To appear:
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Detroit, Michigan, May, 1995.

MANAGING COMPLEXITY IN HETEROGENEOUS
SYSTEM SPECIFICATION, SIMULATION, AND SYNTHESIS

Asawaree Kalavade, José Luis Pino, and Edward A. Lee !

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720-1770.
{kalavade,pino,eal}@EECS.Berkeley.EDU

cation (ex:modem.sdfis transformed into the final implementa-

ABSTRACT
Svstem-level desian is characterized by a behavioral speci tion, consisting of custom and commaodity programmable hardware
. y v ign 1s Iz Y @ behav spect E:omponents and the software running on the programmable compo-
cation and heterogeneous hardware/software implementation

%i ing through f tools. This i lack-
Exploring the design space is essential for good design. Specifyi ents, by passing through a sequence of tools s is not a blac

and manaqing complex desian flows. tracking dependencies an X push-button design process, but involves considerable user
. ging piex desigl . g deper interaction. The user experiments with different design choices;
tool invocations, and maintaining consistency of design data ang__. o .
flows are key issues that enable efficient design space ex IorationesIgn space exploration is the key to system level design. Manag-
y gn sp P ing the complexity of this design process is non-trivial. The features

In order to manage the complexity of this design process, an 'nfraﬁeeded for efficient design space exploration include:

structure that manages these issues, transparent to the user, is pre- dul d i ble i ificati hani
sented. These concepts have been implemented in the Ptolemy Modular _an .con Igurable flow spgm |cat|o_n mec anls.ms.
environment within a framework called DesignMaker. An exampl& " €xample, in Figure 1, the user might be interested in first
design flow for multiprocessor synthesis is presented in some det&ftermining if a feasible partition exists. At this point only the
to illustrate the features of DesignMaker. The end objective of thEstimationandPartition tools need to be invoked; subsequent tools

framework is to facilitate a flexible system-level codesign assistan{?€€d not be run. Inefficiencies due to unnecessary tool invocations
can be avoided if flows are specified modularly as in Figure 1.

A number of design options are available at each step in the design
_ _ 1_ INTRODUCTION) process. For instance, tRartition tool can be one of: a human-

~ Typical applications of embedded systems include telecomintervened manual partitioning, an exact but time consuming tool
munications, consumer products, robotics, and automotive contral,ch as CPLEX using integer linear programming techniques, or an
systems. Such embedded systems exhibit heterogeneity in implgfficient custom optimized algorithm such as GCLP [3]. Depending
mentation (hardware/software) as well as computational semantigh, the available design time and desired accuracy, one of these is
these systems are usually designed in a top-down manner, startigghpedding this design choice within the flow. A design flow with a
with a behavioral specification. The design of such heterogeneo%nﬁgurame methodology is thus easily extensible.
hardware/sqftware systems is often.referred tlo as hardware/soft- Mechanisms to systematically track tool dependencies and
ware codesign or system-level design. In th|_s (?ontext, the ke,gutomatically determine the sequence of tool invocations
design problems are hardware/software partitioning, cosyntheslg\,ftelr developing a particular design, the user might want to

and cosimulation [1]. experiment with other options, for instance, different hardware

A typ_ical design ﬂ_OW for the hard_ware/softwarg COdESigr_]synthesis mechanisms. One possible approach to hardware
problem [2] is shown in Figure 1. A behavioral-level design specm-Synthesis is Silage code generation followed by Hyper [4]. An

alternative path is VHDL code generation followed by Synopsys
modem.sdf

tools [5]. If a specific tool is changed on the fly, the entire system

Area / Time need not be re-run; only those tools that are affected should be run
Estimation (in this caseHardware Synthesis, Netlist Generation, Simulation).
@_L Manual . Managing consistency of design data, tools, and flows
IlD—I:r\t/it/ioSrYi\rl]g D g'(D:ILEX(ILP) Detecting incompatibilities between tools and maintaining versions
-— v of the tools and design flows is necessary.

Hardware Interface Software In this paper we propose an infrastructure that manages
Synthesis Synthesis Synthesis these aspects of the system-level design methodology. The end goal

| *_ is to use this infrastructure to build a codesign system. Section 2

Generation Geﬁg}'g?iton briefly mentions mechanisms for specification, simulation, and syn-
thesis of heterogeneous designs. Section 3 presents the underlying
*{Ge\égghonHSynoszySF Ptolemy concepts of design methodology management. Section 4 discusses

) - . implementation details and gives an example design flow that dem-

Figure 1. A typical design flow for the automated hardware/

software codesign problem. onstrates the viability of our approach.

1. This research is part of the Ptolemy project, which is supported by the Advanced Research Projects Agency and the U.S. Air Force (under the RASSP program F33615-93-C-
1317), SRC (94-DC-008), NSF (MIP-9201605), Office of Naval Technology (via Naval Research Laboratories), the State of California MICRO program, and the following compa-
nies: Bell Northern Research, Cadence, Dolby, Hitachi, Mentor Graphics, Mitsubishi, NEC, Pacific Bell, Philips, Rockwell, Sony, and Synopsys.

1

2 SPECIFICATION, SIMULATION, FLOW MODEL

filename
AND SYNTHESIS

Ptolemy [6] is an environment for simulation and prototyp-
ing of heterogeneous systems. Instead of trying to capture all possi-
ble models of computation into one all-encompassing model, the TOOL MODEL DATA MODEL
Ptolemy kernel implements an open architecture that enables an
unlimited number of extensible models to be defined. Each model ¢arguments optional port
(called a “domain”) is responsible for implementing its own data M; 00 File_Name
processing and data exchange strategies. % TOOLJ port M > Time_Stamp
Heterogeneous systems can be specified using different lev- pgram Changed_Flag Optional_Flag

els of abstraction and/or semantics for the various subcomponents.
For instance, a multimedia telecommunication system can be speci-
fied as a combination of an event-driven subsystem representing the P
packet-switched network and a dataflow subsystem modeling the |("Param_Changed)
signal processing components. Ptolemy supports multi-paradigm
simulation in which different computational models co-exist; e.g. a 5
dataflow system can interact with a finite-state machine component,
or a hardware system can interact with software. Finally, heteroge-
neous systems can be synthesized using the hardware and software

synthesis mechanisms reported in [2][4][7]. We have developed EF gure 2. Components of a DMM system.

mechanism to combine diverse schedulers (with different optimizathat gets set when parameters of a tool are changed. Associated
tion objectives) for the software synthesis process [8]. This simpliwith each port of a tool are three attributeSile Name
fies the software scheduling problem and also enables the use Tafne_Stamp, and Optional Flag . File_Name and
specialized schedulers. This paper will focus on managing the comime_Stamp represent the filename and the timestamp of the data
plexity in these phases of the design process. on the port (associated with the most recent invocation of the tool).

3 DESIGN METHODOLOGY Optional_Flag indicates whether the port is required or optional.
MANAGEMENT 3.2 Dependencies

A design methodology specifies a sequence (flow) of tools Figure 3 shows the three types of dependencies that are sup-
that operate on data. Design methodology management (DMM) sorted. Temporaldependencies track the timestamps on input-out-
formally defined as “definition, execution, and control of designput ports of the tools — a tool needs to be run if any of its output is
methodologies in a flexible and configurable way” [9]. The prob-out-of-date, i.e., any of its input timestamps are newer than its out-
lems encountered in DMM are: data, tool, and flow management. put timestampsData dependency ensures that a tool is run when-

DMM as such is not new; traditional DMM systems (often ever the file received on any of its input ports has either a filename
referred to as “frameworks”) are used quite extensively in the physer a timestamp that is different from the previous tool invocation.
ical VLSI design process. These systems [10][11] focus on data ar@bntrol dependency tracks parameter changes; a tool needs to be
tool management, i.e., maintaining consistent versions of data, amdn if any of its parameters has changed.
invoking a user-specified tool after ensuring that the preconditiong 3 EF|ow Management
for _enabllng It are Sat'Sf.Ied’ respectively. The key to system-level Automatic flow invocation is based on analyzing the tool
design, however, is design space exploration. At the system Ieveci

desian fi o less well-defined than at the phvsical desian leve ependencies and executing tools as required. A tool is said to be
esign flows ar Py 9 ehabledwhen all of its required input ports have data. Absence of

and the range of tools involved is much larger. Powerful constructaata on the optional input ports does not affect enabling. Once

for _flow dEf.'n't'on’ dependency analys!s, and automated f_low eXec;:'nabled, a tool is checked for dependencies. A taoVaked(run)
cution dominate the system-level design procéss. focus is to

. p B . ._when at least one of its dependencies is live. On execution, a tool
manage the complexity of the “system-level” design problem, with

emphasis on flow management newData

3.1 Flow, Tool, and Data Model

Figure 2 illustrates the details of the components of our
DMM mechanism. A desigflow is specified as a directed graph,
where nodes represent tools, and arcs specify the ordering between
tools. Toolscommunicate via filenames and encapsulate actual pro-
grams. Tool parameters specify the arguments for these programs.
A tool's inputs and outputs are associated witlpdds Ports can
be of two typesrequiredandoptional Optional ports make it pos-
sible to represent conditionals and iterations in flows (illustrated in max(Ti,) > min(Toy)
Section 4.2). FileName TimeStamp

The information model is represented as a distributed data FNnew '= FNiast ~ TSpew '= TSiast
structure. Associated with each tool iParam_Changed_Flag Figure 3. Dependencies used for tool management.

e [T

Port1 |e ® [Port M |

arg_changed

Data-Driven Flow Execution /\A is met. We now run through a typical flow execution sequence to
E E demonstrate the effects of the various constructs and dependencies.
Suppose that the flow is run the very first time usiog All
Tools are examined for active dependencies by traversing the flow

\Al:l according to precedence ordering between tdisirce (T1out-

Demand-Driven Flow Execution puts the dataflow grap® specified byGraphNameNumProcEsti-

mator (T2) and Code Generato(T6) are dependent ofhil. Note
’ _.‘:I thatT2is enabled, whil@6 is not (second inpud, has not yet been

generated)T2 is a hierarchical description of the estimation pro-

cess, which iteratively determines the minimum number of proces-
\‘l:l sors required to implemef at the desirethtency.
Figure 4. Flow execution mechanisms. ProcEstimator (T3pstimates the number of processddy (

generates data on its required output ports, and conditionally on tﬁ@qUirEd to implemgrﬂs. Estimators of diﬁerent accuracy can be
optional output ports. Two types of flow invocation mechanisms arg€!ected by changing parameters of this block. Suppose that the
desired: data-driven, and demand-driven (Figure 4). In the dat&esired latency is 320 cycles and the sum of execution times of all

driven approach, the flow scheduler traverses the flow according H}e nOdeS”'r? is 900. A p055|tl)le est;)matc;r V‘f’OUId assumreb maxi-
precedences. The process halts when all tools with live dependeW—um paratielism to estlm_ate a lower bound o 3 proces§Brisas
ptionalinput that receives an indication as to whether or not the

cies have been exhausted. In the demand-driven mode, the ug&°

selects a tool for execution. The scheduler traverses the predecgg-”.?nglN SatiSﬁeS,the .Iatency riquirements.NWhen thri]S inﬁ“t is
sors and executes all tools with live dependencies on the path. available,T3 uses it to improve the estimate " Note t at e
loop (T3-T4-TH does not deadlock because this input is optional.

4 DMM: IMPLEMENTATION The Schedulel(T4) scheduless ontoN (=3) processors and deter-
4.1 Implementation details mines the actual time requirethgkespan Mto implementG. T4

The DMM mechanism described in Section 3 has beefletects convergence of the estimation loop if the valié ggner-
implemented in the Ptolemy environment as a sepal@teain. ated byT3in consecutive iterations is the sarfid.generates out-
Design flows are specified as graphical netlists. Conditionals arfeuts conditionally — it generates outphit if the iteration has
iterations are supported in the flow definition. Flows can beconverged, else it generates outlliind the iteratiolT5-T3-T4is
described hierarchically. Tools are encapsulated within basitepeated. Different scheduling algorithms can be selected by chang-
blocks. Tools can have required and optional ports as well @89 parameters of4. Suppose it computes the makespan to be 350.
parameters. Tool encapsulation involves writing scripts that callhe Comparator (TS)compares the latency (320) ait(350)to
various programs. Tools can invoke programs on remote filesygenerate the control signal fé8. T3 is enabled by input received
tems as well as programs with their own GUIs. The tool writer nee@n its optional input, and refines its estimatélab 4. Note that up
not worry about the underlying timestamps and filenames. Theo this point, as the system is being run the very first time, filename
DMM attributes and flow netlists are stored within the Oct databast/pe data dependencies are active for all the blocks. (Data depen-
[12]. Tools communicate via files. A type resolution mechanisrrdencies identify a change in the input data to a tool with respect to
checks for data type compatibility between tools. The flow and todkS previous invocation.) Fdr4 however, filename data dependency
manager is calleBesignMaker DesignMakersupports both data- iS no longer active (since the same filename is retained), but tempo-
driven and demand-driven flow execution. It resolves tool depen-al dependency becomes active. Recall that temporal dependencies
dencies and automatically invokes tools. The underlying schedulétetect out-of-date output data. As the inpuT4dis newer than its
is a combination of dynamic dataflow and event-driven schedulerutput, it runs again, recomputing (say, 290). The sequenté-
DesignMakewdetects deadlocks when iterative flows are incorrectlyT 3-T4repeats. The estimation loop converges as the latency is now
specified (such as forward dependencies on required inputg)et.

DesignMakeralso supports other features such as annotation of the The Code Generato(T6) is now invoked.T6 uses theN-
design process and the display of the flow status (blocked, runningfocessorschedule to synthesize software for M@rocessors. A
and ready) at any point in the design process. parameter fofT6 is used to select the type of code generdtor.

Our motivation for implementing the DMM system in generates the netlist for the system. The generated architectural
Ptolemy is to take advantage of the existing modular kernel an@odel, where the processors run the synthesized software is then
data structures, in which DMM fits seamlessly as a domain. simulated by theSimulator (T8). As no more dependencies are
4.2 Example alive, the flow execution stops. Subsequent changes to the flow or

. data could render parts of the flow invalid. For instance, suppose

Figure 5 illustrates a particular design flow example within

. - that the input td'8is modified externally and tiun Allcommand
DesignMaker. It represents the design flow for the automated SyR: o issued. The timestamp on the inpuT8ds different from that

thesis of the hardware (netlist) and the softV_/are (programs runnir]g its most recent invocation, causing the timestamp data depen-
on the processors) components of a multiprocessor system t ncy to be activated. As no other dependencies are active,®nly

implemgnts a giver_1 application. A _dataflow g.r@'(‘Gfathaf_“? .___is invoked If the system is run again and no data files or arguments
describing the application (ex: music synthesis) and a specific intefrve changed, then no tool is invoked

processor communication mechanisArchitectur§ are specified Conditionals prevent unnecessary tool invocations. For

by the user. The goal is to synthesize this multiprocessor SyStemstance, althougfT6 and T7 are data-dependent d, they are
with the minimum number of processors such that reqlatedcy

code{l,..N}.asm

B Lk
Corkrol paral For “sulbdProcExssplsd”

Architecture

O FErephdoal fodmstion
modem.ptcl O Textusl Frdestion

latency

B,

reich iterations
”__/\'rl latency | N Flow Hracesent
g ! o = |
o N Furs Al
T GraphName (G) it CodeGenerator T7 T
Source T2 ArchitectureGenerator ~ Simulator Fun lpta {Taal

NumProcEstimator Rus Tl SToal*

N [k Harasasent

D Upddste Mergdon

-) N T

[Harsgamark

makespan (M) e -
*.,_{j N }_ y Chra [awign Stabin
GraphName™=— Pt Resat Boslagn Status

Scheduler |—T5_1

Shou Barign Hiztary

ProcEstimator

Comparator

LL

Figure 5.

invoked only when there is new data on their inputs and not uncon-
ditionally wheneveiT4 runs. Control dependencies track parametery)
changes. For instance GraphNames changedT 1 is first invoked
due to a control dependency. This activates a filename data depen-
dency for T2 as the input dat@raphNameXxhanges, causing itto [2]
be invoked. Other tools on the downstream flow that are data-
dependent o2 (complete flow) are similarly invoked. Suppose
that the type of code generator is changed by changing a param
for T6, only T6 and its downstream tool$7, T§ are invoked. The
Run Uptooption implements the demand-driven flow scheduler,
while Run Toolallows a specific tool to be invoked by the user (it is
run only if enabled). [4]
Note than the DesignMaker is much more powerful than a
graphicalmake[13] utility. Specification of iteration, hierarchy, and
conditionals in the design flow, allowing optional inputs and out5]
puts for tools, ensuring tool compatibility, and detecting argument
changes are some of the additional features. The DesignMak[aE?]
environment also makes it possible to track designs and design
flows, store a library of flows, and maintain a history of the design.

5 CONCLUSIONS (7]

System-level design deals with a behavioral specification
and heterogeneous hardware/software implementations. Due to t
wide range of design possibilities, efficient design space explora-
tion is important. Specifying and managing complex design flows;q
tracking dependencies and tool invocations, and maintaining con-
sistency of design data/flows are critical issues in this context. To
manage the complexity of this design process, we have presentgD]
an infrastructure for design methodology management (Design-
Maker) that manages these issues, transparent to the user.

We intend to apply this framework to develop a flexible (11]
hardware/software codesign system, as shown in Figure 1. It is also
possible to embed intelligence in the exploration process using th'ﬁz]
infrastructure. We are looking at extensions where estimates are
used by the system to automatically configure design flows.

6 ACKNOWLEDGEMENTS
The authors would like to thank Pratyush Moghe and Briar{l?’]
L. Evans for their helpful comments on this paper.

An example design flow for multiprocessor synthesis, specified vidéaaignMakerThe goal is to synthesize the hardware
and software, with minimum number of processors, for a specified latency. The control panel shows some supported features.

7 REFERENCES

A. Kalavade, E. A. Lee, “Manifestations of Heterogeneity in
Hardware/Software CodesigrProc. of the 31st Design Auto-
mation Conf, San Diego, CA, June 1994, pp. 437-438.

A. Kalavade, E. A. Lee, “A Hardware/Software Codesign
Methodology for DSP Applications1EEE Design and Test
of Computersvol. 10, no. 3, pp. 16-28, Sept. 1993.

A Kalavade, E. A. Lee, “A Global Criticality/ Local Phase
Driven Algorithm for the Constrained Hardware/Software
Partitioning Problem”Proc. of CODES/CASHE, Third Intl.
Workshop on Hardware/Software Codesjdgdrenoble,
France, Sept. 22-24, 1994, pp 42-48.

J. M. Rabaey et al. “Fast Prototyping of datapath-intensive
Architectures” IEEE Design and Test of Computepp. 40-
51, June 1991.

Synopsys Tools, Synopsys Inc., 700 East Middlefield Rd.,
Mountain View, CA 94043.

J. Buck, S. Ha, E.A. Lee, D.G. Messerschmitt, “Ptolemy: A
Framework for Simulating and Prototyping Heterogeneous
Systems” Int. Journal of Comp. Simulatipspecial issue on

“Simulation Software Development”, v4, 155-182, Apr. 1994.

J. Pino, S. Ha, E. Lee, J. Buck, “Software Synthesis for DSP
Using Ptolemy”, invited paper isournal on VLSI Signal Pro-
cessingspecial issue, “Synthesis for DSP”, to appear: 1994.

J. L. Pino, E. A. Lee, “Hierarchical Static Scheduling of Data-
flow Graphs”, to appeaProc. of ICASSP, 1995.

S. Kleinfelft, M. Guiney, J. K. Miller, and M. Barnes, “Design
Methodology ManagementRroc. of the IEEEyol. 82, no. 2,
pp- 231-250, Feb. 1994.

W. Allen, D. Rosenthal, K. Fidule, “The MCC CAD Frame-
work Methodology Management Syster®roc. of the 28th
Design Automation ConferencE91, pp 694-698.

K. O. ten Bosch, P. Bingley, P. van der Wolf, “Design Flow
Management in the Nelsis CAD FrameworFtoc. of the
28th Design Automation Conferendeine 1991, pp 711-716.

D. Harrison, P. Moore, R. Spickelmier, A. R. Newton, “Data
Management and Graphics Editing in the Berkeley Design
Environment”,Proceedings of the International Conference

on Computer Aided Design (ICCALLQ86, pp 24-27.

S. Feldman, “Make — A Program for Maintaining Computer
Programs” Software Practice and ExperiencE79, Vol. 9,
pp 255-265.

