

Mapping Multiple Independent Synchronous Dataflow Graphs onto

Heterogeneous Multiprocessors

José Luis Pino, Thomas M. Parks and Edward A. Lee

EECS Department, University of California, Berkeley CA 94720
{pino,parks,eal}@EECS.Berkeley.EDU

Abstract

We detail a method to facilitate development of real-
time applications on heterogeneous multiprocessors. We
introduce a new model of computation that allows for
nondeterminate communication between independent
dataflow graphs. The graphs may communicate in a
manner that does not introduce data dependencies
between them. We examine the implications of this model,
introduce the necessary communication actors, and
discuss scheduling techniques for multiple independent
graphs. We also illustrate this model with some examples
of real-time systems that have been constructed in
Ptolemy.

1 Introduction

Dataflow is a natural representation for signal
processing algorithms. One of its strengths is that it
exposes parallelism by only expressing the actual data
dependencies that exist in an algorithm. Applications are
specified by a dataflow graph where the nodes represent
computational actors, and data tokens flow between them
along the arcs. Ptolemy [1] is a framework that supports
dataflow programming as well as other computational
models (such as discrete event) in which program graphs
have different semantics. Ptolemy allows computation
models to be mixed in the specification of complete
systems.

There are several forms of dataflow defined in Ptolemy.
In synchronous dataflow (SDF) [5], the number of tokens
produced or consumed in one firing of an actor is constant.
This property makes it possible to determine execution
order and memory requirements at compile time. These
systems do not have the overhead of run-time scheduling
(in contrast to dynamic dataflow) and have very
predictable run-time behavior.

In this paper, we introduce a new model of computation
with multiple independent dataflow graphs. To allow

nondeterminate communication among these graphs, we
introduce new communication actors that we call

peek

 and

poke

. From the perspective of the independent dataflow
schedulers, the peek actor is a data source and the poke
actor is a data sink.

Code generation consists of two phases, scheduling and
synthesis. In the scheduling phase, a dataflow graph is
partitioned for parallel execution. We splice

send

 and

receive

 actors into the graph where an arc crosses the
boundary between partitions that have been mapped to
different processors. These actors do the necessary
synchronization to prevent data loss in a self-timed
implementation [2]. For each target processor, an ordering
of actor invocations is determined. When there are
multiple independent dataflow graphs, this scheduling
process is repeated for each graph in the system. In the
synthesis phase, the code segments associated with each
actor are stitched together, following the order specified by
the scheduler. Commercial systems that use this
“threading” technique include Comdisco’s DPC [3] and
CADIS’s Descartes [4]. The techniques we describe here
are complementary to those in DPC and Descartes, and
could, in principle, be used in combination with them.

In the next section, we discuss how a heterogeneous
target is specified in Ptolemy. In section 3, we explain the
new model of computation and how it can be used to
interconnect independent dataflow graphs. In section 4, we
study the implications for static and run-time scheduling
of multiple graphs. Finally, we present two applications
that run on a heterogeneous platform consisting of a unix
workstation and a DSP card.

2 Target specification

A key property of Ptolemy that makes specification of
heterogeneous targets easier is its use of object-oriented
programming techniques. To describe a multiprocessor
target, we begin with the specification of each individual
processor and build multiprocessor targets hierarchically

Presented at the Twenty-Eigth Annual Asilomar Conference on Signals, Systems, and Computers - October 1994

from these objects. A target specification in Ptolemy
manages the flow of the design process: it defines the
methods used to schedule the graph, and to compile and
run the generated code, while taking into account the
target resources. A detailed description of the code
generation framework in Ptolemy can be found in [6] and
with emphasis on single processor targets in [7].

The fundamental building block of a multiprocessor
target is a single processor target. In our example, shown
in figure 1, we have an Ariel S-56X card installed in a
workstation. An S56X target describes the DSP card by
specifying the memory resources available on the card and
how to download the code into the program memory of the
DSP. The S56X target generates assembly code and
allocates target-specific resources such as private memory.
A CGC target describes the resources of the workstation
and generates code in the C programming language. This
target is more general than the S56X target; the code it
generates can run on most general-purpose computers.

A multiprocessor target is built by including other
targets as children in a hierarchy. These children can be
any type of target, from a simple single processor to a
complex heterogeneous multiprocessor. The parent
multiprocessor target specifies the shared resources and
inter-processor communication mechanisms of the
children in the form of send/receive and peek/poke actors.
In the example shown in figure 1, the CGC-S56X target is
built from single-processor CGC and S56X targets. A
homogeneous multi-DSP target is described in [8].

3 Model of computation

In this section we define a new model of computation
that allows nondeterminate communication between
dataflow graphs. We begin by describing synchronous
dataflow (SDF) and then define what it means to have
multiple independent SDF graphs. We then introduce the
peek/poke actors necessary to implement nondeterminate
communication. We have found that this mechanism is
very useful for user controls and displays. This model
allows a user to specify applications with determinate
subsystems that communicate in a nondeterminate
fashion.

CGC target
Sparc

C & Tcl/Tk

S56X target
M56K

Assembly

CGC-S56X target

Figure 1. Heterogeneous CGC-S56X target specification.

3.1 Synchronous dataflow

Figure 2 shows a simple SDF graph. In this graph, actor

A

 produces two tokens and actor

B

 consumes three tokens
for each firing. In a valid SDF schedule, the number of
tokens in the first-in/first-out (FIFO) buffers of each arc
returns to the initial state after one schedule period.
Balance equations are written for each arc and an integral
repetitions vector is found that solves this system of
equations [5]. In this simple example, the balance equation
for the arc is: . Thus the repetition vector

is : . One possible val id

schedule for this graph is

AABAB

. So, given an SDF
specification, we can find a schedule at compile-time that
is iterated at run-time.

3.2 Multiple independent SDF graphs

In our model, we allow multiple independent dataflow
graphs as shown in figure 3 . Here we have two
independent graphs communicating nondeterminately
over the dotted arcs. These arcs do not add data
dependencies. The actors

A

 and

B

 are the same as in the
previous example, and actors

C

,

D

, and

E

 each produce/
consume one token on each arc per firing. The schedule
for the first graph is

3(A)2(B)

; the schedule for the second
graph is

CDE

. One can think of the independent graphs as
separate communicating processes.

3.3 Introducing nondeterminism:
peek and poke

For the dotted arcs in figure 3, we splice in

peek

 and

poke

 actors. This is done in much the same way as send
and receive actors are spliced in for self-timed SDF
multiprocessor implementations. The peek/poke actors are
similar to the send/receive actors except they do not block
on the state of their buffer (see figure 4). A send/receive

2 RA× 3 RB×=

RA RB 3n 2n n Z
+∈,=

2 3
BA

Figure 2. A simple SDF graph.

BA DC

E

Figure 3. Two independent SDF graphs. The dotted arcs
represent communication between the graphs
which do not introduce any data dependencies.

2 3

48 kHz 44.1 kHz

pair has a blocking FIFO buffer between the actors. The
send actor will block on a write if the FIFO is full, and the
receive actor will block on a read if the FIFO is empty.
This guarantees that there is no data loss and that old data
is not be reused. In contrast, the

peek

 actor will reuse old
data if there is no new data available, and the

poke

 actor
will overwrite old data to make new data available. Thus a

peek

 actor appears to be a data source and the

poke

 actor
appears to be a data sink to the independent SDF
schedulers. Furthermore, unlike the SDF use of send/
receive for interprocessor communication only, a peek/
poke pair can be used for either inter- or intra-processor
communication.

The various properties of peek/poke actor pairs that we
have found useful allow us to:

•

update the link at the implicit rate of the graphs or at
a user-specified rate

•

transfer single tokens

•

transfer a block of consecutive tokens with a sliding
window (see figure 5)

•

transfer a block of consecutive tokens aligned to
block boundaries (see figure 5)

The first property of the peek/poke actors is how often
the link is updated. The simplest configuration for the
peek/poke actors is to have the pair updated at the implicit
rate of the graphs. Once the peek and poke actors are
scheduled, the link will be updated at the rate determined
by the execution rates of the independent graphs. We have
found peek/poke actors useful for separating the user
settable run-time parameters from the SDF graph doing
the hard real- t ime computat ion. Another useful
configuration is to have the peek/poke actors updated at a
user-specified rate. We have found this useful for updating
displays.

Send Receive

Poke Peek

Figure 4. Target spliced communication actors.

Figure 5. Sliding window transfer (top)
Block aligned transfer (bottom)

The next properties of the peek/poke actors are the
number and alignment of data transferred. Transferring
multiple tokens per update gives the user a window into a
signal. Because there is no synchronization, the window
slides by an arbitrary amount. Some tokens could be
skipped, or consecutive windows could overlap and tokens
would be reused. The advantage of controlling the
alignment is two fold: it enables the user to download
multiple run-time parameters simultaneously; and it
enables downloading of a signal (such as a computed FFT)
where the alignment is crucial. Again, because there is no
synchronization, some blocks could be skipped and others
reused.

4 Scheduling implications

In this section, we study the scheduling implications
that result from this model. When multiple SDF graphs are
mapped onto a target, it is possible that two or more
independent graphs are mapped onto a single processor.
We assign relative firing rates for each graph to ensure fair
scheduling.

Before we discuss methods for scheduling multiple
graphs on one processor, we must define what it means to
fire a graph. We define a firing of an SDF graph to be one
schedule period of an SDF schedule where each of the
actors is fired the number of times specified by the
minimal repetitions vector. For example, for the graph in
figure 2 the schedule given was

AABAB

. One iteration of
this schedule would be a firing. However, another valid
SDF schedule that does not obey our definition of a firing
is

AABAABAABB

. Here, the schedule is a valid SDF
schedule in that it returns the arc to its initial number of
tokens. However, the schedule contains more repetitions
of each actor than are required.

4.1 Static scheduling

When we map multiple independent graphs onto a
single processor and want to determine the firing order of
the graphs at compile-time, we must know the relative
rates of a graphs. This can either be given explicitly by the
user or implicitly by one or more of the actors in the
independent graphs.

In the explicit case, the user specifies how many times
each graph is fired relative to the other. For example, in
figure 3, the user could specify that graph

AB

 is to fire 160
times for every 147 times graph

CDE

 is to fire. So a valid
s t a t i c s chedu l e f o r t he p roce s so r i s ,

160(3(A)2(B))147(CDE)

.
In the implicit case, the graphs would contain actors

that require firing at a certain rate relative to a global
clock. For example, if actor

A

 reads in samples at 48 kHz

and actor

C

 writes samples at 44.1 kHz. The graph

AB

would have to fire 160 times for 147 firings of

CDE

. One
possible valid static schedule for the processor is,

160(3(A)2(B))147(CDE)

.
The timing requirements of graph

AB

 may not allow the
long delay (147 firings of

CDE

) between the 160th and
161s t fi r i ngs o f t he g r aph . The s chedu l e

13(3(A)2(B))147(3(A)2(B)CDE)

 reduces the delay to one
firing of

CDE

. The timing requirements may be so strict
that not even one complete firing of

CDE

 is allowed
between fir ings of graph

AB

. A more fine-grain
interleaving, such as

13(3(A)2(B))147(ACADABEB)

, may
be required in this case.

4.2 Dynamic scheduling

The relative firing rates of the different graphs may not
be known exactly. The timing of graphs

AB

 and

CDE

could be controlled by separate hardware clocks which,
even though they may have very fine tolerances, will never
be exactly synchronized. In this case it is not possible to
exactly determine relative firing rates statically, thus
requiring dynamic, run-time scheduling.

If the uncertainty in the relative rates is small, for
example

AB

 fires 160 or 161 times for every 147 firings of

CDE

, then the methods described by Kuroda and Nishitani

[10] could be used. A set of static schedules is
constructed for a N-task system. In this case, the two
schedules would be

160(3(A)2(B))147(CDE)

 and

161(3(A)2(B))147(CDE)

. Measurements from a hardware
timer determine which of these schedules is executed next.
The major drawback of this approach is that the
complexity grows exponentially with the number of tasks.

A more general dynamic scheduling scheme could use
a real-time operating system that provides prioritized,
preemptive scheduling. By using rate-monotonic priority
assignment [9], in which tasks with higher rates are given
higher priority, the operating system will provide the
necessary run-time interleaving in such a way that all
deadlines will be met if possible. If bounds on the firing
rates and execution times of the tasks are available, then it
is possible to guarantee that all deadlines will be met.

Preemptive rate-monotonic scheduling can be useful
even with incomplete timing information. Because
priorities are fixed, it is possible to predict which tasks will
miss their deadlines in an overload situation. Firing rates
need not be known exactly as long as there is an ordering
of the rates. Execution times, which can be difficult to
accurately estimate for programs written in C or other high
level languages, are not used in the priority assignments.

Such a solution is attractive for its simplicity, but a
large overhead is incurred for the operating system.
Separate stacks must be maintained for the different tasks,

2
N 1–

and a large amount of context must be saved and restored
when switching tasks. To avoid this overhead, a simple
non-preemptive multitasking kernel can be used with rate-
monotonic priorities[11]. By restricting the points at which
a context switch is allowed to occur, a single system-wide
stack will suffice and the context that must be saved and
restored will be lighter, consisting of just a few machine
registers.

5 Examples

In this section we present two simple applications.
These examples run on a heterogeneous platform
consisting of a workstation and DSP card, as described
earlier. The applications are synthesized in C for the
workstation, tcl/tk for the workstation graphical user
interface, and Motorola 56k assembly code for the DSP
card. The first example is an FM synthesis application
which has five independent SDF graph components.
Furthermore, the graphs that are running on the DSP are
independent from the graphs running on the workstation.
The second example is an acoustic modem which has two
independent graphs, one of which spans over both the
workstation and DSP. Thus this last example requires the
use of both peek/poke and send/receive actors.

iiiii
iiiii
iiiii
iiiii
iiiii

Figure 6. FM sythesis specification. The graph enclosed
in the dotted line runs on the DSP card. Peek/
Poke actors are spiced on the arcs crossed by the
dotted line. The remaining part of the graph runs
on the workstation.

///////////
///////////
///////////
///////////

//////////
//////////
//////////
//////////
//////////

TCL
Script

Peek/Poke

5.1 FM synthesis

The graphical specification of the FM synthesis
example is shown in figure 6. The top-level description is
shown in the middle of the figure. This application has five
independent graphs, where the one that runs on the DSP is
enclosed by a dotted in the figure.

The application specification is hierarchical. Two of the
actors have been expanded to expose the hierarchy. All of
the actors in the top-level description outside of the dotted
arcs expand to graphs similar to the one at the top of the
figure. Note the peek/poke actors in this graph. As their
icon suggests, they provide the disconnection between the
dataflow graphs; each is expanded to a peek/poke pair as
shown in figure 4. The peek/poke actors disconnect the top
subgraph from the subgraph that runs on the DSP. All of
the other actors that run on the workstation similarly
disconnect themselves from the graph running on the DSP.
This allows the DSP subgraph to run as fast as necessary
without synchronizing with the workstation. In this case,
the sound is generated at a 32 kHz sampling rate. If we had
not disconnected the graph with peek/poke actors, but
rather used synchronizing send/receive actors, we would
have slowed the DSP to run in lock step with the
workstation, preventing the DSP from running at the
required rate.

5.2 Acoustic modem

The next example, shown in figure 8, is a simple
acoustic modem. A pseudo-random sequence of bits is
generated on the workstation. This sequence is sent to the
DSP, which transmits and then receives the bit stream over

Figure 7. Graphical user interface generated for the
FM sound sythesis application.

a speaker/microphone channel. The received bits are then
sent back to the workstation, where the errors are
displayed to the user (see figure 9).

In this example there are two independent SDF graphs.
Note that one graph spans over actors that are running on
the workstation and the DSP. Peek/poke communication
schemes could not be used here since we can not afford to
lose bits over the channel. The other graph allows the user
to adjust the phase of the incoming signal via a slider.

6 Conclusions

In this paper, we have extended SDF to allow for
nondeterminate communication between independent SDF
graphs. We have found that this communication
mechanism is ideal for interfacing user run-time controls
and displays to real-time systems. To implement the
multiple independent graphs, we introduced new actors
called peek and poke which appear to the independent
SDF schedulers as data sources or sinks.

The useful properties of the peek/poke actors control
the update rate of each link and the size and alignment of

TkSlider

bits detector

TkBarGraph

modemTxChRec

phase

wordIn

constellation

wordOut

VarDelay

XCPeek

SgnInt Nto1

Expr1toN

XCPoke

forkFIR FIRSSIMono

Channel
Variable
DelayTransmitter Receiver

DSP
Modem

Random
Bits

Error
Display

Figure 8. Acoustic modem specification. The dotted line
encloses the portion running on the DSP. The
modem block expands to the graph shown below.

Figure 9. Acoustic modem graphical user interface.

each transfer. The rates of the independent graphs
determine whether we can use static scheduling or must
perform dynamic scheduling. When dynamic scheduling
is necessary, rate-monotonic priority assignment can be
used in conjunction with a real-time operating system.

We are currently extending this work for both static and
dynamic scheduling. For static scheduling, we are
exploring the use of hierachical heterogeneous schedulers
for distinct subgraphs of the overall specification [12]. To
reduce the overhead of dynamic scheduling we are
studying prioritized multithreaded execution and non-
preemptive rate monotonic scheduling [11].

Acknowledgments

This research is part of the Ptolemy project, which is
supported by the Advanced Research Projects Agency and
the U.S. Air Force (under the RASSP program, contract
F33615-93-C-1317) , Semiconduc to r Resea rch
Corporation (project 94-DC-008), National Science
Foundation (MIP-9201605), Office of Naval Technology
(via Naval Research Laboratories), the State of California
MICRO program, and the following companies: Bell
Northern Research, Cadence, Dolby, Hitachi, Mentor
Graphics, Mitsubishi, NEC, Pacific Bell, Philips,
Rockwell, Sony, and Synopsys.

José Luis Pino is also supported by AT&T Bell
Laboratories as part of the Cooperative Research
Fellowship Program.

References

[1] J. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt,
“Ptolemy: A Framework for Simulating and Prototyping
Heterogeneous Systems,”

International Journal of Com-
puter Simulation

, special issue on Simulation Software
Development, to appear 1994.

[2] E.A. Lee and S. Ha, “Scheduling strategies for multiproces-
sor real-time DSP.,”

GLOBECOM '89

, 1989, p. 1279-83
vol.2.

[3] D.G. Powell, E. A.Lee, and W.C. Newman, “Direct Synthe-
sis of Optimized DSP Assembly Code from Signal Flow
Block Diagrams,”

ICASSP

, vol. 5, San Francisco, CA,
IEEE, 1992, p. 553-556.

[4] S. Ritz, M. Pankert, and H. Meyr, “High level software syn-
thesis for signal processing systems,”

Proceedings of the
International Conference on Application Specific Array
Processors

, Berkeley, CA, USA, IEEE Comput. Soc. Press,
1992, p. 679-693.

[5] E.A. Lee and D.G. Messerschmitt, “Synchronous data
flow,”

Proceedings of the IEEE

, vol. 75, no. 9, 1987, p.
1235-1245.

[6] J.L. Pino, S. Ha, E.A. Lee, and J.T. Buck, “Software Syn-
thesis for DSP Using Ptolemy,”

Journal of VLSI Signal
Processing

, Synthesis for DSP, 1994, to appear.
[7] J.L. Pino,

Software Synthesis for Single-Processor DSP
Systems Using Ptolemy

, Master's Thesis Memorandum
UCB/ERL M93/35, University of California at Berkeley,
1993.

[8] S. Sriram and E.A. Lee, “Design and Implementation of an
Ordered Memory Access Architecture,”

ICASSP

, Minneap-
olis, MN, IEEE, 1993.

[9] C.L. Liu and J.W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,”

Jour-
nal of the Association for Computing Machinery

, vol. 20,
no 1., 1973, p. 46-61.

[10] I. Kuroda and T. Nishitani, “Asynchronous Multirate Sys-
tem Design for Programmable DSPs,”

ICASSP

, vol 5, San
Francisco, CA, IEEE, 1992, p 549-552.

[11] T. M. Parks, E. A. Lee, “Non-Preemptive Real-Time Sched-
uling of Dataflow Systems,” submitted to

ICASSP

, Detroit,
MI, IEEE, 1995.

[12] J. L. Pino, E. A. Lee, “Hierarchical Static Scheduling of
Dataflow Graphs onto Multiple Processors,” submitted to

ICASSP

, Detroit, MI, IEEE, 1995.

	Title
	Abstract
	Introduction
	Target specification
	Model of computation
	Synchronous dataflow
	Multiple independent SDF graphs
	Introducing nondeterminism: peek and poke

	Scheduling implications
	Static scheduling
	Dynamic scheduling

	Examples
	FM synthesis
	Conclusions
	Acknowledgments
	References

