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Abstract

Ptolemy is a research project and software environment
focused on the design and modeling of reactive systems, pro-
viding high-level support for signal processing, communica-
tion, and real-time control. The key underlying principle in
the project is the use of multiple models of computation in a
hierarchical heterogeneous design and modeling environ-
ment. This talk gives an overview of some of the models of
computation of interest, with a focus on their concurrency,
thier ability to model and specify real-time systems, and their
ability to mix control logic with signal processing.
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Types of Computational Systems

Transformational
•  transform a body of input data into a body of output data

Interactive
•  interact with the environment at their own speed

Reactive
•  react continuously at the speed of the environment

This project focuses on design of reactive systems
•  real-time

•  embedded

•  concurrent

•  network-aware

•  adaptive

•  heterogeneous
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Interactive, High-Level Simulation and Specification

Author: Uwe
Trautwein,
Technical
University of
Ilmenau,
Germany
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Properties of Such Specifications

•  Modular
•  Large designs are composed of smaller designs

•  Modules encapsulate specialized expertise

•  Hierarchical
•  Composite designs themselves become modules

•  Modules may be very complicated

•  Concurrent
•  Modules logically operate simultaneously

•  Implementations may be sequential or parallel or distributed

•  Abstract
•  The interaction of modules occurs within a “model of computation”

•  Many interesting and useful MoCs have emerged

•  Domain Specific
•  Expertise encapsulated in MoCs and libraries of modules.
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Heterogeneous Implementation Architectures

control panel

ASIC microcontroller

real-time
operating
system

controller
process

user interface
process

system interconnect

DSP
assembly

code

programmable
DSP

host port

memory interface

CODEC

audio/
video

Heterogeneity is a major source
of complexity in such systems.

microwave,

network

microfluidic,
FPGA

MEMS
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Two Approaches to the Design of Such Systems

•  The grand-unified approach
•  Find a common representation language for all components

•  Develop techniques to synthesize diverse implementations from this

•  The heterogeneous approach
•  Find domain-specificmodels of computation (MoC)

•  Hierarchically mix and match MoCs to define a system

•  Retargetable synthesis techniques from MoCs to diverse implementations

The Ptolemy project is pursuing the latter approach
•  Domain specific MoCs match the applications better

•  Choice of MoC can profoundly affect system architecture

•  Choice of MoC can limit implementation options

•  Synthesis from specialized MoCs is easier than from GULs.
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Heterogeneous System-Level Specification & Modeling

problem level (heterogeneous models of computation)

implementation level (heterogeneous implementation technologies)

mapping, synthesis, &
modeling
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Some Problem-Level Models of Computation

• Gears

•  Differential equations

•  Difference equations

•  Discrete-events

•  Petri nets

•  Dataflow

•  Process networks

•  Actors

•  Threads

•  Synchronous/reactive languages

•  Communicating sequential processes

•  Hierarchical communicating finite state machines
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Example — Process Networks

A

C

B

Strengths:
•  Good match for signal processing

•  Loose synchronization (distributable)

•  Determinate

•  Maps easily to threads

•  Dataflow special cases map well to hardware and embedded software

Weakness:
•  Control-intensive systems are hard to specify

process

stream of tokens

channel

Note: Dataflow is
a special case.
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Sequential Example — Finite State Machines

A

C

B

Strengths:
•  Natural description of sequential control

•  Behavior is decidable

•  Can be made determinate (often is not, however)

•  Good match to hardware or software implementation

Weaknesses:
•  Awkward to specify numeric computation

•  Size of the state space can get large

states

transitions

z/r

guard/action

Guards determine when a tran-
sition may be made from one
state to another, in terms of
events that are visible, and out-
puts assert other events.

x/p

y/q



UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p.  13 of  24talk. fm

Essential Differences — Models of Time

synchronous/reactive

⊥

⊥ ⊥ ⊥ ⊥⊥⊥

⊥ ⊥

continuous time

discrete time

multirate discrete time

F1 F2 F3 F4

E1 E2 E3 E4

G1 G2 G3 G4

totally-ordered

partially-ordered discrete events

Salvador Dali, The Persistence of Memory , 1931

discrete events
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Key Issues in these Models of Computation

•  Maintaining determinacy.

•  Supporting nondeterminacy.

•  Bounding the queueing on channels.

•  Scheduling processes.

•  Synthesis: mapping to hardware/software implementations.

•  Providing scalable visual syntaxes.

•  Resolving circular dependencies.

•  Modeling causality.

•  Achieving fast simulations.

•  Supporting modularity.

•  Composing multiple models of computation.
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Choosing Models of Computation

Validation methods

•  By construction
•  property is inherent.

•  By verification
•  property is provable syntactically.

•  By simulation
•  check behavior for all inputs.

•  By testing
•  observation of a prototype.

•  By intuition
•  property is true, I think.

•  By assertion
•  property is true. That’s an order.

It is generally better to be higher in this list

Meret Oppenheim, Object , 1936
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Usefulness of Modeling Frameworks

The following objectives are at odds with one another:

•  Expressiveness

•  Generality

vs.

•  Verifiability

•  Compilability/Synthesizability

The Conclusion?

Heterogeneous modeling.
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A Mixed Design Flow

FSMs
discrete
event

cosimulation

logic
model

cosimulation

execution
model

system-level modeling

synthesis

detail modeling and simulation

ASIC
model

execution
model

ASIC
synthesis

software
synthesis

partitioning

compiler
logic

synthesis

symbolic

imperative dataflow
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Major Contributions under RASSP

•  Static scheduling of synchronous dataflow (SDF) graphs for
optimum memory utilization, for partitioning into mixed
hardware/software implementations, and for synthesis of
VHDL.

•  Mixed modeling and design of hardware, embedded
software, and the test environment.

•  Integrated symbolic processing with numeric and
demonstrated heterogeneous design tools that leverage
commercial tools such as Matlab, Mathematica, and VHDL
simulators.

•  Generalizations of dataflow to multidimensional streams
and to process networks.

•  Robust dynamic dataflow scheduling for bounded memory.

•  Visual programming and use of higher-order functions.

•  Optimized synchronization for multiprocessors.
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Contributions (contd.)

•  A synchronous-reactive modeling technique that is modular
and can be combined with dataflow, finite-state machines,
and discrete-event modeling.

•  A hierarchical finite-state machine model of computation
that can be combined with dataflow, discrete-event, and
synchronous reactive modeling.

•  A mathematical semantic framework for comparing models
of computation, and analysis within this framework of the
discrete-event semantics of VHDL and the formal semantics
of dataflow.

•  Public distribution of three major versions of the Ptolemy
software and two versions of the Tycho user-interface
framework. This software serves as our laboratory and as a
major vehicle for technology transfer.
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Mixing Control and Signal Processing — *Charts

Choice of domain here determines concurrent semantics

Hierarchy is free

FSM

FSM
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Example: DE, Dataflow, and FSMs
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Technology Transfer

Our policy of free and open software distribution has proven
to be a very effective facilitator for technology transfer.
•  1995 — The Alta Group at Cadence announces software

using Ptolemy dataflow and mixed dataflow/discrete-event
technology (SPW 3.5).

•  1995 — DQDT uses and extends Ptolemy VHDL generation
for ASIC designs.

•  1995 — BDTI uses the Ptolemy kernel to integrate
commercial tools (SPW and Bones from Alta).

•  1996 — Lockheed/Martin develops architecural tradeoff
analysis tool based on Ptolemy.

•  1997 — Hewlett-Packard (EEsof) announces “HP Ptolemy,”
an integration of Ptolemy dataflow technology with analog
RF and microwave design and modeling tools.

•  1997 — BNED, Technologies Lyre, White Eagle Systems, ...
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Ptolemy Software as a Tool and as a Laboratory

Ptolemy software is
•  Extensible

•  Publicly available

•  An open architecture

•  Object-oriented

Allows for experiments with:
•  Models of computation

•  Heterogeneous design

•  Domain-specific tools

•  Design methodology

•  Software synthesis

•  Hardware synthesis

•  Cosimulation

•  Cosynthesis

•  Visual syntaxes (Tycho)
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Further Information

•  Software distributions
•  Small demonstration versions
•  Project overview
• The Almagest (software manual)
•  Current projects summary
•  Project publications
•  Keyword searching
•  Project participants
•  Sponsors
•  Copy of the FAQh
•  Newsgroup info
•  Mailing lists info

http://ptolemy.eecs.berkeley.edu


