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tolemy is a research project and software en
cused on the design and modeling of reactiv

iding high-level support for signal processing
on, and real-time control. The key underlying
e project is the use of multiple models of co
ierarchical heterogeneous design and mode
ent. This talk gives an overview of some of 

omputation of interest, with a focus on their c
ier ability to model and specify real-time sys
bility to mix control logic with signal processi
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Types of Computational Systems
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ransformational
 transform a body of input data into a body o

teractive
 interact with the environment at their own sp

eactive
 react continuously at the speed of the envir

This project focuses on design o
•  real-time

•  embedded

•  concurrent

•  network-aware

•  adaptive

•  heterogeneous
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Interactive, High-Level Simulation and Specification
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Properties of Such Specifications
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 Modular
•  Large designs are composed of smaller designs

•  Modules encapsulate specialized expertise

 Hierarchical
•  Composite designs themselves become modules

•  Modules may be very complicated

 Concurrent
•  Modules logically operate simultaneously

•  Implementations may be sequential or parallel or distrib

 Abstract
•  The interaction of modules occurs within a “model of co

•  Many interesting and useful MoCs have emerged

 Domain Specific
•  Expertise encapsulated in MoCs and libraries of module
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Heterogeneous Implementation Architectures
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control panel

ASIC microcontroller

real-time
operating
system

system interco

DSP
assembly

code

programmable
DSP

host port

memory interface

Heterogeneity is a major source
of complexity in such systems.

microwave,

network

microfluidic,
FPGA

MEMS
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Two Approaches to the Design of Such Systems
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 The grand-unified approach
•  Find a common representation language for all compon

•  Develop techniques to synthesize diverse implementati

 The heterogeneous approach
•  Find domain-specificmodels of computation (MoC)

•  Hierarchically mix and match MoCs to define a system

•  Retargetable synthesis techniques from MoCs to divers

he Ptolemy project is pursuing the latter app
•  Domain specific MoCs match the applications better

•  Choice of MoC can profoundly affect system architectur

•  Choice of MoC can limit implementation options

•  Synthesis from specialized MoCs is easier than from G
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Heterogeneous System-Level Specification & Modeling
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problem level (heterogeneous models of computa

implementation level (heterogeneous implementation tec

mapping, s
modeling
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Some Problem-Level Models of Computation
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Gears

 Differential equations

 Difference equations

 Discrete-events

 Petri nets

 Dataflow

 Process networks

 Actors

 Threads

 Synchronous/reactive languages

 Communicating sequential processes

 Hierarchical communicating finite state mac



 © 1997, p.  11 of  24a

Example — Process Networks
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A

C

B

Strengths:
•  Good match for signal processing

•  Loose synchronization (distributable)

•  Determinate

•  Maps easily to threads

•  Dataflow special cases map well to hardware and emb

Weakness:
•  Control-intensive systems are hard to specify

process

stream of tokens

channe

Note: Dataflow is
a special case.
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Sequential Example — Finite State Machines
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A

C

B

Strengths:
•  Natural description of sequential control

•  Behavior is decidable

•  Can be made determinate (often is not, however)

•  Good match to hardware or software implementation

Weaknesses:
•  Awkward to specify numeric computation

•  Size of the state space can get large

states

transitions

z/r

guard/action

Guards determin
sition may be m
state to another,
events that are v
puts assert othe

x/p

y/q
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Essential Differences — Models of Time
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syn

continuous time

discrete time

ultirate discrete time

F1 F2 F3 F4

E1 E2 E3 E4

G1 G2 G3 G4

totally-ordered

partially-ordered discrete events

Salvador Dali, The Persisten

discrete events
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Key Issues in these Models of Computation

 

 

 

 

 plementations.

 

 

 

 

 

 .
t

•

•

•

•

•

•

•

•

•

•

•

UNIVERSITY OF CALIFORNIA AT BERKELEY

lk. fm

 Maintaining determinacy.

 Supporting nondeterminacy.

 Bounding the queueing on channels.

 Scheduling processes.

 Synthesis: mapping to hardware/software im

 Providing scalable visual syntaxes.

 Resolving circular dependencies.

 Modeling causality.

 Achieving fast simulations.

 Supporting modularity.

 Composing multiple models of computation
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Choosing Models of Computation
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Validation methods

 By construction
•  property is inherent.

 By verification
•  property is provable syntactically.

 By simulation
•  check behavior for all inputs.

 By testing
•  observation of a prototype.

 By intuition
•  property is true, I think.

 By assertion
•  property is true. That’s an order.

It is generally better to be higher in th

Meret Oppenheim,
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Usefulness of Modeling Frameworks
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he following objectives are at odds with one 

 Expressiveness

 Generality

s.

 Verifiability

 Compilability/Synthesizability

The Conclusion?

Heterogeneous modeling.
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A Mixed Design Flow
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FSMs

cosimulation

cosimulation

execution
model

system-level modeling

ynthesis

etail modeling and simulation

ASIC
model

execution
model

ASIC
synthesis

software
synthesis

partitioning

compiler

imperative dataflow
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Major Contributions under RASSP
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 Static scheduling of synchronous dataflow (
optimum memory utilization, for partitioning 
hardware/software implementations, and fo
VHDL.

 Mixed modeling and design of hardware, em
software, and the test environment.

 Integrated symbolic processing with numeri
demonstrated heterogeneous design tools t
commercial tools such as Matlab, Mathema
simulators.

 Generalizations of dataflow to multidimensi
and to process networks.

 Robust dynamic dataflow scheduling for bo

 Visual programming and use of higher-orde

 Optimized synchronization for multiprocess
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Contributions (contd.)
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 A synchronous-reactive modeling technique
and can be combined with dataflow, finite-s
and discrete-event modeling.

 A hierarchical finite-state machine model of
that can be combined with dataflow, discrete
synchronous reactive modeling.

 A mathematical semantic framework for com
of computation, and analysis within this fram
discrete-event semantics of VHDL and the fo
of dataflow.

 Public distribution of three major versions o
software and two versions of the Tycho use
framework. This software serves as our labo
major vehicle for technology transfer.
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Mixing Control and Signal Processing — *Charts
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Choice of domain here determines concurrent sem

H

FSM

FSM
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Example: DE, Dataflow, and FSMs
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Technology Transfer
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ur policy of free and open software distributi
 be a very effective facilitator for technology
 1995 — The Alta Group at Cadence annou
using Ptolemy dataflow and mixed dataflow
technology (SPW 3.5).

 1995 — DQDT uses and extends Ptolemy V
for ASIC designs.

 1995 — BDTI uses the Ptolemy kernel to in
commercial tools (SPW and Bones from Alt

 1996 — Lockheed/Martin develops architec
analysis tool based on Ptolemy.

 1997 — Hewlett-Packard (EEsof) announce
an integration of Ptolemy dataflow technolo
RF and microwave design and modeling too

 1997 — BNED, Technologies Lyre, White E
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Ptolemy Software as a Tool and as a Laboratory
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Ptolemy software is
•  Extensible

•  Publicly available

•  An open architecture

•  Object-oriented

Allows for experi
•  Models of com

•  Heterogeneou

•  Domain-speci

•  Design metho

•  Software synt

•  Hardware syn

•  Cosimulation

•  Cosynthesis

•  Visual syntaxe
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Further Information
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•  Software dist
•  Small demon
•  Project overv
• The Almagest
•  Current proje
•  Project publi
•  Keyword sea
•  Project partic
•  Sponsors
•  Copy of the F
•  Newsgroup i
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ttp://ptolemy.eecs.berkeley.edu
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