
1

MANAGING COMPLEXITY IN HETEROGENEOUS
SYSTEM SPECIFICATION, SIMULATION, AND SYNTHESIS

Asawaree Kalavade, José Luis Pino, and Edward A. Lee 1

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720-1770.

{kalavade,pino,eal}@EECS.Berkeley.EDU

ABSTRACT
System-level design is characterized by a behavioral specifi-

cation and heterogeneous hardware/software implementations.
Exploring the design space is essential for good design. Specifying
and managing complex design flows, tracking dependencies and
tool invocations, and maintaining consistency of design data and
flows are key issues that enable efficient design space exploration.
In order to manage the complexity of this design process, an infra-
structure that manages these issues, transparent to the user, is pre-
sented. These concepts have been implemented in the Ptolemy
environment within a framework called DesignMaker. An example
design flow for multiprocessor synthesis is presented in some detail
to illustrate the features of DesignMaker. The end objective of the
framework is to facilitate a flexible system-level codesign assistant.

1 INTRODUCTION
Typical applications of embedded systems include telecom-

munications, consumer products, robotics, and automotive control
systems. Such embedded systems exhibit heterogeneity in imple-
mentation (hardware/software) as well as computational semantics
(control/dataflow). As a result of increasing functional complexity,
these systems are usually designed in a top-down manner, starting
with a behavioral specification. The design of such heterogeneous
hardware/software systems is often referred to as hardware/soft-
ware codesign or system-level design. In this context, the key
design problems are hardware/software partitioning, cosynthesis,
and cosimulation [1].

A typical design flow for the hardware/software codesign
problem [2] is shown in Figure 1. A behavioral-level design specifi-

Source

HW / SW
Partitioning

Software
Synthesis

Area / Time
Estimation

Interface
Synthesis

Hardware
Synthesis

Netlist
Generation

Simulation

Figure 1. A typical design flow for the automated hardware/
software codesign problem.

Manual

GCLP ...
CPLEX(ILP)

Silage
Generation

Hyper

VHDL
Generation Synopsys

modem.sdf

Throughput

Ptolemy

cation (ex:modem.sdf) is transformed into the final implementa-
tion, consisting of custom and commodity programmable hardware
components and the software running on the programmable compo-
nents, by passing through a sequence of tools. This is not a black-
box push-button design process, but involves considerable user
interaction. The user experiments with different design choices;
design space exploration is the key to system level design. Manag-
ing the complexity of this design process is non-trivial. The features
needed for efficient design space exploration include:
• Modular and configurable flow specification mechanisms
For example, in Figure 1, the user might be interested in first
determining if a feasible partition exists. At this point only the
Estimation andPartition tools need to be invoked; subsequent tools
need not be run. Inefficiencies due to unnecessary tool invocations
can be avoided if flows are specified modularly as in Figure 1.
A number of design options are available at each step in the design
process. For instance, thePartition tool can be one of: a human-
intervened manual partitioning, an exact but time consuming tool
such as CPLEX using integer linear programming techniques, or an
efficient custom optimized algorithm such as GCLP [3]. Depending
on the available design time and desired accuracy, one of these is
selected. This selection can be done either by the user, or by
embedding this design choice within the flow. A design flow with a
configurable methodology is thus easily extensible.
• Mechanisms to systematically track tool dependencies and
automatically determine the sequence of tool invocations
After developing a particular design, the user might want to
experiment with other options, for instance, different hardware
synthesis mechanisms. One possible approach to hardware
synthesis is Silage code generation followed by Hyper [4]. An
alternative path is VHDL code generation followed by Synopsys
tools [5]. If a specific tool is changed on the fly, the entire system
need not be re-run; only those tools that are affected should be run
(in this case:Hardware Synthesis, Netlist Generation, Simulation).
• Managing consistency of design data, tools, and flows
Detecting incompatibilities between tools and maintaining versions
of the tools and design flows is necessary.

In this paper we propose an infrastructure that manages
these aspects of the system-level design methodology. The end goal
is to use this infrastructure to build a codesign system. Section 2
briefly mentions mechanisms for specification, simulation, and syn-
thesis of heterogeneous designs. Section 3 presents the underlying
concepts of design methodology management. Section 4 discusses
implementation details and gives an example design flow that dem-
onstrates the viability of our approach.

1. This research is part of the Ptolemy project, which is supported by the Advanced Research Projects Agency and the U.S. Air Force (under the RASSP program F33615-93-C-
1317), SRC (94-DC-008), NSF (MIP-9201605), Office of Naval Technology (via Naval Research Laboratories), the State of California MICRO program, and the following compa-
nies: Bell Northern Research, Cadence, Dolby, Hitachi, Mentor Graphics, Mitsubishi, NEC, Pacific Bell, Philips, Rockwell, Sony, and Synopsys.

To appear:
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Detroit, Michigan, May, 1995.

2

2 SPECIFICATION, SIMULATION,
AND SYNTHESIS

Ptolemy [6] is an environment for simulation and prototyp-
ing of heterogeneous systems. Instead of trying to capture all possi-
ble models of computation into one all-encompassing model, the
Ptolemy kernel implements an open architecture that enables an
unlimited number of extensible models to be defined. Each model
(called a “domain”) is responsible for implementing its own data
processing and data exchange strategies.

Heterogeneous systems can be specified using different lev-
els of abstraction and/or semantics for the various subcomponents.
For instance, a multimedia telecommunication system can be speci-
fied as a combination of an event-driven subsystem representing the
packet-switched network and a dataflow subsystem modeling the
signal processing components. Ptolemy supports multi-paradigm
simulation in which different computational models co-exist; e.g. a
dataflow system can interact with a finite-state machine component,
or a hardware system can interact with software. Finally, heteroge-
neous systems can be synthesized using the hardware and software
synthesis mechanisms reported in [2][4][7]. We have developed a
mechanism to combine diverse schedulers (with different optimiza-
tion objectives) for the software synthesis process [8]. This simpli-
fies the software scheduling problem and also enables the use of
specialized schedulers. This paper will focus on managing the com-
plexity in these phases of the design process.

3 DESIGN METHODOLOGY
MANAGEMENT

A design methodology specifies a sequence (flow) of tools
that operate on data. Design methodology management (DMM) is
formally defined as “definition, execution, and control of design
methodologies in a flexible and configurable way” [9]. The prob-
lems encountered in DMM are: data, tool, and flow management.

DMM as such is not new; traditional DMM systems (often
referred to as “frameworks”) are used quite extensively in the phys-
ical VLSI design process. These systems [10][11] focus on data and
tool management, i.e., maintaining consistent versions of data, and
invoking a user-specified tool after ensuring that the preconditions
for enabling it are satisfied, respectively. The key to system-level
design, however, is design space exploration. At the system level,
design flows are less well-defined than at the physical design level,
and the range of tools involved is much larger. Powerful constructs
for flow definition, dependency analysis, and automated flow exe-
cution dominate the system-level design process.Our focus is to
manage the complexity of the “system-level” design problem, with
emphasis on flow management.

3.1 Flow, Tool, and Data Model
Figure 2 illustrates the details of the components of our

DMM mechanism. A designflow is specified as a directed graph,
where nodes represent tools, and arcs specify the ordering between
tools.Tools communicate via filenames and encapsulate actual pro-
grams. Tool parameters specify the arguments for these programs.
A tool’s inputs and outputs are associated with itsports. Ports can
be of two types:required andoptional. Optional ports make it pos-
sible to represent conditionals and iterations in flows (illustrated in
Section 4.2).

The information model is represented as a distributed data
structure. Associated with each tool is aParam_Changed_Flag

that gets set when parameters of a tool are changed. Associated
with each port of a tool are three attributes:File_Name ,
Time_Stamp , and Optional_Flag . File_Name and

Time_Stamp represent the filename and the timestamp of the data
on the port (associated with the most recent invocation of the tool).
Optional_Flag indicates whether the port is required or optional.

3.2 Dependencies
Figure 3 shows the three types of dependencies that are sup-

ported.Temporal dependencies track the timestamps on input-out-
put ports of the tools — a tool needs to be run if any of its output is
out-of-date, i.e., any of its input timestamps are newer than its out-
put timestamps.Data dependency ensures that a tool is run when-
ever the file received on any of its input ports has either a filename
or a timestamp that is different from the previous tool invocation.
Control dependency tracks parameter changes; a tool needs to be
run if any of its parameters has changed.

3.3 Flow Management
Automatic flow invocation is based on analyzing the tool

dependencies and executing tools as required. A tool is said to be
enabled when all of its required input ports have data. Absence of
data on the optional input ports does not affect enabling. Once
enabled, a tool is checked for dependencies. A tool isinvoked (run)
when at least one of its dependencies is live. On execution, a tool

Param_Changed_Flag

File_Name
Time_Stamp

Optional_Flag

TOOL J

PORT I

Tool 1

Tool 2 Tool N

Tool K

Port 1
Port 2 Port M

Tool 1

Param_Changed Port 1 Port M

Tool N

File_Name Time_Stamp

Optional_Flag

optional port

FLOW MODEL

TOOL MODEL DATA MODEL

Figure 2. Components of a DMM system.

filename

arguments

arg_changed

Dependency

Control

Figure 3. Dependencies used for tool management.

TimeStamp

Data

TSnew != TSlastFNnew != FNlast

Temporal

max(Tin) > min(Tout)

FileName

FNlastTSlast

Tin

Tout

arg

newData

FNnewTSnew

3

generates data on its required output ports, and conditionally on the
optional output ports. Two types of flow invocation mechanisms are
desired: data-driven, and demand-driven (Figure 4). In the data-
driven approach, the flow scheduler traverses the flow according to
precedences. The process halts when all tools with live dependen-
cies have been exhausted. In the demand-driven mode, the user
selects a tool for execution. The scheduler traverses the predeces-
sors and executes all tools with live dependencies on the path.

4 DMM: IMPLEMENTATION
4.1 Implementation details

The DMM mechanism described in Section 3 has been
implemented in the Ptolemy environment as a separatedomain.
Design flows are specified as graphical netlists. Conditionals and
iterations are supported in the flow definition. Flows can be
described hierarchically. Tools are encapsulated within basic
blocks. Tools can have required and optional ports as well as
parameters. Tool encapsulation involves writing scripts that call
various programs. Tools can invoke programs on remote filesys-
tems as well as programs with their own GUIs. The tool writer need
not worry about the underlying timestamps and filenames. The
DMM attributes and flow netlists are stored within the Oct database
[12]. Tools communicate via files. A type resolution mechanism
checks for data type compatibility between tools. The flow and tool
manager is calledDesignMaker. DesignMaker supports both data-
driven and demand-driven flow execution. It resolves tool depen-
dencies and automatically invokes tools. The underlying scheduler
is a combination of dynamic dataflow and event-driven schedulers.
DesignMaker detects deadlocks when iterative flows are incorrectly
specified (such as forward dependencies on required inputs).
DesignMaker also supports other features such as annotation of the
design process and the display of the flow status (blocked, running,
and ready) at any point in the design process.

Our motivation for implementing the DMM system in
Ptolemy is to take advantage of the existing modular kernel and
data structures, in which DMM fits seamlessly as a domain.

4.2 Example
Figure 5 illustrates a particular design flow example within

DesignMaker. It represents the design flow for the automated syn-
thesis of the hardware (netlist) and the software (programs running
on the processors) components of a multiprocessor system that
implements a given application. A dataflow graphG (GraphName)
describing the application (ex: music synthesis) and a specific inter-
processor communication mechanism (Architecture) are specified
by the user. The goal is to synthesize this multiprocessor system
with the minimum number of processors such that requiredlatency

Data-Driven Flow Execution

Demand-Driven Flow Execution

Figure 4. Flow execution mechanisms.

is met. We now run through a typical flow execution sequence to
demonstrate the effects of the various constructs and dependencies.

Suppose that the flow is run the very first time usingRun All.
Tools are examined for active dependencies by traversing the flow
according to precedence ordering between tools.Source (T1)out-
puts the dataflow graphG specified byGraphName. NumProcEsti-
mator (T2) andCode Generator (T6) are dependent onT1. Note
thatT2 is enabled, whileT6 is not (second inputN, has not yet been
generated).T2 is a hierarchical description of the estimation pro-
cess, which iteratively determines the minimum number of proces-
sors required to implementG at the desiredlatency.

ProcEstimator (T3)estimates the number of processors (N)
required to implementG. Estimators of different accuracy can be
selected by changing parameters of this block. Suppose that the
desired latency is 320 cycles and the sum of execution times of all
the nodes inG is 900. A possible estimator would assume maxi-
mum parallelism to estimate a lower bound of 3 processors.T3 has
anoptional input that receives an indication as to whether or not the
current N satisfies the latency requirements. When this input is
available,T3 uses it to improve the estimate forN. Note that the
loop (T3-T4-T5) does not deadlock because this input is optional.
TheScheduler (T4) schedulesG ontoN (=3) processors and deter-
mines the actual time required (makespan M) to implementG. T4
detects convergence of the estimation loop if the value ofN gener-
ated byT3 in consecutive iterations is the same.T4 generates out-
puts conditionally — it generates outputN if the iteration has
converged, else it generates outputM and the iterationT5-T3-T4 is
repeated. Different scheduling algorithms can be selected by chang-
ing parameters ofT4. Suppose it computes the makespan to be 350.
The Comparator (T5)compares the latency (320) andM (350) to
generate the control signal forT3. T3 is enabled by input received
on its optional input, and refines its estimate ofN to 4. Note that up
to this point, as the system is being run the very first time, filename
type data dependencies are active for all the blocks. (Data depen-
dencies identify a change in the input data to a tool with respect to
its previous invocation.) ForT4 however, filename data dependency
is no longer active (since the same filename is retained), but tempo-
ral dependency becomes active. Recall that temporal dependencies
detect out-of-date output data. As the input toT4 is newer than its
output, it runs again, recomputingM (say, 290). The sequenceT5-
T3-T4 repeats. The estimation loop converges as the latency is now
met.

The Code Generator (T6) is now invoked.T6 uses theN-
processor schedule to synthesize software for theN processors. A
parameter forT6 is used to select the type of code generator.T7
generates the netlist for the system. The generated architectural
model, where the processors run the synthesized software is then
simulated by theSimulator (T8). As no more dependencies are
alive, the flow execution stops. Subsequent changes to the flow or
data could render parts of the flow invalid. For instance, suppose
that the input toT8 is modified externally and theRun All command
is re-issued. The timestamp on the input toT8 is different from that
in its most recent invocation, causing the timestamp data depen-
dency to be activated. As no other dependencies are active, onlyT8
is invoked. If the system is run again and no data files or arguments
have changed, then no tool is invoked.

Conditionals prevent unnecessary tool invocations. For
instance, althoughT6 andT7 are data-dependent onT4, they are

4

✧

✧

invoked only when there is new data on their inputs and not uncon-
ditionally wheneverT4 runs. Control dependencies track parameter
changes. For instance, ifGraphName is changed,T1 is first invoked
due to a control dependency. This activates a filename data depen-
dency for T2 as the input data (GraphName) changes, causing it to
be invoked. Other tools on the downstream flow that are data-
dependent onT2 (complete flow) are similarly invoked. Suppose
that the type of code generator is changed by changing a parameter
for T6, only T6 and its downstream tools (T7, T8) are invoked. The
Run Upto option implements the demand-driven flow scheduler,
while Run Toolallows a specific tool to be invoked by the user (it is
run only if enabled).

Note than the DesignMaker is much more powerful than a
graphicalmake [13] utility. Specification of iteration, hierarchy, and
conditionals in the design flow, allowing optional inputs and out-
puts for tools, ensuring tool compatibility, and detecting argument
changes are some of the additional features. The DesignMaker
environment also makes it possible to track designs and design
flows, store a library of flows, and maintain a history of the design.

5 CONCLUSIONS
System-level design deals with a behavioral specification

and heterogeneous hardware/software implementations. Due to the
wide range of design possibilities, efficient design space explora-
tion is important. Specifying and managing complex design flows,
tracking dependencies and tool invocations, and maintaining con-
sistency of design data/flows are critical issues in this context. To
manage the complexity of this design process, we have presented
an infrastructure for design methodology management (Design-
Maker) that manages these issues, transparent to the user.

We intend to apply this framework to develop a flexible
hardware/software codesign system, as shown in Figure 1. It is also
possible to embed intelligence in the exploration process using this
infrastructure. We are looking at extensions where estimates are
used by the system to automatically configure design flows.

6 ACKNOWLEDGEMENTS
The authors would like to thank Pratyush Moghe and Brian

L. Evans for their helpful comments on this paper.

7 REFERENCES
[1] A. Kalavade, E. A. Lee, “Manifestations of Heterogeneity in

Hardware/Software Codesign”,Proc. of the 31st Design Auto-
mation Conf., San Diego, CA, June 1994, pp. 437-438.

[2] A. Kalavade, E. A. Lee, “A Hardware/Software Codesign
Methodology for DSP Applications”,IEEE Design and Test
of Computers, vol. 10, no. 3, pp. 16-28, Sept. 1993.

[3] A Kalavade, E. A. Lee, “A Global Criticality/ Local Phase
Driven Algorithm for the Constrained Hardware/Software
Partitioning Problem”,Proc. of CODES/CASHE, Third Intl.
Workshop on Hardware/Software Codesign, Grenoble,
France, Sept. 22-24, 1994, pp 42-48.

[4] J. M. Rabaey et al. “Fast Prototyping of datapath-intensive
Architectures”,IEEE Design and Test of Computers, pp. 40-
51, June 1991.

[5] Synopsys Tools, Synopsys Inc., 700 East Middlefield Rd.,
Mountain View, CA 94043.

[6] J. Buck, S. Ha, E.A. Lee, D.G. Messerschmitt, “Ptolemy: A
Framework for Simulating and Prototyping Heterogeneous
Systems”,Int. Journal of Comp. Simulation, special issue on
“Simulation Software Development”, v4, 155-182, Apr. 1994.

[7] J. Pino, S. Ha, E. Lee, J. Buck, “Software Synthesis for DSP
Using Ptolemy”, invited paper inJournal on VLSI Signal Pro-
cessing, special issue, “Synthesis for DSP”, to appear: 1994.

[8] J. L. Pino, E. A. Lee, “Hierarchical Static Scheduling of Data-
flow Graphs”, to appear:Proc. of ICASSP, 1995.

[9] S. Kleinfelft, M. Guiney, J. K. Miller, and M. Barnes, “Design
Methodology Management”,Proc. of the IEEE, vol. 82, no. 2,
pp. 231-250, Feb. 1994.

[10] W. Allen, D. Rosenthal, K. Fidule, “The MCC CAD Frame-
work Methodology Management System”,Proc. of the 28th
Design Automation Conference,1991, pp 694-698.

[11] K. O. ten Bosch, P. Bingley, P. van der Wolf, “Design Flow
Management in the Nelsis CAD Framework”,Proc. of the
28th Design Automation Conference, June 1991, pp 711-716.

[12] D. Harrison, P. Moore, R. Spickelmier, A. R. Newton, “Data
Management and Graphics Editing in the Berkeley Design
Environment”,Proceedings of the International Conference
on Computer Aided Design (ICCAD), 1986, pp 24-27.

[13] S. Feldman, “Make — A Program for Maintaining Computer
Programs”,Software Practice and Experience, 1979, Vol. 9,
pp 255-265.

Figure 5. An example design flow for multiprocessor synthesis, specified withinDesignMaker. The goal is to synthesize the hardware
and software, with minimum number of processors, for a specified latency. The control panel shows some supported features.

Source
NumProcEstimator

ArchitectureGenerator Simulator
CodeGeneratorGraphName (G)

N

N

code{1,..N}.asm modem.ptcl
iterations

Architecture

T1
T2

T8T7
T6

latency

Comparator
Scheduler

ProcEstimator

makespan (M)

0/1N

latency
GraphName

N

N

T3

T4
T5

