
DESIGN METHODOLOGY FOR DSP

Edward A. Lee, Principal Investigator

Department of Electrical Engineering and Computer Science
University of California, Berkeley CA 94720

Final Report 1997-98, Micro Project #97-089
Industrial Sponsors: Cadence, Hewlett-Packard, Hughes, Philips, Rockwell

In
in

a
l is

an
via
of
ss-

g
ge
f

s-
p-
.
w

a
nvi-
hi-

e
by
ro-

nal
ts,
d
a
n-

We
the

of
in

ime

hat
y
di-
ABSTRACT

The focus of this project is on design methodology for complex
real-time systems where a variety of design methodologies and
implementation technologies must be combined. Design meth-
odologies are encapsulated in one or more models of computa-
tion, while implementation technologies are implemented as
synthesis tools. Applications that use more than one model of
computation and/or more than one synthesis tool are said to be
heterogeneous. Hardware/software codesign is one example of
heterogeneous design. Project results have been disseminated
via the Ptolemysoftware, in addition to papers. The overall
Ptolemy project is fairly large, with additional support from
DARPA, SRC, and a number of other companies, and is
strongly collaborative. The MICRO project has focused on
real-time signal processing, although the larger project is
broader.

1. The Context

The objectives of the Ptolemy Project include many aspects of
designing signal processing and communications systems,
ranging from designing and simulating algorithms to synthe-
sizing hardware and software, parallelizing algorithms, and
prototyping real-time systems. Research ideas developed in the
project are implemented and tested in the Ptolemy software
environment. The Ptolemy software environment, which serves
as our laboratory, is a system-level design framework that
allows mixing models of computation and implementation lan-
guages.

In designing digital signal processing and communications sys-
tems, often the best available design tools are domain specific.
The tools must be able to interact. Ptolemy allows the interac-
tion of diverse models of computation by using the object-ori-
ented principles of polymorphism and information hiding. For
example, using Ptolemy, a high-level dataflow model of a sig-
nal processing system can be connected to a hardware simula-
tor that in turn may be connected to a discrete-event model of a
communication network.

A part of the Ptolemy project concerns programming method-
ologies commonly called “graphical dataflow programming”
that are used in industry for signal processing and experimen-
tally for other applications. By “graphical” we mean simply
that the program is explicitly specified by a directed graph
where the nodes represent computations and the arcs represent
streams of data. The graphs are typically hierarchical, in that a

node in a graph may represent another directed graph.
Ptolemy the nodes in the graph are subprograms specified
C++.

It is common in the signal processing community to use
visual syntax to specify such graphs, in which case the mode
often called “visual dataflow programming.” But it is by no
means essential to use a visual syntax.

Hierarchy in graphical program structure can be viewed as
alternative to the more usual abstraction of subprograms
procedures, functions, or objects. It is better suited than any
these to a visual syntax, and also better suited to signal proce
ing.

Some other examples of graphical dataflow programmin
environments intended for signal processing (including ima
processing) are HP-Ptolemy, from the EE-Soft division o
Hewlett-Packard, Khoros, from the University of New Mexico
(now distributed by Khoral Research, Inc.), the signal proces
ing worksystem (SPW), from Cadence, COSSAP, from Syno
sys (formerly Cadis), and Simulink, from The MathWorks
These software environments all claim variants of dataflo
semantics.

Most graphical signal processing environments do not define
language in a strict sense. In fact, some designers of such e
ronments advocate minimal semantics, arguing that the grap
cal organization by itself is sufficient to be useful. Th
semantics of a program in such environments is determined
the contents of the graph nodes, either subgraphs or subp
grams. Subprograms are usually specified in a conventio
programming language such as C. Most such environmen
however, including HP-Ptolemy, Khoros, SPW, Simulink, an
COSSAP, take a middle ground, permitting the nodes in
graph or subgraph to contain arbitrary subprograms, but defi
ing precise semantics for the interaction between nodes.
call the language used to define the subprograms in nodes
host language. We call the language defining the interaction
between nodes thecoordination language.

Many possibilities have been explored for precise semantics
coordination languages. Many of these limit expressiveness
exchange for considerable advantages such as compile-t
predictability. In Ptolemy, adomaindefines the semantics of a
coordination language, but domains are modular objects t
can be mixed and matched at will. Thus we gain flexibilit
without the sloppiness of unspecified semantics in the coor
nation language.

-

s

e.
es

e-

r

-

s to

o

e

n

pe

-

h
an
.

an-

at

th
e-

-

i-
Graphical programs can be either interpreted or compiled. It is
common in signal processing environments to provide both
options. The output of compilation can be a standard procedural
language, such as C, assembly code for programmable DSP pro-
cessors, or even specifications of silicon implementations. We
have put considerable effort into optimized compilation in the
past, although current work is focussing on modeling rather than
compilation.

2. Results of Micro Support

2.1. Ptolemy II

We have constructed an entirely new generation of design soft-
ware that we are calling Ptolemy II. It is written in Java, is fully
network-integrated, is capable of operating within the worldwide
web and enterprise software architectures, and is multithreaded.

Ptolemy II is a complete, from the ground up, redesign of the
Ptolemy 0.x software environment, now called Ptolemy Classic,
which supports heterogeneous modeling and design of concur-
rent systems. It offers a unified infrastructure for implementa-
tions of a number of models of computation. The overall
architecture consists of a set of packages that provide generic
support for all models of computation and a set of packages that
provide more specialized support for particular models of com-
putation. Examples of the former include packages that contain
math libraries, graph algorithms, an interpreted expression lan-
guage, signal plotters, and interfaces to media capabilities such
as audio. Examples of the latter include packages that support
clustered graph representations of models, packages that support
executable models, anddomains, which are packages that imple-
ment a particular model of computation.

The predecessor to Ptolemy II, Ptolemy Classic, still has many
active users and developers, and may continue to evolve for
some time. Ptolemy II has a somewhat different emphasis, and
through its use of Java, concurrency, and integration with the net-
work, is aggressively experimental. Some of the major capabili-
ties in Ptolemy II that we believe to be new technology in
modeling and design environments include:

• Higher level concurrent design in JavaTM. Java support for
concurrent design is very low level, based on threads and
monitors. Maintaining safety and liveness can be quite diffi-
cult. Ptolemy II includes a number of domains that support
design of concurrent systems at a much higher level of
abstraction. These include, at varying levels of maturity,
process networks, communicating sequential processes
(rendezvous based), dataflow, synchronous/reactive model-
ing, continuous-time modeling, and hierarchical concurrent
finite-state machines.

• Better modularization through the use of packages. Ptolemy
II is divided into packages that can be used independently
and distributed on the net, or drawn on demand from a
server. This breaks with tradition in design software, where
tools are usually embedded in huge integrated systems with
interdependent parts.

• Complete separation of the abstract syntax from the seman-
tics. Ptolemy designs are structured as clustered graphs.
Ptolemy II defines a clean and thorough abstract syntax for
such clustered graphs, and separates into distinct packages
the infrastructure supporting such graphs from mechanisms

that attach semantics (such as dataflow, analog circuits,
finite-state machines, etc.) to the graphs.

• Improved heterogeneity. Previous realizations of Ptolemy
provided a wormhole mechanism for hierarchically cou-
pling heterogeneous models of computation. This mecha
nism is improved in Ptolemy II through the use of opaque
composite actors, which provide better support for model
of computation that are very different from dataflow, the
best supported model in prior versions of Ptolemy softwar
These include hierarchical concurrent finite-state machin
and continuous-time modeling techniques.

• Thread-safe concurrent execution. Ptolemy models are typi-
cally concurrent, but in the past, support for concurrent ex
cution of a Ptolemy model has been primitive. Ptolemy II
supports concurrency throughout, allowing for instance fo
a model to mutate (modify its clustered graph structure)
while the user interface simultaneously modifies the struc
ture in different ways. Consistency is maintained through
the use of monitors and read/write semaphores built upon
the lower level synchronization primitives of Java.

• A software architecture based on object modeling. Since the
first Ptolemy implementation, software engineering has
seen the emergence of sophisticated object modeling and
design pattern concepts. We have applied these concept
the design of Ptolemy II, and they have resulted in a more
consistent, cleaner, and more robust design. We have als
applied a simplified software engineering process that
includes systematic design and code reviews.

• A truly polymorphic type system. Earlier implementations of
Ptolemy supported rudimentary polymorphism through th
“anytype” particle. Even with such limited polymorphism,
type resolution proved challenging, and the implementatio
is ad-hoc and fragile. Ptolemy II has a more modern type
system based on a partial order of types and monotonic ty
refinement functions associated with functional blocks.
Type resolution consists of finding a fixed point, using algo
rithms inspired by the type system in ML.

• Domain-polymorphic actors. In earlier implementations of
Ptolemy, actor libraries were separated by domain. Throug
the notion of subdomains, actors could operate in more th
one domain. In Ptolemy II, this idea is taken much further
Actors with intrinsically polymorphic functionality can be
written to operate in a much larger set of domains. The
mechanism they use to communicate with other actors
depends on the domain in which they are used. This is m
aged through a concept that we call aprocess level type
system.

2.2. Status

We have released a highly preliminary version of Ptolemy II th
includes the following packages:

actor This package supports executable entities that
receive and send data through ports. It includes bo
untyped and typed actors. For typed actors, it impl
ments a sophisticated type system that supports
polymorphism. It includes the base class Director
for domain-specific classes that control the execu
tion of a model.

actor.util This subpackage contains utilities that support
directors in various domains. Specifically, it con-
tains a simple FIFO Queue and a sophisticated pr

d-
e
e
.

for
is-
f
o

f

-

y
n

ic

rar-
on-
nd

for

tical
m-

ost

ed
ta-
re-
ral

et
ist
om-
re
and

ns

s

ority queue called a calendar queue.
data This package provides classes that encapsulate and

manipulate data that is transported between actors
in Ptolemy models.

data.expr This class supports an extensible expression lan-
guage and an interpreter for that language. Parame-
ters can have values specified by expressions. These
expressions may refer to other parameters. Depen-
dencies between parameters are handled transpar-
ently, as in a spreadsheet, where updating the value
of one will result in the update of all those that
depend on it.

graph This package provides algorithms for manipulating
and analyzing mathematical graphs. Mathematical
graphs are simpler than Ptolemy II clustered graphs
in that there is no hierarchy, and arcs link exactly
two nodes. This package is expected to supply a
growing library of algorithms.

kernel This package provides the software architecture for
the key abstract syntax, clustered graphs. The
classes in this package support entities with ports,
and relations that connect the ports. Clustering is
where a collection of entities is encapsulated in a
single composite entity, and a subset of the ports of
the inside entities are exposed as ports of the cluster
entity.

kernel.util This subpackage of the kernel package provides a
collection of utility classes that do not depend on
the kernel package. It is separated into a subpackage
so that these utility classes can be used without the
kernel. The utilities include a collection of excep-
tions, classes supporting named objects with
attributes, lists of named objects, a specialized
cross-reference list class, and a thread class that
helps Ptolemy keep track of executing threads.

math This package encapsulates mathematical functions
and methods for operating on matrices and vectors.
It also includes a complex number class and a class
supporting fractions.

plot This package provides two-dimensional signal plot-
ting widgets.

3. Future Capabilities

Capabilities that we anticipate making available in the future
include:

• Extensible XML-based file formats. XML is an emerging
standard for representation of information that focuses on
the logical relationships between pieces of information.
Human-readable representations are generated with the help
of style sheets. Ptolemy II will use XML as its primary for-
mat for persistent design data.

• Interoperability through software components. Ptolemy II
will use distributed software component technology such as
CORBA, JINI, or COM, in a number of ways. Components
(actors) in a Ptolemy II model will be implementable on a
remote server. Also, components may be parameterized
where parameter values are supplied by a server (this mech-
anism supportsreduced-order modeling, where the model is
provided by the server). Ptolemy II models will be exported
via a server. And finally, Ptolemy II will support migrating
software components.

• Embedded software synthesis.Pertinent Ptolemy II domains
will be tuned to run on a Java virtual machine on an embe
ded CPU. Hardware, firmware, and configurable hardwar
components will expose abstractions to this Java softwar
that obey the model of computation of the pertinent domain
Java's native code interface will be used to define a stub
the embedded hardware components so that they are ind
tinguishable from any other Java thread within the model o
computation. Domains that seem particularly well suited t
this approach include PN and CSP.

• Embedded hardware synthesis. Earlier versions of Ptolemy
had only very weak mechanisms for migrating designs from
idealized floating-point simulations through fixed-point
simulations to embedded software, FPGA, and hardware
designs. Ptolemy II will separate the interface definition o
component blocks from their implementation, allowing
libraries to be constructed where compatibility across
implementation technologies is assured. This work is cur
rently being prototyped in Ptolemy 0.7.1.

• Integrated verification tools. Modern verification tools
based on model checking could be integrated with Ptolem
II at least to the extent that finite state machine models ca
be checked. We believe that the separation of control log
from concurrency will greatly facilitate verification, since
only much smaller cross-sections of the system behavior
will be offered to the verification tools.

3.1. Theory

We have completed a paper that develops the semantics of hie
chical finite-state machines that are composed using various c
currency models, particularly dataflow, discrete-events, a
synchronous/reactive modeling. This paper has been accepted
publication in theIEEE Transactions on CAD. We have also had
a paper accepted to the same journal that defines a mathema
meta model enabling the rigorous comparison of models of co
putation. Finally, we have written a paper that was invited toThe
Annals of Software Engineering. This paper gives a formal
semantics for discrete-event languages, which includes m
popular hardware description languages.

3.2. Information Dissemination Policy

The Ptolemy web site, http://ptolemy.eecs.berkeley.edu, is us
to distribute all software (including source code) and documen
tion, together with updated summary sheets, answers to f
quently asked questions, and tutorials. We use the most libe
copyright permitted by the University of California, one which
has proven effective in promoting technology transfer. A Usen
news group called comp.soft-sys.ptolemy and a mailing l
ptolemy-hackers@ptolemy.eecs.berkeley.edu are used to c
municate with outside users. Postings to the mailing list a
cross-posted to the news group. Postings are archived
searchable from our web site

4. Publications

This project has generated a rather large number of publicatio
during this reporting period. Here are some of the highlights.

4.1. Journal Articles

[1] E. A. Lee, “Modeling Concurrent Real-time Processe
Using Discrete Events,” Invited paper toAnnals of Soft-

,

.

,
,
l-
.

o-
:

.,
-
m
i-

o-
:
i-
,

m
i-

l
,
,

-

n

.
,
,

ware Engineering, Special Volume on Real-Time Software
Engineering, to appear, 1998. Also UCB/ERL Memoran-
dum M98/7, March 4th 1998.
(http://ptolemy.eecs.berkeley.edu/papers/98/realtime/)

[2] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Synthe-
sis of Embedded Software from Synchronous Dataflow
Specifications,” Invited paper, to appear in J. of VLSI Sig-
nal Processing, 1998.
(http://ptolemy.eecs.berkeley.edu/papers/98/synthesis/)

[3] E. A. Lee and D. G. Messerschmitt, “Engineering an Edu-
cation for the Future,”IEEE Computer Magazine, Vol. 31,
No. 1, January, 1998.
(http://ptolemy.eecs.berkeley.edu/papers/98/curriculum/)

4.2. Conference Papers

[4] Bilung Lee and Edward A. Lee, “Interaction of Finite State
Machines with Concurrency Models,”Proc. of Thirty Sec-
ond Annual Asilomar Conference on Signals, Systems, and
Computers, Pacific Grove, California, November 1998.

[5] Rajarshi Gupta, Kiran and Edward A. Lee, “Computation-
ally Efficient Version of the Decision Feedback Equalizer,”
to appear in ICASSP 99, September 1998.

[6] Eric K. Pauer, Cory S. Myers, Paul D. Fiore, John M.
Smith, Christopher M. Crawford, Edward A. Lee, James
Lundblad and Christopher Hylands, “Algorithm Analysis
and Mapping Environment for Adaptive Computing Sys-
tems,” Presented at the Second Annual Workshop on High
Performance Embedded Computing, MIT Labs, Lexing-
ton, MA, September, 1998.

[7] H. J. Reekie and E. A. Lee, “The Tycho Slate: Complex
Drawing and Editing in Tcl/Tk,” April 27, 1998. Submitted
to the Sixth Annual Tcl/Tk Conference, September 14-18,
1998, San Diego, California.
(http://ptolemy.eecs.berkeley.edu/papers/98/slate)

4.3. PhD Theses

[8] M. Williamson “Synthesis of Parallel Hardware Implemen-
tations from Synchronous Dataflow Graph Specifications”
Ph.D. thesis, Memorandum UCB/ERL M98/45, Electron-
ics Research Laboratory, University of California, Berke-
ley, May, 1998.
(http://ptolemy.eecs.berkeley.edu/papers/98/SDFToParal-
lelVHDL)

4.4. Masters Reports

[9] Neil Smyth, “Communicating Sequential ProcessesDo-
main in Ptolemy II,” MS Report, UCB/ERL Memorandum
M98/70, Dept. of EECS, University of California, Berke-
ley, CA 94720, December 1998.

[10] Jie Liu, “Continuous Time and Mixed-Signal Simulation in
Ptolemy II,” MS Report, UCB/ERL Memorandum M98/
74, Dept. of EECS, University of California, Berkeley, CA
94720, December 1998.

[11] M. Goel, “Process Networks in Ptolemy II” MS Report
ERL Technical Report UCB/ERL No. M98/69, University
of California, Berkeley, CA 94720, December 16, 1998
(http://ptolemy.eecs.berkeley.edu/papers/98/PNinPtole-
myII)

4.5. Other Technical Reports

[12] Edward A. Lee, “Overview of the Ptolemy Project”, ERL
Technical Report UCB/ERL No. M98/71, University of
California, Berkeley, CA 94720, November 23, 1998.

[13] J. Davis, R. Galicia, M. Goel, C. Hylands, E.A. Lee, J. Liu
X. Liu, L. Muliadi, S. Neuendorffer, J. Reekie, N. Smyth
J. Tsay and Y. Xiong, “Heterogeneous Concurrent Mode
ing and Design in Java,” Technical Report UCB/ERL No
M98/72, University of California, Berkeley, CA 94720,
November 23, 1998.

[14] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Resynchr
nization for multiprocessor DSP implementation - part 1
Maximum-throughput resynchronization.” Tech. Rep
Digital Signal Processing Laboratory, University of Mary
land, College Park, July 1998. Revised from Memorandu
UCB/ERL 96/55, Electronics Research Laboratory, Un
versity of California at Berkeley, October, 1996.

[15] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Resynchr
nization for multiprocessor DSP implementation - part 2
Latency-constrained resynchronization.”Tech. Rep., Dig
tal Signal Processing Laboratory, University of Maryland
College Park, July 1998. Revised from Memorandu
UCB/ERL 96/56, Electronics Research Laboratory, Un
versity of California at Berkeley, October, 1996.

[16] A. Girault, B. Lee, and E. A. Lee, “Hierarchical Finite
State Machines with Multiple Concurrency Models,” Apri
13, 1998 (revised from Memorandum UCB/ERL M97/57
Electronics Research Laboratory, University of California
Berkeley, CA 94720, August 1997).
(http://ptolemy.eecs.berkeley.edu/papers/98/starcharts)

[17] B. Lee and E. A. Lee, “Hierarchical Concurrent Finite
State Machines in Ptolemy,”Proc. of International Confer-
ence on Application of Concurrency to System Design, p.
34-40, Fukushima, Japan, March 1998.

[18] Jie Liu, Marcello Lajolo, and Alberto Sangiovanni-Vincen
telli, “Software Timing Analysis Using SW/HW Cosimula-
tion and Instruction Set Simulator,”Proc. of the Sixth
International Workshop on Hardware/Software Codesig,
p. 65-70, Seattle, Washington, March 1998.

[19] E. A. Lee and A. Sangiovanni-Vincentelli, “A Framework
for Comparing Models of Computation,”, March 12, 1998
(Revised from ERL Memorandum UCB/ERL M97/11
University of California, Berkeley, CA 94720, January 30
1997).
(http://ptolemy.eecs.berkeley.edu/papers/98/framework/)

	DESIGN METHODOLOGY FOR DSP
	Edward A. Lee, Principal Investigator
	Department of Electrical Engineering and Computer Science University of California, Berkeley CA 9...
	Final Report 1997-98, Micro Project #97-089 Industrial Sponsors: Cadence, Hewlett-Packard, Hughes...

	ABSTRACT
	1. The Context
	2. Results of Micro Support
	2.1. Ptolemy II
	2.2. Status

	3. Future Capabilities
	3.1. Theory
	3.2. Information Dissemination Policy

	4. Publications
	4.1. Journal Articles
	[1] E. A. Lee, “Modeling Concurrent Real-time Processes Using Discrete Events,” Invited paper to ...
	[2] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Synthesis of Embedded Software from Synchr...
	[3] E. A. Lee and D. G. Messerschmitt, “Engineering an Education for the Future,” IEEE Computer M...

	4.2. Conference Papers
	[4] Bilung Lee and Edward A. Lee, “Interaction of Finite State Machines with Concurrency Models,”...
	[5] Rajarshi Gupta, Kiran and Edward A. Lee, “Computationally Efficient Version of the Decision F...
	[6] Eric K. Pauer, Cory S. Myers, Paul D. Fiore, John M. Smith, Christopher M. Crawford, Edward A...
	[7] H. J. Reekie and E. A. Lee, “The Tycho Slate: Complex Drawing and Editing in Tcl/Tk,” April 2...

	4.3. PhD Theses
	[8] M. Williamson “Synthesis of Parallel Hardware Implementations from Synchronous Dataflow Graph...

	4.4. Masters Reports
	[9] Neil Smyth, “Communicating Sequential ProcessesDomain in Ptolemy II,” MS Report, UCB/ERL Memo...
	[10] Jie Liu, “Continuous Time and Mixed-Signal Simulation in Ptolemy II,” MS Report, UCB/ERL Mem...
	[11] M. Goel, “Process Networks in Ptolemy II” MS Report, ERL Technical Report UCB/ERL No. M98/69...

	4.5. Other Technical Reports
	[12] Edward A. Lee, “Overview of the Ptolemy Project”, ERL Technical Report UCB/ERL No. M98/71, U...
	[13] J. Davis, R. Galicia, M. Goel, C. Hylands, E.A. Lee, J. Liu, X. Liu, L. Muliadi, S. Neuendor...
	[14] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Resynchronization for multiprocessor DSP imp...
	[15] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Resynchronization for multiprocessor DSP imp...
	[16] A. Girault, B. Lee, and E. A. Lee, “Hierarchical Finite State Machines with Multiple Concurr...
	[17] B. Lee and E. A. Lee, “Hierarchical Concurrent Finite State Machines in Ptolemy,” Proc. of I...
	[18] Jie Liu, Marcello Lajolo, and Alberto Sangiovanni-Vincentelli, “Software Timing Analysis Usi...
	[19] E. A. Lee and A. Sangiovanni-Vincentelli, “A Framework for Comparing Models of Computation,”...

