g(x)) <= h=fog

Dataflow actors can be composed in a similar manner, but
it isnecessary to define afiring of the new composite actor.
Assuming that the actorsf and g shown in figure 2 each con-
sume and produce a single token, then a natural definition
for one firing of the composite actor h would be a firing of
g followed by afiring of f. The graph inthisfigureis“well-
ordered” because there is only one topologica sort — one
natural execution order. The graph in figure 3, however, is
not well-ordered because once actor A hasfired, both actors
B and C are enabled and could fire in any order or even in

Figure 3: A graph that is not well-ordered.
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Figure 4: Deadlock introduced by imposing the SDF
model on a composite dataflow actor.

paralldl.

If werequirethat tokensbe available on all inputsbefore
execution begins, then a composite actor follows the SDF
model. This givesthe greatest possible flexibility in imple-
menting a composite actor’sinternal schedule because data
is available for any sequential or paralel schedule. How-
ever, imposing the SDF mode on a composite actor leaves
theleast flexibility for therest of the system, which must in-
teract with that actor. All input tokens must be available si-
multaneoudy even if the tokens are actually consumed se-
guentialy. This can introduce deadlock asillustratedin fig-
ure4. A new directed cycle isintroduced in figure 4(b) by
combining actors A and B, and there is an insufficient num-
ber of tokensinitialy on the arcs of thiscyclefor any of the
actorsto be enabled. Composition can a so introduce dead-
lock in other similar situations[8].

If instead we alow composite actorsto follow the CSDF
model, we can strike a bal ance between flexibility for thein-
terna and externa schedules. If the graph is well-ordered
and thereisonly one natural execution order for theinternal
system, then thecyclo-static model describesthebehavior of
the composite actor completely — tokensare consumed and
produced inthe same order asin theoriginal graph. Thusno
paralelismislost and deadlock is not introduced, asin fig-
ure 4(c).

2 Synchronous dataflow scheduling

A SDF graph can be described by a topology matrix I,
wheretheelement I';; isdefined asthenumber of tokenspro-
duced on the ith arc by the jth actor [6]. A negative value
indicates that the actor consumes tokens on that arc. There
isonerow in thismatrix for each arc in the graph, with one
positive element for the actor that produces tokens and one
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Figure 5: A multirate SDF graph with an exponential
number of actor firings in a complete cycle.

negative element for the actor that consumestokens. All the
other elementsin the row are zero.

Figure 5 shows an example of a multirate SDF graph.
The topology matrix for thisgraph is:

M -1 0 O
r=f 0o Mm -1 0
0O 0 M -1

For the system to be balanced, a non-trivia positive repeti-
tion vector T must be found that satisfies the balance equa-
tions:

=0

where each element r; of the repetition vector specifies the
number of firings of the jth SDF actor, and Oisthezero vec-
tor. Inthisexample, the minimal integer solutionfor the bal-
ance equationsis:

r=[1 M M2 M3]"

When each actor isfired the number of times specified by T,
the total number of tokens produced on each arc isequal to
thetotal number of tokens consumed. We definethistobea
complete cycle. 1n acomplete cycle, a baanced system re-
turnsto itsinitial state with the same number of tokens on
each arc. Thusthetotal memory required for the buffers as-
sociated with the arcs is bounded. If the balance equations
have a non-trivial solution and a complete cycle can be ex-
ecuted (i.e. thereisno deadlock), then thisfiring sequence
can be repeated infinitely in bounded memory.

3 Cyclo-static dataflow scheduling

Unlike the scalar token consumption and production pa-
rameters Ij; for SDF, these parameters are vectors i for
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Figure 6: A CSDF system that becomes deadlocked
when transformed to SDF.




CSDF [3]. Figure 6 shows an example of a simple CSDF
graph using a commutator and a distributor. The distributor
is the counterpart to the commutator: it distributes tokens
fromitsinput stream to severa output streams. Thefirstin-
put token goesto thefirst output, the second input token goes
to the second output, and so on. In this example, the token
production parametersare: Y11 = V12 = [1], Vo1 = Y22 = [1,0]
andVs1 = Va2 = [0, 1].

Let pij = dim(Yi;) be the length or period of the token
production pattern for the ith arc connected to the jth actor.
If thereis no connection, then p;; = 1. The jth actor firesin
acycle with period P; = lem(p;j), the least common mul-
tiple of the consumption and production periods for all the
arcs connected to that actor. In our example, p11 = p12o =1
and pz1 = P22 = P31 = Pz = 2. The cycle periods for the
commutator and distributorin figure6 are P, = P, = 2.

If welet 0jj bethesum of the lementsiny;j, then theto-
tal number of tokens produced on an arc inacycle of firings
isgiven by:
rj=p 20

Pij

We can now solve the balance equations as described pre-
vioudly for SDF. For our example in figure 6 the topology
matrix and repetition vector are:

-2 2
M= 1 -1
1 -1

r=[1 1]

In CSDF, however, the repetition vector F represents not the
number of actor firings, but the number of cycles. The num-
ber of actor firingsisr;P;.

4 Transforming CSDF to SDF

The number of actor firings that must be scheduled can
be exponentia relative to the number of nodes in an SDF
graph [8]. Figure 5 isan example of such a graph. If there
are N nodesin the graph, then there are more than MN actor
firings that must be scheduled. This exponential explosion
inthe number of actor firingsisonly madeworse by having a
cycleof P, firingsfor CSDF actors. Remember that the bal -
ance equations determine the number of cyclesfor a CSDF
actor. The number of firingsis the repetition count rj mul-
tiplied by the cycle period P;. If all the periods p;; for the
arcs leading into anode are relatively prime, then P; can be
quitelarge. The problem with thisexplosionisthat the par-
allelism expressed in the dataflow graph can far exceed the
paralelism available in the target hardware. 1t is counter-
productive to expose hundreds or thousands of operations
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Figure 7: Deadlock is caused by a directed cycle in
the precedence graph.

that can execute in parallel when there are many fewer pro-
cessors available.

Incremental compilation heuristics have been devel oped
to make parallel SDF scheduling tractable [8]. We would
liketo simplify CSDF scheduling and take advantage of all
the scheduling techniquesthat already exist for SDF. To do
this, we can transform a cycle of CSDF actor firingsinto a
single SDF actor firing with ahigher-order function. Instead
of using the map function to form a process from an infinite
number of actor firings, we use theloop function to define a
new actor g that isequivalent to N consecutivefirings of the
origina actor f.

loop(f, N)[X1, %2, X3 ..] = [f(x1),F(X2), f(Xa) ..., f(Xn)]

By choosing N = P;, we force dl firings of a cycle to be
scheduled together and transform the CSDF actor intoaSDF
actor that implements a cycle of firings.

One pitfall of thistransformationisthat it may introduce
deadlock, asinfigure 6. Therepetitionvector for thisgraph,
r=[1 1]T, specifies that there should be one cycle of
each actor, and each actor has two firingsin acycle. The
precedence rel ationships for this CSDF graph are shown in
figure 7(a). When thefirings of acycle are combined into a
singlefiring, deadlock is caused by the introduction of adi-
rected cyclein the precedence graph in figure 7(b). We can
safely transform CSDF actorsthat are not in adirected cycle
of the dataflow graph. However, when an actor is part of a
directed cycle, we might introduce deadlock as just demon-
strated. In such cases, we must test the resulting CSDF
graph for deadlock using more sophisticated methods [1].

Thistransformationfrom CSDF to SDF reducesthenum-
ber of operations that must be scheduled, and allows us to
use the many existing SDF scheduling techniques. But we
have seen that transforming a CSDF graph into a SDF graph
can introduce deadlock. There are other situations where it
isundesirableto perform thistransformation, aswe shall see
in the following examples.
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Figure 8: An FIR anti-aliasing filter followed by a 1:3
downsampler.

5 Dead code elimination

Consider the simple 1:3 downsampling operation shown in
figure 8. Actor A implements a low-pass finite impulse re-
sponse (FIR) filter to prevent diasing. In SDF thedownsam-
pling actor D consumes 3 input tokens and produces 1 out-
put token. The precedence graph for this system is shown
infigure9(a): threefiringsof A precede asinglefiring of D.
Notice that the output is not available until after al firings
of A and D.

In CSDF the downsampling actor D has a cycle of 3 fir-
ings. It consumes 1 input token and produces 1 output token
in the first firing, then it consumes 1 input token and pro-
duces no output tokensin the next 2 firings. Thusthesingle
firingof D infigure9(a) expandstoacycleof 3firingsinfig-
ure9(b). Noticethat now theoutputisavailableassoonas A
and D have each fired once and that the resultsfrom there-
maining firings of A are unused. Thus, not only can CSDF
reduce the critical path by making the result available ear-
lier, it may aso uncover unnecessary computationsthat can
be eliminated.

To eliminate unnecessary computations, or dead code,
find the nodes in the precedence graph that have no succes-
sors— sink nodes. If these nodes have no side effects (such
as input/output operations on an external device) then they
can be removed from the graph. By removing these nodes,
wemay create new sink nodes. If these new sink nodeshave
no side effects, then they can a so be removed. Thispruning
operation can continue following the precedence graph.

Actors with internal state, like actors with side effects,
cannot be removed from the precedence graph. Interna
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Figure 9: The SDF and CSDF precedence graphs for
downsampling.
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Figure 10: Polyphase 1:3 downsampling.

state can be made explicit with an external self-loop in the
dataflow graph, as shown in figure 1(c). This self-loop in-
troduces dependencies between the successive firings of an
actor, as we will see later in figure 14. These nodes cannot
be eliminated because they always have a successor in the
precedence graph and do not appear as sinks. However, the
internal state used to enforce the firing sequence of a CSDF
actor isan artifact that can be optimized away.

Dead code elimination can also be applied directly to a
dataflow graph before constructing its precedence graph —
any sink nodes with no side effects and no internal state can
be removed from the dataflow graph. Only for CSDF can
additional dead code be eliminated by examining the prece-
dence graph. This is another example where the CSDF to
SDF transformation may be undesirable.

6 Paralleism

To overcome the limitations that SDF places on dead
code elimination, we can use a polyphase filtering al-
gorithm [11] for downsampling as shown in figure 10.
This polyphase implementation is more efficient because it
avoids the computation of unused results. There isno dead
code to diminate. Upsampling is a different problem and
dead code elimination does not apply. In adirect implemen-
tation, zero-val ued samples areinserted between theorigina
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Figure 11: Polyphase 2:1 upsampling.
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Figure 12: Polyphase 2:3 sample rate conversion.

samples of astream, and then afilter performsinterpol ation.
Thisisinefficient because multiplicationsand additionsare
being performed on many zero-valued inputs. A polyphase
implementation of upsampling is shown in figure 11. Up-
sampling and downsampling can be combined to providera-
tional sample rate conversion, as shown in figure 12.

Compare the precedence graphs for SDF and CSDF im-
plementations polyphase filtering in figure 13. Notice that
for SDF theeach firing of X, Y and Z depends onfour firings
of A and B whilefor CSDF the precedence rel ationshipsare
much simpler: eachfiringof X, Y and Z dependsonly onone
firing of A or B. Thereismore exploitableparalelisminthe
CSDF implementation of thissystem. If every actor had in-
ternal state, the CSDF precedence graph would be as shown
infigure 14. Noticethat now the second firing of Z depends
onall firingsof A and B. Knowing which actorsdo not have
internal state is crucial. Actors with internal state must be
fired sequentialy instead of in paralel, severely limitingthe
opportunitiesfor optimization.

Figure 13: The SDF and CSDF precedence graphs
for polyphase filtering.

7 Conclusion

We showed how CSDF actors can be transformed into SDF
actors through the use of the higher-order function loop.
Thistransformation reduces the number of actor firings that
must be scheduled, and allows us to make use of exist-
ing SDF scheduling techniques. However, care must be
taken when applying this transformation to avoid introduc-
ing deadlock .

There are some genuine advantages that CSDF has over
SDF. We showed how to eliminate dead code and how to ex-
pose additional parallelism. These advantages could be lost
if we transformed every CSDF actor into an SDF actor, so
thistransformation is not always beneficial. Previous work
on CSDF [3, 1] has made the restrictive assumption that all
actors have internal state, effectively adding a self-loop in
the dataflow graph, asin figure 1(c), and additiona depen-
dencies in the precedence graph, asin figure 14. In the ab-
sence of additional information about which actors do or do

Figure 14: Added constraints in the CSDF prece-
dence graph when every actor is assumed to have
internal state.
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Figure 15: The CSDF mixer and an equivalent com-
bination of the commutator and distributor.

not haveinternal state or side effects that require sequentia
execution, thisis the safest way to ensure a correct execu-
tion order. However, this hides many of the advantages of
the simpler precedence relationships of CSDF. None of the
optimizationswe have di scussed are possi ble without know-
ing which actors have internal state and/or side effects. In
the Ptolemy system[9], our approach isto havethe designer
of an actor specify attributesfor it. Thusthedesigner can as-
sert whether or not an actor has interna state or side effects.

Our loop transformation allows us to use existing SDF
scheduling techniques for CSDF graphs. But it aso hides
some important advantages of CSDF. Instead of developing
schedulersthat exploit thefull generality of CSDF, we could
extend existing SDF schedulerstotreat certain multirate ac-
tors as specia cases. In fact, we need only one multirate
actor: the mixer [10], shown in figure 15(a). The mixer is
a generaization of the distributor and commutator. It can
have any number of inputs and outputs, and is functionally
equival ent to acombination of acommutator and distributor,
asshown infigure 15(b). Because commutators and distrib-
utors are sufficient for building any multirate system [11],
we could use asimple dataflow model wherethemixer isthe
only multirate actor. Thiswould give us al the advantages
of CSDF without the need to support itsfull generality.
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