
[2] A. Banerjea, E.W. Knightly, “Using Calendar Queues for
Discrete Event Scheduling in Ptolemy”,Final Report for
EE290T, University of California, Berkeley, CA 94720,
December, 1993.

[3] S. Bhattacharrya and E. A. Lee, “Looped Schedules for
Dataflow Descriptions of Multirate Signal Processing Algo-
rithms,” to appear in Formal Methods in System Design,
(updated from UCB/ERL Technical Report, May 21, 1993).

[4] S. Bhattacharyya and E. A. Lee, “Memory Management for
Synchronous Dataflow Programs,” to appear inIEEE Tr. on
Signal Processing, May 1994. Updated from: Technical
Report UCB/ERL M92/128, EECS Dept., UC Berkeley,
November 18, 1992.

[5] S. Bhattacharyya, J. T. Buck, S. Ha, and E. A. Lee, “A
Scheduling Framework for Minimizing Memory Require-
ments of Multirate DSP Systems Represented as Dataflow
Graphs,” inVLSI Signal Processing VI, IEEE Special Publi-
cations, New York, 1993.

[6] S. Bhattacharrya, J. Buck, S.-H. Ha, E. A. Lee, “Generating
Compact Code from Dataflow Specifications of Multirate
DSP Algorithms,” UCB/ERL Technical Report M93/36,
May 21, 1993.

[7] J. Bier, E. Goei, W. Ho, P. Lapsley, M. O’Reilly, G. Sih and
E.A. Lee, “Gabriel: A Design Environment for DSP,”IEEE
Micro Magazine, October 1990, Vol. 10, No. 5, pp. 28-45.

[8] J. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, “Ptolemy: a
Framework for Simulating and Prototyping Heterogeneous
Systems”, International Journal of Computer Simulation,
special issue on “Simulation Software Development,” Janu-
ary, 1994.

[9] J. T. Buck, Scheduling Dynamic Dataflow Graphs with
Bounded Memory Using the Token Flow Model, Ph. D. Dis-
sertation, Dept. of EECS, University of California, Berkeley,
CA 94720, 1993.

[10] J. T. Buck and E. A. Lee, “Scheduling Dynamic Dataflow
Graphs with Bounded Memory Using the Token Flow
Model,” Proc. of ICASSP ‘93, Minneapolis, MN, April,
1993.

[11] J. T. Buck, “The Ptolemy Kernel, A Programmer’s Compan-
ion for Ptolemy 0.4,” Memorandum UCB/ERL M93/8, Janu-
ary 19, 1993.

[12] M. Chen, “Developing a MDSDF domain in Ptolemy”,Final
Report for EE290T, University of California, Berkeley, CA
94720, December, 1993.

[13] A. Kalavade, and E.A. Lee, “A Hardware/Software Codesign
Methodology for DSP Applications,”IEEE Design and Test,
September 1993.

[14] E. A. Lee, “Computing and Signal Processing: An Experi-
mental Multidisciplinary Course”,Proc. of ICASSP-94, Ade-
laide, Australia, April, 1994.

[15] E. A. Lee, “Representing and Exploiting Data Parallelism
Using Multidimensional Dataflow Diagrams,”Proc. of
ICASSP ‘93, Minneapolis, MN, April, 1993.

[16] S. Sriram and E. A. Lee, “Design and Implementation of
an Ordered Memory Access Architecture,”Proc. of
ICASSP ‘93, Minneapolis, MN, April, 1993.

[17] E. A. Lee, “A Design Lab for Statistical Signal Process-
ing,” Proceedings of ICASSP ‘92,San Francisco, March,
1992.

[18] E. A. Lee, “Consistency in Dataflow Graphs”,IEEE
Transactions on Parallel and Distributed Systems, Vol. 2,
No. 2, April 1991.

[19] E. A. Lee, W.-H. Ho, E. Goei, J. Bier, and S. Bhatta-
charyya, “Gabriel: A Design Environment for DSP”,
IEEE Trans. on ASSP, November, 1989.

[20] E. A. Lee and D. G. Messerschmitt, “Synchronous Data
Flow,” IEEE Proceedings, September, 1987.

[21] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of
Synchronous Data Flow Programs for Digital Signal Pro-
cessing,” IEEE Transactions on Computers, January,
1987.

[22] P. Murthy, S. Bhattacharyya, E.A. Lee, “Minimizing
Memory Requirements For Chain-Structured Synchro-
nous Dataflow Programs”,Proc. of ICASSP-94, Adelaide,
Australia, April, 1994.

[23] P. Murthy,Multiprocessor Code Synthesis in Ptolemy,MS
Report, Dept of EECS, UC Berkeley, July 1993.

[24] J. Ousterhout, “Tcl: An Embeddable Command Lan-
guage,”USENIX Conference Proceedings, Winter, 1990.

[25] J. Ousterhout, “An X11 Toolkit Based on the Tcl Lan-
guage,”USENIX Conference Proceedings, Winter, 1991.

[26] J. L. Pino, “Software Synthesis for Single-Processor DSP
Systems Using Ptolemy”,MS Report UCB/ERL M93/
35, Dept of EECS, UC Berkeley, May 1993.

[27] S-I Shih, “An Application for MDSDF”,Final Report for
EE290T, University of California, Berkeley, CA 94720,
December, 1993.

[28] K. White, XPole: An Interactive Graphcial Signal Analy-
sis and Filter Design Tool, MS Report, Dept of EECS,
UC Berkeley, May 1993.

[29] E. Wu, “Scheduling SDF Graphs with I/O Timing Con-
straints”,Final Report for EE290T, University of Califor-
nia, Berkeley, CA 94720, December, 1993..

exception. We have, in the process, encountered both strengths and
weaknesses in this approach. For example, we frequently wish to
parameterize a system specification, but find that the value of the
parameter affects the structure of our graphical representation. We
believe that such limitations are due primarily to the semantics of
the graphical models we are using, and not to their graphical syn-
tax. In view of this, we are more systematically study the potential
of graphical representation of signal processing systems. One
aspect of this work concerns the use of higher-order functions in
graphical languages. This work has not progressed sufficiently to
demonstrate concrete results.

2.1.4 Dynamic dataflow

Our most heavily used model of computation for signal processing
is synchronous dataflow (SDF) [19][20]. In this model, an applica-
tion is described as a graph where nodes represent computations
(“actors”) and arcs represent the flow of data (“streams”). The
actors produce and consume a fixed and known amount of data on
each arc each time they fire. The synchronous dataflow model has
the compelling advantage that the firing pattern of the actors can be
completely determined at compile time.

Algorithms with predictable control flow have been successfully
addressed using the synchronous dataflow (SDF) model of compu-
tation. Recently, however, our effort has broadened to include
applications where control flow is not predictable. The objective is
to preserve the benefits (especially efficiency) of predictable con-
trol flow whenever possible, but to support dynamic decision mak-
ing, dynamic real-time response, and asynchrony. This will
broaden the application domain to include telecommunications
systems, real-time control, and hardware and software co-design.
To do this, we are pursuing two lines of inquiry that avoid discard-
ing the SDF model of computation in favor of one that is more gen-
eral. The first is to mix models of computations, gaining generality
through heterogeneity. The Ptolemy system is focussed on support-
ing this. The second is to extend the analytical techniques of SDF
to dynamic dataflow graphs. Atoken flow model [17][10][9] has
been devised that replaces many numeric operations that worked
under the SDF model with symbolic operations. The dependence
of control-flow on Booleans is represented symbolically.

2.2. Overview of recent publications and software

The most visible output from this group is the Ptolemy software
system, described in detail in [8][11] and in the manual. Version
0.5 of Ptolemy was released in February of 1994. It is distributed
through our Industrial Liaison Program office and electronically by
anonymous FTP. The manual (calledThe Almagest) has grown to
more than 700 pages and occupies four volumes. The software has
formed the testbed for a number of research projects, including
three masters projects [22][25][27] and one Ph.D. dissertation [9]
completed during this reporting period.

J. Buck’s Ph.D. dissertation [9] makes fundamental contributions
to the theory and practice of scheduling dataflow graphs. Buck
proves that determining whether dataflow graphs can be executed
with bounded memory is equivalent to solving the general halting
problem, and thus cannot be reliably completed in finite time. P.
Murthy’s masters report [22] describes parallel code generation for
a four-processor programmable DSP system from Star Semicon-
ductor. J. Pino’s masters report [25] describes a family of optimiza-
tions performed in synthesizing assembly code for programmable
DSPs. K. White’s masters report [27] describes a software system

for interactively designing and analyzing discrete- and continuous-
time filters and the mappings between them.

One undergraduate independent study project was also based on
Ptolemy; Wei-Jen Huang, who worked on the Tcl/Tk interface.

In the Fall of 1993, we organized a graduate seminar in which we
examined the fundamentals of the technology underlying Ptolemy.
The design of this seminar is reported in [13]. Some notable
projects resulting from it are reported in [2][1][28][12][26].

We have made considerable progress on formal and heuristic tech-
niques for efficient code generation from synchronous dataflow
graphs [3][4][5][6][21]. Most of these involve coupling of schedul-
ing techniques with optimized code generation. We recently
devised a multidimensional extension of synchronous dataflow
[14] that promises to significantly improve our ability to exploit
data parallelism.

Our work on hardware/software codesign [13] has been getting
quite a bit of attention from both industry and academia. However,
we feel that we have barely scratched the surface of this problem.

In addition, Ptolemy is being used in both our graduate and under-
graduate signal processing classes. In the Spring semester of 1994,
approximately 100 students (half graduate and half undergraduate)
will each perform between 6 and 8 algorithmic design projects
using Ptolemy on a network of DEC workstations. The graduate
experiments are described in [16].

3. CURRENT PROJECTS

3.1. Wormhole interfaces for heterogeneous targets

When Ptolemy executes synthesized code on an attached proces-
sor, it currently has only rudimentary mechanisms for controlling
that execution. We are generalizing the wormhole interface in
Ptolemy so that a real-time program running on attached hardware
will appear to the user as part of the process running on the work-
station. This should make the real-time hardware transparently
accessible, greatly enhancing our ability to rapidly prototype sys-
tems.

3.2. Real-time control

The dataflow capabilities in Ptolemy have advanced much further
than other models of computation useful for prototyping. We are
developing multithreaded dataflow and hierarchical finite state
machine models for mixing real-time control with signal process-
ing.

3.3. Optimized code generation

Synthesizing efficient assembly code for programmable DSPs has
proved to be a rich area for innovation. We are currently focusing
on problems associated with multirate systems that have radically
different sample rates in different parts of the system.

4. REFERENCES

[1] A. Abnous, “Modeling the ALOHA Radio Network in the
Discrete Event and Communicating Processes Domains of
Ptolemy”, Final Report for EE290T, University of Califor-
nia, Berkeley, CA 94720, December, 1993.

first problem to be addressed here is one of algorithm
representation.

2.1.1 Animation in simulation

One aspect of this is to represent the dynamics of a
signal processing system using interactive, animated
graphics. We have linked the interpreted language
Tcl [23] and its associated X window toolkit [24]
with the Ptolemy system. This provides a powerful,
extensible environment within which users can con-
struct customized, animated, interactive simulations.
In figure 1, we show an example of how this is used.

2.1.2 Matrix manipulations

A second aspect of the effort to raise the level of
algorithm representation in Ptolemy is the inclusion
of a comprehensive matrix manipulation mechanism,
cleanly coupled with the block diagram representa-
tion. Figure 2 shows one application of this matrix
class. Here, the so-called MUSIC algorithm is being
implemented for identifying sinusoids in noise. This
is a very high-level representation of the algorithm.

2.1.3 Graphical programming

Although it was not originally part of the intent of
the Ptolemy project to explore graphical program-
ming, we have found ourselves representing applica-
tions at least partially graphically almost without

Figure 1: Ptolemy has been linked to Tcl/Tk,
an interpreted language and X window toolkit.
This permits users to design customized,
interactive, animated simulations of
algorithms. The example shown here shows
the taps of an adaptive filter at the upper right
as the filter adapts. The user controls the
noise and adaptation step size.

Figure 2. An application of the Matrix class in Ptolemy, used for high-
level representation of algorithms.

XMgraph

XMgraph

XMgraph

XMgraph

TkText.input=2
���
���
���

TkText.input=2����
����
����

TkText.input=2����
����
����

MUSIC_M

MUSIC_M

SVD_M

R

S

L

SVD_M

R

S

L
Matrix

����
��
��
�
�
�
�
�
�

����
�
�
�
�
�
�
�
�
�
�

��
��
�
�

Matrix

��������
����
��
������

UnPkFloat_M

^̂
^
^
^
^̂̂^̂^̂

UnPkFloat_M

^̂
^̂
^̂^̂^̂

UnPkFloat_M

^̂
^
^
^
^̂̂^̂^̂

UnPkFloat_M
^
^̂
^̂̂
^̂
^
^
^
^
^
^
^
^

UnPkFloat_M

^̂
^
^
^
^̂̂^̂^̂

UnPkFloat_M

^̂
^
^̂̂̂
^
^̂^̂

SVD & MUSIC
used to identify
the frequency of
a single sinusoid
in a signal with
different SNRs.

Data Matrix X, SNR = 30dB

Data Matrix X, SNR = 20dB

DESIGN METHODOLOGY FOR DSP

Edward A. Lee

Department of Electrical Engineering and Computer Science
University of California, Berkeley CA 94720

Final Report 1992-93, Micro Project #92-084
Industrial Sponsors: Bell Northern Research, Dolby Laboratories,

Motorola, Philips Research, Rockwell International, and Star Semiconductor.

ABSTRACT

This project explores design methodology for simulation and real-
time parallel computation for applications using digital signal pro-
cessing. The goal is to facilitate rapid prototyping of complex algo-
rithms by developing tools that are both efficient in their use of
hardware and easy for an algorithm designer to learn and use. The
first five years of the project have been extremely productive,
resulting in several new techniques and two working software sys-
tems,Gabriel andPtolemy. Ptolemy is current being distributed by
anonymous FTP and through our Industrial Liaison Program.
Ptolemy is also currently being used as an integral part of our grad-
uate course in statistical signal processing, EE225a, our undergrad-
uate signal processing course, EE123, and a research seminar
EE290T investigating languages and design methodology for sig-
nal processing systems.

1. MOTIVATION

Ptolemy, a system-level design framework, is the successor to Gab-
riel [7][18], a software environment for real-time signal process-
ing. Ptolemy serves as the nucleus of a variety of distinct projects
in simulation, design, and implementation of systems. This
MICRO project continues the work begun with Gabriel on design
of real-time signal processing systems, but now uses Ptolemy as
the software framework. Unlike Gabriel, the Ptolemy framework is
flexible enough to accommodate a number of distinct projects, and
each contributes infrastructure that the other projects can benefit
from. The Ptolemy effort began in January of 1990, under the joint
direction of Professors Lee and Messerschmitt. It has grown to
directly involve approximately 20 research students and three FTE
staff positions. In addition, approximately 130 undergraduate and
graduate students are currently using Ptolemy each year as an inte-
gral part of two courses, and several other research groups at Ber-
keley are using Ptolemy to conduct simulation and design integral
to their research. The latest version of Ptolemy (designated 0.51) is
publicly available and freely redistributable as of February, 1994.

The MICRO project focuses on two issues compatible with the
overall objectives of Ptolemy. The first of these concerns represen-
tation of signal processing algorithms at a high level of abstraction.
In the past, we have concentrated on the use of large grain dataflow
graphs for specifying algorithms. The elementary functional blocks
are defined in the target language, C++, C, or assembly code for the

1. Since Ptolemy is research software, distributed free of charge and with-
out support, all versions distributed by the University are designated 0.x.

target processor. We are broadening the options here, with the
objective of enabling quick intuitive evaluation of algorithms. The
second issue concerns compilation of the specification to generate
an efficient real-time implementation. In particular, we are address-
ing several interesting problems associated with code generation
for programmable DSPs, including video signal processors with
VLIW architectures.

The ambitious objectives of the overall Ptolemy project include
practically all aspects of designing signal processing and commu-
nications systems, ranging from the design of algorithms and com-
munication strategies, through simulation, hardware and software
design, parallel computing, and real-time prototyping. To manage
this, it is essential that the software be highly modular and extensi-
ble, so that projects of manageable scope can proceed indepen-
dently, and nonetheless can combine their results. The MICRO
project complements nicely some of the other work using Ptolemy,
such as simulation and design of communication networks, and
parallel programming of commercial parallel machines, such as the
CM-5 from Thinking Machines.

2. RESULTS OF MICRO SUPPORT

Tools for designing real-time systems must be somewhat special-
ized to a class of applications. This specialization enables tool
designers to build in optimizations and customizations suited ide-
ally to the class. For example, very good parallelizing code genera-
tors can be made for feedforward algorithms with deterministic
control flow. A different code generator should be used for highly
dynamic real-time systems, or for asynchronous systems.

Such specialization, however, runs counter to the increasing heter-
ogeneity of system implementations. Custom hardware is mixed
with software, and even within each of these two classes, design
styles may differ radically for different parts of the system. The
principle being pursued in this project is that a suite of specialized
tools can be combined to form a general framework. Each special-
ized tool works with a model of computation that it can understand.
And each tool must interoperate with other tools. We have
focussed on signal processing applications, and are attempting to
define precisely the suite of tools required to get a complete design
environment. The MICRO project addresses a subset of the possi-
bilities: those involving real-time implementation on programma-
ble DSPs.

2.1. Algorithm representation

We are exploring methods for quickly and easily evaluating signal
processing algorithms, coupled with methods for synthesizing real-
time prototypes using programmable processors including the
Motorola DSP families and the Philips video signal processor. The

