DESIGN METHODOLOGY FOR DSP

Edward A. Lee, Principal Investigator

Department of Electrical Engineering and Computer Science
University of California, Berkeley CA 94720

Final Report 1996-97, Micro Project #96-078
Industrial Sponsors: Alta Group of Cadence Design Systems, Philips, Rockwell

ABSTRACT

The focus of this project is on desigh methodology for complex
real-time systems where a variety of design methodologies and
implementation technologies must be combined. Design meth-
odologies are encapsulated in one or more models of computa-
tion, while implementation technologies are implemented as
synthesis tools. Applications that use more than one model of
computation and/or more than one synthesis tool are said to be
heterogeneous. Hardware/software codesign is one example of
heterogeneous design. Project results have been disseminated
via the Ptolemysoftware, in addition to papers. The overall
Ptolemy project is fairly large, with additional support from
DARPA, SRC, and a number of other companies, and is
strongly collaborative. The MICRO project has focused on
real-time signal processing, although the larger project is
broader.

1. The Context

The objectives of the Ptolemy Project include many aspects of
designing signal processing and communications systems,
ranging from designing and simulating algorithms to synthe-
sizing hardware and software, parallelizing algorithms, and
prototyping real-time systems. Research ideas developed in the
project are implemented and tested in the Ptolemy software
environment. The Ptolemy software environment, which serves
as our laboratory, is a system-level design framework that
allows mixing models of computation and implementation lan-
guages.

In designing digital signal processing and communications sys-
tems, often the best available design tools are domain specific.
The tools must be able to interact. Ptolemy allows the interac-
tion of diverse models of computation by using the object-ori-
ented principles of polymorphism and information hiding. For
example, using Ptolemy, a high-level dataflow model of a sig-
nal processing system can be connected to a hardware simula-
tor that in turn may be connected to a discrete-event model of a
communication network.

A part of the Ptolemy project concerns programming method-
ologies commonly called “graphical dataflow programming”
that are used in industry for signal processing and experimen-
tally for other applications. By “graphical” we mean simply
that the program is explicitly specified by a directed graph
where the nodes represent computations and the arcs represent
streams of data. The graphs are typically hierarchical, in that a

node in a graph may represent another directed graph. In
Ptolemy the nodes in the graph are subprograms specified in
C++.

It is common in the signal processing community to use a
visual syntax to specify such graphs, in which case the model is
often called “visual dataflow programming.” But it is by no
means essential to use a visual syntax.

Hierarchy in graphical program structure can be viewed as an
alternative to the more usual abstraction of subprograms via
procedures, functions, or objects. It is better suited than any of
these to a visual syntax, and also better suited to signal process-
ing.

Some other examples of graphical dataflow programming
environments intended for signal processing (including image
processing) are Khoros, from the University of New Mexico
(now distributed by Khoral Research, Inc.), the signal process-
ing worksystem (SPW), from the Alta Group at Cadence (for-
merly Comdisco Systems), COSSAP, from Synopsys (formerly
Cadis), and Simulink, from The MathWorks. These software
environments all claim variants of dataflow semantics.

Most graphical signal processing environments do not define a
language in a strict sense. In fact, some designers of such envi-
ronments advocate minimal semantics, arguing that the graphi-
cal organization by itself is sufficient to be useful. The
semantics of a program in such environments is determined by
the contents of the graph nodes, either subgraphs or subpro-
grams. Subprograms are usually specified in a conventional
programming language such as C. Most such environments,
however, including Khoros, SPW, Simulink, and COSSAP,
take a middle ground, permitting the nodes in a graph or sub-
graph to contain arbitrary subprograms, but defining precise
semantics for the interaction between nodes. We call the lan-
guage used to define the subprograms in node$dise lan-
guage We call the language defining the interaction between
nodes theoordination language

Many possibilities have been explored for precise semantics of
coordination languages. Many of these limit expressiveness in
exchange for considerable advantages such as compile-time
predictability. In Ptolemy, @omaindefines the semantics of a
coordination language, but domains are modular objects that
can be mixed and matched at will. Thus we gain flexibility
without the sloppiness of unspecified semantics in the coordi-
nation language.

Graphical programs can be either interpreted or compiled. It is
common in signal processing environments to provide both

options. The output of compilation can be a standard procedural
language, such as C, assembly code for programmable DSP pro-
cessors, or even specifications of silicon implementations. We
have put considerable effort into optimized compilation.

2. Results of Micro Support

2.1. Java Exploration

At the start of this project, we began a serious investigation of the
Java language as a possible basis for our future software develop-
ment. This evaluation came out strongly in favor of using Java,
complementing it with Tcl (for scripting) and Tk (for user inter-
face work). The user interface capability in Java is extremely
limited compared to Tk, although the situation is improving. The
use of a scripting language in combination with Java has compel-
ling advantages. Rather than using Tcl/Tk in pure form, we are
using ltcl, an object-oriented extension.

Initially we had a number of key questions that needed to be
addressed. First, since the language is conceived around inter-
preted byte code, will it be capable of delivering the performance
needed by signal processing applications? We made some mea-
surements, comparing interpreted Java code against compiled
Java code using a just-in-time Java compiler, and found about a
factor of 30 improvement in speed. Although there is still a per-
formance penalty compared to optimized C++ code, we believe
that there is no fundamental reason for Java to be slower than
C++ code, if compiled into native code. Java compilers and inter-
preters will improve over time, as there is a huge investment in
them in industry. There is also a large investment in minimal Java
virtual machines designed for embedded systems.

A second key question is whether the Java thread library pro-
vides an adequate platform for constructing concurrent applica-
tions. The basic mechanism, wait and notify, is too low level for
most applications programming. In particular, direct use of such
low-level primitives makes validation of concurrent programs
very difficult. For example, there is no direct way of ensuring
determinacy and preventing deadlock. Indeed, our experience
writing threaded Java code underscores the need for a higher
level abstraction above threads.

2.1.1 Java Ptolemy Kernel

We are in the process of designing and implementing a set of
Java classes that realize key functionality in the Ptolemy kernel.
The design of these classes has been painstaking and careful. We
have emphasized systematic software engineering over speed of
development. One reason for this is that the group of students,
staff, and faculty working on the software are all relatively inex-
perienced with Java, and most of them are also relatively unfa-
miliar with the Ptolemy kernel. We have instituted careful code
review mechanisms, and have rewritten the most critical code
several times. The result so far has been to build a small and very
well-designed core software infrastructure, and to build a cohe-
sive team of experts.

A key idea in the design of these classes is to define a small core
data structure supporting uninterpreted hierarchical graphs. Such
graphs provide an abstract syntax for netlists, state transition dia-
grams, block diagrams, etc. Although this idea is present in the
original Ptolemy kernel, in fact the Ptolemy kernel has much
more semantics than we would like. Much of the effort involved
in implementing models of computation that are very different

from dataflow stems from having to work around certain
assumptions in the kernel that, in retrospect, proved to be particu-
lar to dataflow.

2.2. Network Integrated Design

We made Tycho internet aware. Tycho is the Itcl side of our soft-

ware effort. It provides an infrastructure for data management
and user interface design. The software architecture supports
transparent access to URLs, as if they were local files. This
mechanism is portable (it works under NT as well as Solaris) and
robust. We prototyped a web-based client-server architecture for
Ptolemy.

2.3. Java-Tcl Interaction

In the near term, our software environment will mix Java and
Itcl. Over the last year, we have been through several Java/ltcl
interfaces. The long term solution appears to be TclBlend,
recently released by Sun Microsystems. Currently, TclBlend does
not work with Itcl, but it does work with Tcl (the non-object-ori-
ented base language). TclBlend is a Tcl/Java interface that uses C
code that calls the Java Native Invocation (JNI) module in
JDK1.1 (the currently stable Java development kit). We have
found problems, for example, with multiprocessor platforms
(where SunScript's own test suites fail).

2.4. Java Signal Plotter

We have released on the net two versions of our first Java mod-
ule, a versatile signal plotter. See the web page, which contains a
number of demonstrations:

http://ptolemy.eecs.berkeley.edu/java/ptplot

The plotter is backwards compatible with pxgraph, the signal
plotter that has been used in Ptolemy, but adds the interactive
animated plotting feature of TkPlot, which is also used in

Ptolemy. Thus, it will replace these two facilities.

2.5. Tycho Information Models (TIM)

We have defined a simple framework to support exchange of
information and cooperation between modular tools. The aim is
to make it easy to describe a model, to describe relationships
between models, and to define new models. A Tycho information
model (TIM) is the unit of information read and generated by
tools. It is conceptually similar to the file representation of a
compound document in systems like OpenDoc -- that is, it con-
tains structured data, but it is not an object or a database. Models
have attributes, which contain information about the model and
its relation to other models, entities, which are conceptually sim-
ilar to objects in object models, and associations between enti-
ties, which are similar to associations or links in object models.
We have redesigned the preferences manager in Tycho using
TIM to make it more modular.

2.6. Object Modeling

We have organized a study group that is examining current prac-
tice in object modeling in general and the UML language in par-
ticular. This study is being applied to critically examine the
current and future design of Ptolemy.

2.7. Process Network Domain in Java and Tycho

The Process Network (PN) domain in Ptolemy implements an
asynchronous, highly distributable concurrent model of compu-
tation that generalizes dataflow. It appears to be a very good can-
didate for providing a higher-level abstraction in Java (above
threads) for concurrent programming. The current Ptolemy
implementation uses threads via C++.

We subsequently further developed this work, and built a com-
plete Java infrastructure supporting the PN model of computa-
tion. The next step will be to create a Java Ptolemy PN domain,
which is likely to be the first Java domain.

2.8. Filter Design

We have constructed the basic skeleton of a software architecture
for interactive filter design. The idea is that, like PtPlot, this will
form another of the modular pieces of Ptolemy software in Java.
In the current design conception, a filter is a model (or subject),
extending a Java Observable class. Its pole/zero plot, frequency
response plot, impulse response plot, and other dependent data
will extend the Java Observer class, implementing a view in a
model-view paradigm. There will be a object called Manager that
creates the plots (observers) and filter (subject). The Manager
also handles the initial setup for the filter from the user. However
all the changes of the filter data are handled between filter and
plots, using the notify and update functions that are built in to the
Java base classes.

2.9. Generalized Hybrid Systems

We have completed a paper that develops the semantics of hierar-
chical finite-state machines that are composed using various con-
currency models, particularly dataflow, discrete-events, and
synchronous/reactive modeling. It is argued that all three combi-
nations are useful, and that therefore the concurrency model
should be selected independently of the decision to use hierarchi-
cal FSMs. In contrast, most formalisms that combine FSMs with
concurrency models, such as Statecharts (and its variants) and
Hybrid systems, tightly integrate the FSM semantics with the
concurrency semantics. We have prototyped an implementation
of two of the three combinations described.

One of the several contributions in this paper is the definition of a
new dataflow model of computation called Heterochronous
Dataflow (HDF) that combines FSMs with dataflow is such a
way as to preserve certain formal properties of synchronous data-
flow. This is particularly important for embedded system design,
where questions such as deadlock and bounded memory must be
answered at design time.

2.10. Type Systems

We have conceptualized a formal approach to type systems for
system-level design that we believe will solve many of the prob-
lems we have encountered in the past, and also will scale up to
encompass semantic as well as syntactic issues in heterogeneous
systems.

The problem we are addressing is that modular system compo-
nents expose interfaces of different types, and interconnecting
such components requires resolving the type differences. In clas-
sical programming languages, these types define the layout of
data in memory (a syntactic issue), and to a more limited degree,
its semantic interpretation (e.g. a double precision IEEE floating

point number versus a long integer). In modern object-oriented
systems, type issues become somewhat more complex because of
polymorphism, where objects of fundamentally different types
expose the same interface. In system-level design, the issue
becomes still more complicated because the semantic interpreta-
tions get considerably richer. For example, two lists of numbers
may be syntactically identical, but one may represent a time-
domain signal while the other represents a frequency-domain sig-
nal.

In the early 1970s, Dana Scott proposed the use of partial orders
for representing and analyzing type systems. We have realized
that this is exactly the approach we need. In this approach, an
“information order” is used, where a type is “less than” another
type if it is less specific. Thus, for example, type “Number” is
“less than” type “Double” in Java. The least type in a scalar type
system would be the Ptolemy “Anytype” (this is called the “bot-
tom” of the partial order). The partial order can be given a “top”
as well, where “top” represents a type conflict, i.e. an unresolv-
able type. Such an order will (usually) be finite, and therefore the
mathematical structure of the type system becomes a lattice.

The type signature of a module (corresponding to a C++ tem-
plate, for example) will be given by a function that given some
guess about the type of the interface ports returns a new guess
that is at least as specific. In terms of the partial order, such a
function is monotonic. Moreover, any composition of such func-
tions is monotonic. Resolving the type of an interconnection of
modules becomes a matter of iteratively applying these mono-
tonic functions until they converge on a resolved type for every
signal interfacing two modules. This convergence point is called
a “fixed point.” The well-known Knaster-Tarsky fixed point the-
orem states that any monotonic function over a lattice has a least
fixed point. “Least” in this case means least specific, thus leaving
maximum room for polymorphism.

To practically apply this theory, we can use the scheduler devel-
oped by Stephen Edwards for the SR (synchronous/reactive)
domain in Ptolemy. That scheduler finds an efficient order in

which to evaluate monotonic functions in a finite complete par-

tial order (CPO). A lattice is a CPO, so the result can be used
directly, despite the fact that the context for which Edwards

developed it was radically different.

This idea for a type system may scale very well up to the process
level. One could, for instance, consider as part of the type
whether a signal is in the frequency domain or the time domain.
Fixed-point data types could also be ordered (more precise is
more specific). Moreover, approximate signals could perhaps be
ordered by type much like fixed-point signals. The semantics of
signals (discrete-event, dataflow, synchronous/reactive) might
also be amenable to ordering, allowing inference of interaction
semantics between modules in addition to resolution of syntactic
types.

We believe that this is a very exciting development, and may
prove to be one of the major contributions of this project.

3. Software

Software in the Ptolemy project serves as both a laboratory for
experimentation and a mechanism for disseminating results. A
new feature of this project is that we expect to be distributing
software in the form of smaller packages rather than large mono-
lithic software systems. During this reporting period we com-

pleted two small software releases, Tycho 0.2 and PtPlot 0.1. The
first is written in Itcl and the second in Java.

3.1. Information Dissemination Policy

The Ptolemy web site, http://ptolemy.eecs.berkeley.edu, is used
to distribute all software (including source code) and documenta-
tion, together with updated summary sheets, answers to fre-
quently asked questions, and tutorials. We use the most liberal
copyright permitted by the University of California, one which
has proven effective in promoting technology transfer. A Usenet
news group called comp.soft-sys.ptolemy and a mailing list
ptolemy-hackers@ptolemy.eecs.berkeley.edu are used to com-
municate with outside users. Postings to the mailing list are
cross-posted to the news group. Postings are archived and
searchable from our web site.

3.2. Tycho

Tycho is an object-oriented syntax manager with an underlying
heterogeneous technical rationale that was started with DARPA
funding prior to the commencement of this particular project. It
provides a number of editors and graphical widgets in an extensi-
ble, reusable framework. The intent is that visual editors and
visualization tools will be fully integrated, although most of this
work will be conducted in the second 18 month phase of the
project. Documentation for Tycho modules is integrated, using
HTML, with an integrated and network capable simplified
browser.

Tycho was originally conceived for use with Ptolemy system, but
under this project is evolving into a set of modules that can be
used independently. Tycho has been used extensively in the
development of the Tycho software itself. It is written primarily
in Itcl, also called [incr Tcl], developed by Michael McLennan of
AT&T. Itcl is an object-oriented extension of Tcl, a “tool com-
mand language” written by John Ousterhout of U.C. Berkeley,
now under continued development at Sun Microsystems. The
window toolkit Tk and its object-oriented extension Itk are also
used extensively.

3.3. PtPlot 0.1 and 0.1.1

We released our first small, modular Java package, in part as a
way to gain experience with the process. We have learned that
“write-once, run anywhere” is largely an unrealized promise of
Java, and that Java threads are particularly vulnerable to unpre-
dictable behavior on different platforms. Nonetheless, we have
successfully distributed what appears to be a useful package, and
judging from the email traffic that it has generated, one that is
actually being used.

PtPlot is a set of two dimensional signal plotter components fash-
ioned after the plotting capabilities built into Ptolemy. It is writ-
ten in Java and is described in detail above. The PtPlot package
can be found at:

http://ptolemy.eecs.berkeley.edu/java/ptplot/
4. Publications

This project has generated a rather large number of publications
during this reporting period. Here are some of the highlights.

4.1.
(1]

(2]

(3]

4.2.
[4]

[5]

4.3.
(6]

[7]

(8]

[9]

4.4.
[10]

Journal Articles

S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-
Vincentelli, “Design of Embedded Systems: Formal Mod-
els, Validation, and SynthesisProceedings of the IEEE
Vol. 85, No. 3, March 1997. (http://ptolemy.eecs.berke-
ley.edu/papers/97/codesign)

W.-T. Chang, S.-H. Ha, and E. A. Lee, “Heterogeneous
Simulation — Mixing Discrete-Event Models with Data-
flow,” invited paper,Journal on VLSI Signal Processing
Vol. 13, No. 1, January 1997. (http://ptolemy.eecs.berke-
ley.edu/papers/96/heterogeneity)

S.S. Bhattacharyya, S. Sriram, and E.A. Lee, “Optimizing
Synchronization in Multiprocessor DSP System$ZEE

Tr. on Signal Processingol. 45, No. 6, June 1997.
(http://ptolemy.eecs.berkeley.edu/papers/97/synchroniza-
tion/)

Conference Papers

C. Hylands, E. A. Lee, and H. J. Reekie, “The Tycho User
Interface System,5th Annual Tcl/Tk Workshop '9Bos-
ton, Massachusetts, July, 1997.
(http://ptolemy.eecs.berkeley.edu/papers/97/icltk-97/)

S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Soft-
ware Synthesis for Synchronous Dataflownternational
Conference on Application Specific SysteArshitectures,
and Processors, July, 1997, invited paper. (http:/
ptolemy.eecs.berkeley.edu/papers/97/softwareSynth)

Technical Reports

A. Girault, B. Lee, and E. A. Lee, “A Preliminary Study of
Hierarchical Finite State Machines with Multiple Concur-
rency Models,” Memorandum UCB/ERL M97/57, Elec-
tronics Research Laboratory, University of California,
Berkeley, CA 94720, August 1997.
(http://ptolemy.eecs.berkeley.edu/papers/97/preliminaryS-
tarcharts)

E. A. Lee and A. Sangiovanni-Vincentelli, “A Denotational
Framework for Comparing Models of Computation,” ERL
Memorandum UCB/ERL M97/11, University of Califor-
nia, Berkeley, CA 94720, January 30, 1997. (http://
ptolemy.eecs.berkeley.edu/papers/97/denotational/)

P. K. Murthy and E. A. Lee, “Some cycle-related problems
for regular dataflow graphs: complexity and heuristics,”
UCB/ERL Technical Report M97/76, July 1997.

R. S. Stevens (Naval Research Laboratory), M. Wan, P.
Laramie (UCB), T. M. Parks (MIT Lincoln Labs), and E.
A. Lee (UCB), “Implementation of Process Networks in
Java,” UCB/ERL Tech. Report, November 1997.

PhD Theses

S. A. Edwards, “The Specification and Execution of Heter-
ogeneous Synchronous Reactive Syster®'D. thesis
University of California, Berkeley, May 1997. Available as

UCB/ERL M97/31. (http://ptolemy.eecs.berkeley.edu/
papers/97/sedwardsThesis/)

