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1.0 Introduction

In the past few decades, the importance of video signal processing in the communication

industry has expanded drastically. Simple broadcasting can no longer satisfy the demands of the

public. As a result, multi-media has became one of the fastest growing business in the industry.

Because of the large data processing involved, software implementation of video algorithms for

real-time purpose is not realistic. However, hardware reconfiguration is not an easy task. The

solution to this dilemma is programmable video processing chips.

In this project we extend the Ptolemy system developed in UCB to incorporate a program-

mable, extendable video processing chip called VSP. It allows rapid prototyping and evaluation

for real time video applications. Currently, the software package that comes with the VSP chips

includes a graphic editor, simulators, a code generator, a scheduler, and other related tools. A

video algorithm is designed in the graphic editor and mapped to the hardware. The graphic editor

uses signal flow graph (SFG) semantics where an algorithm is represented by nodes and arcs. A

node represents a function chosen from a limited set of functions provided by the VSP package.

An arc between two nodes represents data transfer between the nodes. The code generator in the

VSP package generates the micro code for an algorithm specified by a SFG graph.
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Ptolemy is a software environment that supports heterogenous system specification, simu-

lation, and design. Ptolemy is programed in C++. The object-oriented framework allows diverse

models of computation to co-exist and interact.

One of the computational models supported by Ptolemy, the Synchronous Data Flow

model (SDF), is very similar to SFG semantics. In SDF, algorithms are also represented by nodes

and arcs. Both semantics are capable of sample-rate conversion.

In this project, a VSP design environment, called VSP domain, is built in Ptolemy. It con-

sists of two execution modes for a design. The first one simulates the design using SDF semantics.

The second one generates the description of the algorithm in SFG. This description is called the

design file [1]. The design file is written in the high level language used to communicate between

different software tools, as provided by the VSP software package.

This implementation is a step toward real-time video processing in Ptolemy. It has two

advantages over directly designing the algorithm in SFG. First of all, the SDF scheduler can auto-

matically generate the execution period of each actor. This is manually set in SFG. Second, the

heterogenous backbone of Ptolemy is potentially capable of simulating interactions between a

video system and other components in the communication network. Although this is not been

implemented in this project, the project serves as an initial step.

The organization of the report is as follows. Section 2 is an introduction to the VSP sys-

tem. Section 3 gives a brief overview of Ptolemy. By relating a parameter in SFG calledcycletime

and a parameter in SDF calledrepetition rate, we can tie the two semantics together. Section 4

explains how SFG is generated from SDF by drawing the relationship between the two parame-

ters. Section 5 presents VSP domain and the two execution modes. Examples are given in Section

6. Section 7 concludes the report.

2.0 VSP and its software tool

VSP stands for video signal processor. A VSP contains ten pipelined processing elements

(PEs) operating in parallel at 27 MHz. The architecture of a VSP is shown in figure 1. A PE can
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be a mill, a store, or a gate. A mill consists of an arithmetic and logic element (ALE), three silos,

and a section of the crossbar switch. A store has a memory element(ME), two silos, and a section

of the crossbar switch. The gate only has one silo, and a section of the crossbar switch. Each PE

has its own set of programs (see the lower left corner of each PE). The program controls either the

ALE or the ME, the silos, and the crossbar switch belonging to the PE. The program, consisting of

a small fixed number of unconditional instructions, is periodically executed. At each clock cycle a

PE starts a new instruction in the program. The length of the program is the period between two

successive executions of the same instruction line in the program.

 Figure 1. VSP architecture

The VSP has five inputs and five outputs. The inputs and outputs of PEs along with the

external inputs are connected to a crossbar switch with 18 outputs. Each output of the crossbar

switch can be programmed to select one of the ten inputs of the crossbar switch. The silos at each

output of the crossbar switch are capable of implementing delays of 1 to 31 clock cycles. The

inputs and the outputs of a VSP chip can be connected to the external components to form an

application or can be connected to other VSP chips. A VSP network is a system that consists of a

number of interconnected VSPs. For the format of the inputs and the outputs of a VSP, refer to

[1].
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There are ten independent programs in each VSP chip; programming and debugging task

for this VLIW architecture are difficult and tedious. The software tools provided by Philips are

designed to make this more manageable.

The manual for the VSP software tools provides three major steps as guidelines to pro-

gram the VSP. First graphically edit the algorithm using the SFG environment in the VSP graphic

editor. Second, map the SFG onto a VSP network. Third, generate the microcode for VSP hard-

ware.

A high level language is used to communicate between the software tools. The file that

describes the design is called a design file. Two simulation tools are provided by Philips for

debugging purposes. The simulation software provided in the VSP package reads design files.

One of the simulation tools provided is for functional simulation. The next section briefly dis-

cusses the concept of SFG. The subsection after that explains the design file. The last subsection

discusses howcycletime is assigned.

2.1 The VSP graphical language, concept

In SFG semantics, a video algorithm is described as a set of nodes interconnected by arcs.

A node in SFG is called anoperation and an arc is called anoperand. The function specified by

an operation is executed at the period proportional to thecycletime attribute of the operation. The

system is specified for all iterations. In addition to operands and operations, shared memory is

introduced by a structure calledcommon. For example, a memory operation has an attribute to

specify the common they are link to. Two memory operations that link to the same common share

the same memory space. The initial content of a common is defined by atable.

2.1.1 Cycletime definition

All operations require thecycletime attribute. This attribute is an integer that defines the

time between consecutive executions of an operation. This is given as a multiple of the clock

cycle, which is 1/(27MHz). For example, an operation with cycletime 2 is executed at the fre-

quency of 13.5 MHz and an operation with cycletime 5 is executed at the frequency of 27/5 MHz.

The users are required to defined this attribute manually for each operation in their algorithms.
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2.1.2 Operation

There are five major types of operation:

• an alu operation performs arithmetic and logic functions. It has three data inputs and one data

output. This is closely related to the mill structure in the VSP hardware. It is capable of per-

forming add, subtract, logic functions, and comparison. The exact function performed

depends on an attribute in the operation and the data value of the third input. This allows lim-

ited data dependent calculation.

• a mem operation can read from, or write to an address space defined in the operation

attributes. If it is a write operation, it has a data input and an address input. If it is a read oper-

ation, it has an address input and a data output. A mem operation almost always links to a

share memory space (common). In addition, mem operations usually exist in pairs. The exe-

cution order of a group of mem operations is indicated by a special type of operand called

No_value operand. A more detail discussion ofNo_value operand is in section 2.1.3.

 Figure 2. execution of a mixer operation with two inputs and three outputs

• a mixer operation allows sample rate conversion in the algorithm. This is the operation that

supports multi-rate in SFG semantics. The inputs andoutputs attributes specify the number of

input arcs, and output arcs respectively. If thecycletime of a mixer isα then its input sample

period must beα * inputs and its output sample period must beα * outputs. The mixer inter-

laces the inputs into an internal stream of samples and then unravels it to the outputs. For

example, figure 2 shows the execution of a mixer with two inputs and three outputs. It is

important to note that at each execution, only one token is consumed and only one token is
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produced. Therefore, a sample is consumed at the first input arc every 2*α clockcycles and a

sample is produced at the first output arc every 3 *α clockcyles.

• an interm operation is an input operation. It has one output. Thefilename attribute specifies

the file that the algorithm reads from during the simulation.

• an outterm operation is an output operation. It has one input. During simulation it writes its

input to the file specified by thefilename.

2.1.3 Operand

An operand connects an output of an operation (call it the from-operation) to an input of

an operation (call it the to-operation). It has a direction associated with it. The direction indicates

the signal sample flow. The operand can’t change the signal sample rate, which implies that the

signal sample rate is constant over the operand. An operand has three attributes. Thecomment

attribute is for user comments.shift specifies the bit shift needed to be performed on the value

from the from-operation. Theconstant attribute is a constant added to the shifted value prior for-

warding it to the to-operation.

It is possible for an operand to have no from-operation. In this case, the value ofconstant

is continuously fed into the to-operation.

TheNo_value attribute in the operand statement specified whether or not this operand is a

No_value operand. Its presence is to indicate precedence information. In another words, the

No_value operand requires that the from-operation (or the previous iterations of the from-opera-

tion if delay exceed one) has to finish before the to-operation can start.

2.1.4 Common and Table

Common links mem operation to a shared memory structure. From the hardware configu-

ration in figure 1, there are two memory elements for each VSP chip. When a mem operation is

linked to a common, its accessing address space is indicated by the first address and the length of

the address space, namelyfirst_address andlength attributes of the mem operation.
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A shared memory space can have initial value. A table is a list of numbers. When a com-

mon is created,fill_table attribute contains the name of the table that have the initial values.

fill_address attribute is the starting address of this initial filling.

2.2 Design file

The design file is a high level texture language used by the VSP software tools to describe

the system. A design file can be generated from the graphical editor of the VSP package. It can be

modified by the scheduler. When fed into the simulators provided by VSP package, it is simu-

lated. When it is fed into the code generator provided by the VSP software package, micro code

for the VSP hardware is generated.

The design file states the operations and describes the topology of the algorithm by oper-

and statements. There are special statements for commons and tables. For detail of this file for-

mat, refer to [1].

One goal of this project is to directly generate this texture description from a design in

Ptolemy.

2.3 Cycletime assignment

Thecycletime attribute of each operation is assigned by the users manually. An incorrect

cycletime assignment will result in error message from the tools in the VSP package. There are

three guidelines to assign correctcycletime.

• Except for the mixer operation, thecycletime of an operation must match the sample period of

the input(s) and output(s) of the operation. In other words, only the mixer is capable of sample

rate changes.

cycletime = input sample period = output sample period

• Given a mixer ofcycletimeα, its input sample period has to equal toinputs*α clockcycles and

its output sample period has to equal tooutputs∗α clockcyles. (See section 2.1).

cycletime (of a mixer) = input sample period/inputs

= output sample period/outputs

• The sample rate does not change over an operand.
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By obeying these rules, the user can traverse the SFG and correctly assign thecycletimes

of each operation. However, the assignment can be done automatically. In fact,cycletime is

readily derived from therepetition rate calculated in SDF semantics. The following sections will

define therepetition rate (sec 3.1) and explain this procedure (sec 4).

3.0 Overview of Ptolemy

An algorithm in Ptolemy is represented as a dataflow graph constructed by interconnect-

ing both user-created and existing library blocks. The fundamental building blocks in Ptolemy are

calledstars; they contain code segments for either code generation or execution. Data passes

between blocks in discrete units calledparticles. A particle can be either as simple as an integer

value or as complicated as an image frame. Arcs between blocks specify the data path. Further-

more, hierarchy is introduced to manage complex systems. In Ptolemy, hierarchy is achieved

through an intermediate class of blocks calledgalaxies. Each galaxy is composed of a subsystem

of interconnected galaxies and stars. Each galaxy is associated with adomain, which specifies the

computational model of the galaxy. The user can choose atarget from the list of available targets

in the domain. A target defines the mechanism by which a system is executed. Every target is

associated with ascheduler, which determines the operational order of each block in the applica-

tion. Finally, a complete application in Ptolemy is called auniverse.

Next subsection is a brief discussion of the SDF domain, on top of which our implementa-

tion is build. For details on SDF, refer to [3, 4, 6].

3.1 Brief introduction to SDF semantics

SDF stands for synchronous dataflow. SDF semantics regard an arc as a stream of data.

This semantics is characterized by the restriction that the number of tokens produced and con-

sumed by a star at each execution is fixed at compile time. The tokens on each arc form an

ordered sequence. The SDF scheduler relies heavily on balancing the consumption and produc-

tion of tokens on the arcs. This keeps the buffer size on the arcs bounded, and the system is capa-

ble of processing data streams of infinite length without overflowing the buffers on the arcs.
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To balance the number of tokens at the both ends of the arc in figure 3, we need to relate

the number of executions of A (denoted by rA) to the number of executions of B (denoted by rB).

IA and OA denote the number of tokens produced and consumed by A at each firing. Similarly, IB

and OB denote the number of tokens produced and consumed by B at each firing. The constraint:

is called thebalance equation.

 Figure 3.

Given a graph, a set of balance equations are collected into a matrix formΓ and the small-

est positive solution forr where r satisfied:

is the repetition vector.Γ is the matrix of the coefficients of the ri’s in the balance equations. InΓ,

each column describes a particular star and each row describes a particular arc. The repetition rate

of star A is rA.

 Figure 4. example

A simple example ofΓ andr  is shown in figure 4, whereΓ is as follows:

rAOA rBIB=

A B
OA IBIA OB

Γr 0=

r 0>

10 1 10 1 1 10 1 10
1 2 3 4 5

Γ
10 1– 0 0 0

0 10 1– 0 0

0 0 1 10– 0

0 0 0 1 10–
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In this example, the second column ofΓ indicates that the second star receives one token

from the first arc and sends ten tokens to the second arc at each execution. The second row indi-

cates that at every firing of the second star, the second arc receives ten tokens. In addition, at

every firing of the third star, the second arc sends one token to it. The repetition rates of the stars

are r1=1, r2=10, r3=100, r4=10, and r5=1.

Currently, there is no timing information associated with our calculation. We can intro-

duce time into this calculation by restricting the executions (firings) of the same star to be periodic

with a fixed period. Assume a system with k stars’repetition rates: rT = [r1 r2... rk], and firing peri-

ods:pT = [p1 p2... pk]. ri’s and pi’s has to satisfyw = ri*p i, for all i, wherew is some positive num-

ber. pj is solved for:

pb is any arbitrary positive number.

It is important to note that pb is an extra degree of freedom in calculating the firing period

of the stars.

Figure 5 is an example in SDF semantics.

 Figure 5. SDF semantics

rT = [3 3 1 2 2 4] andpT = [4 4 12 6 6 3].

From the above example, it is clear that SDF supports multi-rate by allowing stars to con-

sume and produce multiple tokens at each firing. The SFG on the other hand uses the mixer star to

do rate conversions. Section four will relate the two mechanism.
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3.2 Target

In this project, a new domain called VSP domain is implemented. It is an extension of

SDF domain in Ptolemy. Along with the domain is a library of SDF semantics stars. Target is used

in Ptolemy to provide an additional layer on top of the domains. This mechanism allows us to

build two run modes in this project. After interconnecting stars from the library, the user can

select two run modes: simulation mode and code generation mode. Simulation mode is designed

to do functional simulation that is equivalent to the one provided in VSP package, while code

generation mode is selected for design file generation. Both these modes are implemented in

VSPTarget.

4.0 From repetition rate to cycletime

The similarity between the SFG in VSP and the SDF semantics in Ptolemy is easily iden-

tified. For most operations in the VSP, the number of tokens consumed and produced by an opera-

tion is fixed. This is precisely the SDF model. Assume we have an universe withk stars and none

of them is a mixer. Let therepetition rates of the stars berT = [r1 r2... rk]. The firing period is

pT=[c1*pb c2*pb... ck*pb], where cj = lcm{r i| 0 <i < (k+1)}/rj We can utilize the extra degree of

freedom discussed in subsection 3.1 by choosing pb. In this implementation, pb is calledSlow-

Down,where SlowDownis any positive integer. Finally,cycletime for the stars equals the firing

period. The calculation for mixers are slightly more involved because it is not an SDF semantic

block.

SDF requires all inputs of a star to be available at every firing of the star. A mixer does not

have such requirement. This is precisely the reason why the input and output sample periods can

be different from thecycletime of the mixer. A mixer accesses only one of its input arcs and one of

its output arcs at each firing; the other input and output arcs are idle. For functional simulation

purpose, such fine grain simulation in Ptolemy is not necessary.

The concept of the VSPMixer star is to process a set of data at each firing. For each input

arc, the number of token consumed at one firing isouts. At each output arc, one firing produces

ins tokens. (ins andouts are the equivalent of theinputs andoutputs parameters in SFG mixer
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operations; they specify the numbers of input and output ports.) The total number of tokens in a

set isins * outs. At each firing, VSPMixer interlaces the inputs into an internal list of samples and

then unravels it to the output. The best illustration for VSPMixer is in figure 2. The SFG seman-

tics takes six firings from (a) to (g), the VSPMixer takes only one firing. At each firing of the

VSPMixer, six tokens are consumed, three from each input arc. In addition, at each firing, six

tokens are produced, two at each output arc. A more detail description of VSPMixer is in Section

5.4.

Assume the firing period for a mixer star isδ. The SFG mixer operation needsins * outs

firings to process a set of data, while the equivalent VSPMixer needs only one firing. Therefore,

cycletime is δ/(ins * outs).

For the example in Figure 5, thecycletime is:

Note that the Mixer stars has p3 = 12 and p5 = 6. These numbers are divided by 2*3, and

2*1, respectively.cycletimes are 2 and 3 instead.

5.0 VSP domain

VSP domain is an extension of the SDF domain in Ptolemy. SDF semantics has no side

effects. However, the shared memory accessing of SFG mem operation does permanent changes

to the overall system. VSP domain supports this by a C++ classCommon, which simulates shared

memory space in SFG. This structure can be created and manipulated by VSPTarget The content

of aCommon object can be accessed by VSPMem, which is equivalent to SFG mem operation.

Common is explained in Section 5.1

cycletime

4

4

2

6

3

3

=
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There are four basic components in a VSP network: operations, operands, commons, and

tables. The star library has been constructed to supply the basic stars to build a VSP network in

Ptolemy. The star library is discussed in section 5.2

VSPTarget has two run modes: simulation mode and code generation mode. Before run-

ning any run mode, VSPTarget runs the SDF scheduler. The scheduler calculates therepetition

rates of the stars and sets up the firing schedule of the stars. The simulation mode simulates the

SDF graph in the VSP domain. The code generation mode generates the design file for the algo-

rithm. Section 5.3 and 5.4 talks about the two run modes inVSPTarget.

5.1 Common

Common is a C++ class that to simulates shared memory in SFG. ACommon object is cre-

ated byVSPTarget with a name and initial values. The data in the shared memory space is saved

in a private fix array memberdata[512] , where 512 is the shared memory size of SFG.Com-

mon has two important public member functions:read(int address)  andwrite(int

address, fix val) . These functions manipulate the content ofdata[] . read()  returns

the data value at the address indicated whilewrite() does not return anything.

CommonList  andCommonIter  are classes created to maintain the list of all the com-

mons in the universe.CommonList  is a list of commons. When a new common is created by

VSPTarget, it is appends the newCommon object to aCommonList . CommonIter  is an iter-

ater that iterates throughCommonList to search a certain common by its name.

5.2 Star Library for VSP

There are seven major classes of stars in the Ptolemy VSP star library. VSPInterm,

VSPOutterm, VSPAlu, VSPMem, VSPMixer, VSPShift, and VSPConstant. Most of them closely

resemble the types of operation available in SFG. Since most of the SFG operations are equiva-

lently SDF blocks, they can be easily implemented in Ptolemy. However, arcs in SDF semantics

do not support functions provided by the operand type of the SFG. To solve this problem, the

operands are promoted to stars when necessary. VSPShift stars represent operands withshift, and
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constant attributes; and VSPConstant stars represent operands with no from-operation. (Refer to

section 2.1.3) In the following section, we briefly discuss the implementation of each star.

5.2.1 VSPInterm and VSPOutterm

parameters: filename (string)

inputs: VSPOutterm - i_1

outputs: VSPInterm - o_1

VSPInterm reads in a data file and VSPOutterm writes input data to a file. VSPInterm

opens a file when the simulation starts. At each firing, it reads an integer from the file and pro-

duces a 12 bit fixed-point data sample at its output arc. VSPOutterm, on the other hand, reads a 12

bit fixed point data sample from its input arc and writes an integer to the file.

5.2.2 VSPAlu

parameters: instruction_type(string), inst_alternative (int)

inputs: i_0, i_1, control

outputs: o_1

VSPAlu simulates the arithmetic and logic functions provided by SFG alu operation.

VSPAlu requires the user to specify aninstruction_type and anoption. Theinstruction_type

includes add, sub (subtract), cmp (compare), and log (logic). Each of them has couple of varia-

tions which are specified by option. At each firing of the star, the proper function is executed

according to the two parameters and the third input arc (control).

5.2.3 VSPMem

parameters: common_ref (string), first_addr (int), length (int)

VSPMem simulates memory access provided by the mem operation in VSP chips. There

are a total of four VSPMem stars. The parameters that are shared by VSPMem stars are

common_ref, first_addr, length. Thecommon_ref indicates whichCommon object this star is asso-

ciated with.VSPTarget is responsible for creating and maintaining the structure. When a VSP-
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Mem is fired, it accesses theCommonIter  in VSPTarget and looks for theCommonobject with

the matching namecommon_ref. Obtaining theCommon object, the VSPMem can read from or

write to the object.first_addr andlength specify the address space in the object that is accessible

by the VSPMem star.

In SFG semantics, depending on whether or not aNo_value (section 2.1.3) operand is con-

nected to the mem operation, it can have different numbers of input and output arcs. The imple-

mentation enumerates the possible mem operations: VSPMemR, VSPMemW, VSPMemRNVO,

VSPMemWNVO. R and W stand for Read and Write. NVO stands for No-Value Operand. Since

the stars can be invoked when all the inputs of the stars are available, the presence of an arc con-

necting two stars impose an ordering of the firing. This is exactly the purpose of anNo_value

operand. Therefore, the simulation of anNo_value operand is accomplished by forking a VSP-

Mem star output arc to a VSPMemRNVO or VSPMemWNVOno_value arc.

All inputs and outputs of VSPMem stars are 12 bit fixed data type.

• VSPMemR/VSPMemW

inputs: VSPMemR - i_0; VSPMemW - i_0, i_1

outputs: VSPMemR - o_0; VSPMemW - o_0

These are the most basic VSPMem. VSPMemR has an address input and an data output. VSP-

MemW has two inputs, an address input and a data input. In the case where the user wants to

express precedent, the output of these basic stars are connect with theno_value input of the

The following two VSPMem stars.

• VSPMemRNVO/VSPMemWNVO

inputs: VSPMemRNVO - i_0, no_value; VSPMemWNVO - i_0, i_1, no_value

outputs: VSPMemRNVO - o_0

This is case that the star at the other end of theno_value has to fire before the star can fire.

5.2.4 VSPMixer

inputs: i_0,..., i_ins
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outputs: o_0,... o_outs

VSPMixer reorders the samples as in the SFG mixer operation. It implements a sample

rate change. As mentioned in section 4, an VSPMixer processes data as a set. Each set consists of

ins*outs data samples. A VSPMixer star, withins input arcs andouts output arcs, requiresouts

tokens from each input arc at each firing. It producesins tokens at each output arc. A VSPMixer is

a commutator withins input arcs followed by a distributor withouts output arcs. Figure 6a is a

commutator withk input arcs. The elements of the input arcs are interlaced into a stream. Figure

6b is a distributor withk output arcs. A streams is distributed orderly onto the output arcs. VSP-

Mixer combines these two stars into one star.

 Figure 6.

Figure 7 shows one firing of a mixer with three input arcs and two output arcs. Generaliza-

tion of other combinations ofins andoutsis straight forward.

 Figure 7. execution of a VSPMixer with 3 inputs and 2 outputs

5.2.5 VSPShift and VSPConstant

parameters: VSPShift - shift (int), delay (int), constant (int);

VSPConstant - constant (int)

During code generation, VSPShift and VSPConstant are regarded as arcs with parameters.

VSPShift simulates a VSP operand withshift, andconstant attributes. VSPConstant simulates an
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operand with no from-operation (see section 2.1.3). In the simulation phase, VSPConstant is a

source star that produces tokens with values equal to theconstant parameter.

5.3 Simulation

In the simulation mode,VSPTarget first creates all the shared memory structure in the

universe. It iterates through all the universe parameter looking for parameters with prefix “com-

mon”. Whenever it encounters one, it creates aCommon object and appends it to the end of its

CommonList . The full name of the parameter becomes the name of theCommon object. The

content of the parameter is the name of the table for initial filling of the common (refer to section

2.1.4). For example, assume we have a common with namecommonxxx and content “tableyyy”.

Then content of the universe parametertableyyy is the data for initial filling of the common. In

addition, the content of the universe parameterfillxxx indicates the starting address of the initial

filling. This process is repeated till the end of the parameter list.

Finally,VSPTarget uses the SDF scheduler to determine the firing order of the star. When

the star is fired, it executes the functions provided in each star.

5.4 Code Generation

In code generation mode VSPTarget never fires stars. Its purpose is to describe the graph

by generating the design file. The target of a universe has access to each of the stars belonging to

the universe. The target also has access to the parameters of the stars and that of the universe.

VSPTarget accesses these parameters to generate the design file of a universe.VSPTargetmakes

a total of three passes through the star list.

• First pass: The target calculates thelcm (least common multiple) ofrepetition ratesof all

stars belonging to the universe, which have been computed by running the SDF Scheduler.

• Second pass: The target generates the operations corresponding to the stars.

• Third pass: The target generates the operands of the application.

When the design file is generatedVSPTarget invokes the VSP graphic editor and displays

the algorithm in the editor.
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5.4.1 Common and Table

This is best illustrated by an example. Assume three universe parameters are defined:

commonxxx, fillxxx, tableyyy. Let @ indicate the content of a universe parameter. In addition,

assume @commonxxx = “tableyyy”. VSPTarget generates two line of code from these[1]:

(table tableyyy ““ length(@tableyyy) (@tableyyy))

(common commonxxx ““ x1 y1 x2 y2 x3 y3 tableyyy @fillxxx false)

length(.) is the length of the (.). xi and yi are integers used to indicate the position of the

common. The format is described in [1].

5.4.2 Operation (The Second pass)

The firing periods of the stars are calculated by dividing thelcm by the repetition rates of

the stars.cycletimeis calculated by the firing period timesSlowDown and divided by theinsand

outs parameters of the stars. (refer to section 4) If a star does not have these parameters, the

parameters are assume to be 1.SlowDown is defined by the user as an universe parameter.

5.4.3 Operand (The Third Pass)

VSPTarget identifies each arc in order to generate the operand statement. For ease in later

discussion, stars that are not VSPConstant or VSPShift are called proper stars. An operand in SFG

can be represented by any of the following structures:

• An arc between two proper stars

• An arc with any number of delays between two proper stars

• Any number of VSPShift star(s) plus any number of arcs need to connect between two proper

stars.

• VSPConstant and any number of VSPShift, delays, and arcs necessary to connect them to the

input of an proper star.

Figure 5 shows some of the possible cases. The counterpart of a proper star in SFG seman-

tics is an operation. In figure 7,A andB are proper stars, and the diamond shape block stands for

delays.
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 Figure 8. Some cases that are equivalent to SFG operands

Two important characteristics are used to trace the topology.

• Every input arc of a star has one and only one corresponding star at the other end of the arc.

• An SDFShift star has one input arc and one output arc.

The VSPTarget iterates through all the proper stars. For every input arc in a proper star,

VSPTarget traces it to the star at the other end of the arc. If a proper star is encountered an arc is

identified.VSPTarget keeps count of the number of delays on the arc. If it is an vspShift star at

the other end,VSPTarget finds the input arc of the star and keeps tracing until it encounters either

a proper star or an VSPConstant star. Along the way, theVSPTarget adds up the constants, the

delays, and the shift values. If an VSPConstant star is found, the operand has no from-operation.

6.0 Application examples

Two examples are described in this section. The first one is image subsampling by a factor

of two. In image processing, an image is represented by a matrix of pixels. In a black and white

image, a pixel has one value which specifies the intensity. A row across an image is called a scan-

line. This subsampling example discards every other scanline and every other pixel in the remain-

ing scanlines. Therefore, after subsampling, the final image is one fourth of the original size. The

procedure is frequently used in subband coding.

The second example is a simplified version of edge detection. An image is passed through

a two dimensional filter that is a gradient based edge detection filter. The resulting data is com-

pared to a threshold, and the pixel is considered part of an edge if the data is over the threshold.
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Edge detection is used in feature extraction, and filtering is widely used in noise reduction, image

enhancement and image coding.

The next two sections discussed the implementation of the examples.

6.1 Subsampling

Subsampling is frequently used in subband coding. In this example, a 128 * 128 grey scale

image is the result of subsampling a 256 * 256 grey scale image.

6.1.1 Approach

There are two different types of operations involved: discarding every other sample in a

scanline and discarding every other scanline. An VSPInterm star reads an image from a file. The

file includes the sample rate of the input and a stream of rasterized pixel values of the image. A

mixer with one input and two outputs discards every other sample (Refer to figure 9). We are only

interested in the first output of the mixer. We choose the image width to be an even number so that

we can safely discard the second output. The result of the mixer is written to a memory location.

Two memory accessing operations are used to discard every other scanline. After every

write at locationy is finished, a read is performed at locationy/2. We implement a modulo-256

counter, and a secondary counter derived from it that is half of the value of the primary counter.

The primary counter is fed to the address input of the memory write operation, and the secondary

counter is fed to the address input of the memory read operation. Notice in figure 9 we connect an

VSPShift output to the input of VSPAlu instead of simply perform a shift to the data. This is

because VSP can only perform shift at an input or output of an Alu operation. The resulting range

of the write addresses is 0 to 255, and the address range for the read is 0 to 127. When the write

operation writes two scanelines, the read operation reads only from the first scaneline by reading

each pixel twice. After the read, ia mixer discards the redundant data.

CGVSPTarget generates the equivalent graph in VSP software as shown in Fig. 10.
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6.1.2 Discussion

This is an algorithm for subsampling if we are confined to subsample inside a VSP chip. It

seems extremely complicated for this simple task. The fundamental difficulty in expressing this

algorithm lies in the one-dimensional data representation in both SDF and SFG semantics. The

semantics force the two-dimensional data into a stream. The scanline information naturally

described in a two-dimensional structure is lost. To solve this problem, we need a semantics that

deal with multidimensional data.

An extension of SDF called MDSDF is described in [7]. Using this semantics, we design a

subsampling algorithm using MDSDF in Figure 11. The most important component is the two

multidimensional mixer that performs the two types of discard. The 2-tuple labeled at an arc input

or output is the data size that the star consumes or produces at each firing of the star.

Figure 11 MDSDF implementation

The first Mixer takes two scanlines and discard the second scanline. The second Mixer

takes two vertical strip and discard the even strip. Comparing with Figure 9, This description is

much more intuitive and clear compare.

6.2 Edge Detection

The most straightforward way to identify an edge in an image is to find the intensity

changes of neighboring pixels. This type of approach is called the gradient base edge detection. In

out implementation, we only consider the intensity changes of three directions instead of eight.

The three directions that we considered are horizontal to the left, vertical to the top, and diagonal

to the north west of the pixel of interest. Our two dimensional filter is as followed:
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The lower right element is the gain of the current pixel. The lower left is the gain of previ-

ous pixel, an so on.

The image size in this example is 256 x 256.

6.2.1 approach

To perform filtering, for each pixel, we need to access pixels at previous scanline. Similar

to the first example, we have two memory operations: One write and one read that are linked to

the same memory space which has size equal to two scanline (512). Refer to Figure 12 for the

design in SDF.

There are also two counters. The primary counter increment with modulo-256. The sec-

ondary counter offset the output of the primary counter by 128 and then modulo-256. this counter

will point to the second scanline in the memory space when the value from the primary counter

points to the first scanline and visa versa. The result of the read is the value at the previous scan-

line.

The value that we write into the memory space is the sum of the intensity of a pixel and its

previous pixel. And the value at the read output is the sum of intensity of the two pixels at the

same relative position in the previous scanline.

For each pixel, we subtract the pixel value of the previous pixel and then subtract the

result of the read. This is the result of our two dimensional filter. Finally, we apply a threshold and

sent the result to the output.

CGVSPTarget generates the equivalent graph in VSP software as shown in Fig. 13.

6.2.2 Discussion

The boundary condition is ignored in the algorithm. It would be a complicated task to

switch the data path when the algorithm encounters the boundary of a scanline. This again is the

result of representing a two dimensional data into a one-dimensional data model. We can easily

express the boundary condition in the MDSDF semantics by adding delay in different data dimen-

sion. Figure 14 show the delays.
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Figure 14. MDSDF implementation

The first delay is along the horizontal direction before the first scanline. The result of this

delay is adding a scanline before the first scanline. The second delay is along the vertical direction

which means an initial data is added at the beginning of each scanline. The image with the initial

condition is now with size:

This extended image is send to the filtering block for edge detection with initial boundary

conditions.

7.0 Conclusion

In this report, the VSP package and the Ptolemy system are briefly introduced. Section 4

explains how to relate thecycletime in the SFG semantic to therepetition ratein SDF. This

project implemented a library of stars that correspond to the operations and operands in SFG. This

project also implemented the vsp domain with two targets:CGVSPTarget andVSPTarget.

CGVSPTarget generates the corresponding VSP software representation of an universe by repro-

ducing the topology and calculatingcycletime from repetition rate. VSPTarget simulates the VSP

algorithm in the Ptolemy environment by extending the SDF semantic to support share memory

structure.

8.0 Future Work

From our previous discussion, expressing a two-dimensional data with one-dimensional

structure is limited. The natural divisions between scanlines are ignored, and this add complexity

to our algorithm design. The next step is to consider building a library of MDSDF stars that links

[1,0] [0,1]
Edge
Detect.Interm

[width,height] [width+1,height+1]
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to VSP. The VSP domain should base on MDSDF semantics, which represents image algorithm

intuitively. In addition an interface between the domain and other computational model in

Ptolemy will enable interactions of vsp algorithms with other semantics.
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