-PTOLEMY II-

HETEROGENEOUS
CONCURRENT
MODELING AND DESIGN
IN JAVA

John Dauvis, I : : : '
Ron Galicia Department of Electrical Engineering and Computer Science
Mudit Goel University of California at Berkeley
Christopher Hylands | Note: This document is a draft of the final design ;=
Edward A. Lee document for Ptolemy Il It reflects work in |
JieLiu progress. Most is still under design, and thus is subsé=5"
John Reekie ject to fairly radical changes. o
Neil Smyth

Yuhong Xiong

Copyright[] 1998 The Regents of the University of California.
All rights reserved.

— DRAFT — NOT FOR DISTRIBUTION —

“Java” is a registered trademark of Sun Microsystems.

Contents

1. Introduction 1-1
1.1. Objectives 1-1
1.2. Package Structure 1-2
2. The Kernel 2-1
2.1. Abstract Syntax 2-1
2.2.UML Notation 2-2
2.3. Ptolemy Il Conventions 2-4
2.4.Non-Hierarchical Topologies 2-5
2.4.1. Links 2-5
2.4.2. Consistency 2-5
2.5. Support Classes 2-5
2.5.1. Containers 2-5
2.5.2. Name and Full Name 2-6
2.5.3. Workspace 2-6
2.5.4. Attributes 2-6
2.5.5. List Classes 2-7
2.6. Clustered Graphs 2-7
2.6.1. Abstraction 2-7
2.6.2. Level-Crossing Connections 2-10
2.6.3. Tunneling Entities 2-11
2.6.4. Description 2-11
2.6.5. Cloning 2-12
2.6.6. An Elaborate Example 2-13
2.6.7. Mutations 2-13
2.7.Composite Opaque Entities 2-17
2.8.Concurrency 2-17
2.8.1. Limitations of Monitors 2-18
2.8.2. Workspace 2-19
2.9. Exceptions 2-20
2.9.1. Base Class 2-20
2.9.2. Less Severe Exceptions 2-20
2.9.3. Very Severe Exceptions 2-21
3. Actors 3-1
3.1. Concurrent Computation 3-1
3.2. Message Passing 3-2
3.2.1. Data Transport 3-3
3.2.2. Example 3-5
3.2.3. Transparent Ports 3-5
3.2.4. Data Transfer in Various Models of Computation 3-8

Heterogeneous Concurrent Modeling and Design

3.2.5. Discussion of the Data Transfer Mechanism 3-9
3.3. Execution 3-9
3.3.1. Director 3-10
3.3.2. Mutations 3-13
3.3.3. Excecution Sequence for Process Networks MOC 3-13
3.3.4. Composite Opaque Actors 3-14
3.4. Utilities 3-15
3.5. Library 3-15
Data 4-1
Graph 5-1
Higher-Order Functions 6-1
Automata 7-1
Synthesis 8-1
8.1. Separating Interface from Implementation 8-1
8.1.1. Syntactic Properties of the Interface 8-1
8.1.2. Semantic Properties of the Interface 8-1
9. Conclusions 9-1
References R-1
Index 3

©o~No O A

Ptolemy Il

Introduction

1.1 Objectives

Ptolemy Il is a complete, from the ground up, redesign of the Ptolemy design environment, which

supports heterogeneous concurrent modeling and design [4]. Some of the major capabilites that we
believe to be new technology in design and simulation environments include:

Higher level concurrent design in JaW4 Java support for concurrent design is very low level.
Maintaining safety and liveness can be quite difficult [12]. Ptolemy Il provides a number of
domainsthat support design of concurrent systems at a much higher level of abstraction. These
include simulation models of various types, process networks, communicating sequential pro-
cesses (rendezvous based), dataflow, synchronous/reactive modeling, continuous-time modeling,
and hierarchical concurrent finite-state machines.

Interoperability through software componeri®olemy Il uses CORBA in a number of ways.
Components (actors) in a Ptolemy Il application may be implemented on a remote server via
CORBA. Also, components may be parameterized where parameter values are supplied by a
CORBA server (this mechanism suppaeduced-order modelingvhere the model is provided

by the server). Finally, a Ptolemy Il application can be exported via a CORBA server.

Better modularization through the use of packadttslemy Il is divided into packages that can be
used independently and distributed on the net, or drawn on demand from a server. This breaks with
tradition in CAD software, where design tools usually consist of huge integrated systems with
interdependent parts.

Complete separation of the abstract syntax from the semaRtasmy designs are structured as
clustered graphs. Ptolemy Il defines a clean and thorough abstract syntax for such clustered
graphs, and separates into distinct packages the infrastructure supporting such graphs from mecha-
nisms that attach semantics (such as dataflow, analog circuits, finite-state machines, etc.) to the
graphs.

Improved heterogeneityhe Ptolemy wormhole mechanism for coupling heterogeneous models of
computation is improved to provide better support for models of computation that are very differ-
ent from dataflow, the best supported model in prior versions of Ptolemy. These will include hier-

Heterogeneous Concurrent Modeling and Design 1-

Introduction

archical concurrent finite-state machines and a variety of continuous-time modeling techniques.

Thread-safe concurrent executid®tolemy applications are typically concurrent, but in the past,
support for concurrent execution of a Ptolemy application has been primitive. Ptolemy Il supports
concurrency throughout, allowing for instance for an application to mutate (modify its clustered
graph structure) while the user interface simultaneously modifies the structure in different ways.
Consistency is maintained through the use of monitors and read/write semaphores [10] built upon
the lower level synchronization primitives of J&Va

A software architecture based on object model8igce the first Ptolemy implementation, soft-

ware engineering has seen the emergence of sophisticated object modeling [15][21][23] and
design patterns [7] concepts. We have applied these concepts to the design of Ptolemy II, and they
have resulted in a more consistent, cleaner, and more robust design. We have also applied a simpli-
fied software engineering process that includes systematic design and code reviews [14][17].

A truly polymorphic type systentarlier implementations of Ptolemy support rudimentary poly-
morphism through the “anytype particle.” Even with such limited polymorphism, type resolution
has proved challenging, and current implementations are ad-hoc and fragile. Ptolemy Il has a
more modern type system based on a partial order of types and monotonic type refinement func-
tions associated with functional blocks. Type resolution will consist of finding a fixed point, using
algorithms recently developed within the project [5]..

Improved design refinememdarlier versions of Ptolemy had only very weak mechanisms for
migrating designs from idealized floating-point simulations through fixed-point simulations to
embedded software, FPGA, and hardware designs. Ptolemy Il will separate the interface defini-
tion of component blocks from their implementation, allowing libraries to be constructed where
compatability across implementation technologies is assured [22].

1.2 Package Structure

The package structure is shown in figure 1.1. The role of each of the packages is explained below.

kernel This package provides the software architecture for the key abstract syntax, clustered
graphs. The classes support entities with ports and relations that link the ports. Clustering is where
a collection of entities is encapsulated in a single entity and a subset of the ports of the inside enti-
ties are exposed as ports of the cluster entity.

actor. This package supports executable entities that receive and send data through ports. It
includes a library of polymorphic actors.

automata This package supports sequential computation where entities represent a state or phase
of computation.

domains This set of packages support particular models of computation.

actor libraries This set of packages collect actors for particular models of computation or groups
of models of computation.

graph This package provides algorithms for manipulating and anlyzing mathematical graphs.

data This package provides classes that encapsulate and manipulate data that is transported by
Ptolemy applications. It supports a rich expression parser and interpreter.

math This package encapsulates mathematical functions and methods for operating on matrixes
and vectors.

plot. This package provides 2-dimensional signal plotting widgets.

1-2

Ptolemy Il

Introduction

kernel.util

CrossRefList
lllegalActionException
InvalidStateException
KernelException
NameDuplicationException
Nameable

NamedList

NamedObj

Workspace

graph

CPO
DirectedGraph
FiniteCPO
Graph

data

kernel.mutation

kernel

ComponentEntity
ComponentPort
ComponentRelation
CompositeEntity
Entity

Port

Relation

Mutation
MutationListener

automata

f

actor

actor.util

Actor
CompositeActor
Director
EventReceiver
Executable
I0Port
IORelation
Mailbox
QueueReceiver
Receiver
RendezvousReceiver

FIFOQueue
PriorityQueue

actor.lib

A

Add

Const
Demux
Expression
FunctionGenerator
Gain
Multiply
Mux

Plot

Print
Repeat
Select
Switch
XYPlot

domains.ct

math

DSP
Matrix

BooleanMatrixToken
BooleanToken
DoubleMatrixToken
DoubleToken
ExprParameter
IntMatrixToken
IntToken
LongMatrixToken
LongToken
MatrixToken
NullToken
ObjectToken
ScalarToken
StringToken

Token
TokenPublisher
TypeCPO

r T v
data.expr

plot

CmdLineArgException
Plot

PlotApplet

PlotBox
PlotDataException
PlotLive

PlotPoint

Pxgraph

ASCII_CharStream
JJTPtParserState

Node

Parameter
ParseException
PtParser
PtParserConstants
PtParserTokenManager
PtParserTreeConstants
SimpleNode

Token

TokenMgrError

... various nodes

gui

Message

filter

CTActor
CTDirector
CTRKA4Director
CTScheduler

domains.ct.lib

CTlIntegrator

FIGURE 1.1.

domains.pn [« domains.pn.lib

PNActor Alternate

PNDirector Interleave
Redirect
Sieve

The package structure of Ptolemy II.

Heterogeneous Concurrent Modeling and Design

Introduction

» filter. This package encapsulates a set of classes supporting signal processing.

14 Ptolemy Il

The Kernel

2.1 Abstract Syntax

The kernel defines a small set of Java classes that implement a data structure supporting a general
form of uninterpreted clustered graphs, plus methods for accessing and manipulating such graphs.
These graphs provide an abstract syntax for netlists, state transition diagrams, block diagrams, etc. An
abstract syntaxs a conceptual data organization. It can be contrasted watinarete syntaxwhich is
a syntax for a persistent, readable representation of the data, such as EDIF for netlists. A particular
graph configuration is calledtapology

Although this idea of an uninterpreted abstract syntax is present in the original Ptolemy kernel [4],
in fact the original Ptolemy kernel has more semantics than we would like. It is heavily biased towards
dataflow, the model of computation used most heavily. Much of the effort involved in implementing
models of computation that are very different from dataflow stems from having to work around certain
assumptions in the kernel that, in retrospect, proved to be particular to dataflow.

A topology is a collection oentitiesandrelations We use the graphical notation shown in figure
2.1, where entities are depicted as rounded boxes and relations as diamonds. Entitipertsave
shown as filled circles, and relations connect the ports. We consistently use theotemectionto
denote the association between connected ports (or their entities), and thiakedodenote the asso-
ciation between ports and relations. Thus, a connection consists of a relation and two or more links.

The use of ports and hierarchy distinguishes our topologies from mathematical graphs. In a mathe-
matical graph, an entity would be a vertex, and an arc would be a connection between entities. A vertex
could be represented in our schema using entities that always contain exactly one port. In a directed
graph, the connections are divided into two subsets, one consisting of incoming arcs, and the other of
outgoing arcs. The vertices in such a graph could be represented by entities that contain two ports, one
for incoming arcs and one for outgoing arcs. Thus, in mathematical graphs, entities always have one or
two ports, depending on whether the graph is directed. Our schema generalizes this by permitting an
entity to have any number of ports, thus dividing its connections into an arbitrary number of subsets.

A second difference between our graphs and mathematical graphs is that our relations are multi-
way associations, whereas an arc in a graph is a two-way association. A third difference is that mathe-

Heterogeneous Concurrent Modeling and Design 2-

The Kernel

matical graphs normally have no notion of hierarchy (clustering).

Relations are intended to serve a mediators, in the sense of the Mediator design pattern of Gamma,
et al. [7]. “Mediator promotes loose coupling by keeping objects from referring to each other explic-
itly...” For example, a relation could be used to direct messages passed between entities. Or it could
denote a transition between states in a finite state machine, where the states are represented as entities.
Or it could mediate rendezvous between processes represented as entities. Or it could mediate method
calls between loosely associated objects, as for example in remote method invocation over a network.

2.2 UML Notation

The most basic classes in the Ptolemy Il kernel package and their relationships are shown in figure
2.2, using UML notation [6][20]. Such relationships are calledbaject modeland represent many
essential features about the design. We show onltiditic structure diagramsor class diagram®f
UML.

The class name is shown at the top of each boxtitibutesare shown below that, and its meth-
ods below that. The attributes are usually not directly visible to a programmer using these classes (they
are implemented as private members). But they are a useful part of the object model because they indi-
cate the state information contained by an instance of the class.

Subclasses are indicated by lines with white triangles (or outlined arrow heads). The class on the
side of the arrow head is trmuperclasor base classThe class on the other end is thebclassor
derived classThe derived class is said $pecializehe base class, or conversely, the base clagsro
eralizethe derived class. The derived claskerits all the methods shown in the base class, and may
overrideor some of them. In our object models, we do not explicitly show methods that override those
defined in a base class or inherited from a base class. For example, in figure 2.3, Attribute has all the
methods of NamedObj, but only shows the one method it adds. Thus, the complete set of methods of a
class is cumulative. Every class has its own methods plus those of all its superclasses.

Our object models do not show private methods, which are not inhertited. For completeness, our
object models do show all public and protected methods of these classes, although a proper object
model might only show those relevant to the issues being discussed.

Attributes with leading underscores, such as _portList, are private or protected members or meth-
ods. In the UML diagrams, private members are indicated with a leading “-". Public methods have a

-¢—— Connection —p»

Link Link
\ Relation/(
Connection x| Connection

N

FIGURE 2.1. Visual notation and terminology.

2-2 Ptolemy Il

The Kernel

leading “+"” and protected methods a leading “#".

Classes shown in boxes outlined with dashed lines, such as NamedObj, CrossRefList, and Named-
List in figure 2.2, are fully described elsewhere. This is not standard UML notation, but it gives us a
convenient way to partition diagrams. Often, these classes belong to another package. In the case of
figure 2.2, those classes are shown fully in figure 2.3.

Figure 2.3 also shows an example of iaterface Nameable, which is indicated by the label
“<<Interface>>" and by italics in the name. An interface defines a set of methods without providing an
implementation for them. When a claissplementsan interface, the object model shows the relation-
ship with a dotted-line with an arrow. Argoncrete clasgone that can be instantiated) that implements
an interface must provide implementations of all its methods. In our object models, we do not show
those methods explicitly in the concrete class, just like inherited methods, but their presence is implicit
in the relationship.

We will occasionally shovabstract classeswhich like interfaces in that they cannot be instanti-
ated, but unlike interfaces in that they may provide default implementations for some methods, and
may even have private members. Abstract classes are indicated by italics in the class name.

Inheritance and implementation are typesasbociationshetween entities in the object model.
Associations of other types are indicated by other lines, often annotated with ranges like “0..n” or with
diamonds on one end or the other.

Aggregations are shown as associations with diamonds. For example, an Entity is an aggregation
of any number (0..n) instances of Port. More strongly, we say that a Podniginedby 0 or 1
instances of Entity, or that Entity icampositionof Ports.

NamedObj

CrossRefList

1.1
Port
. -_container : Entity
) container |-_relationsList : CrossRefList
Entity o1 [+connectedPorts() : Enumeration| Relation
—_ - 0..n |+isLinked(r : Relation) : boolean | link
-_portList : NamedList [+isOpaque() : boolean i i
+connectedPorts() : Enumeration containee o 0.n porlList CroosRerliot

+getPort(name : String) : Port
+getPorts() : Enumeration
+linkedRelations() : Enumeration
+newPort(name : String) : Port
+removeAllPorts()

[#_addPort(p : Port)

removePort(p : Port)

+linkedRelations() : Enumeration
+link(r : Relation)

+numLinks() : int
+setContainer(c : Entity)
+unlink(r : Relation)

+unlinkAll()

L link()

1.1
0..n
0.1
1.1

NamedList

+linkedPorts() : Enumeration
+linkedPorts(except : Port) : Enumeration
+numLinks() : int

+unlinkAll()

[#_checkPort(p : Port)

[# getPortList() : CrossRefList

FIGURE 2.2. Key classes in the kernel package and their methods supporting basic (non-hierarchical) topol-
ogies. Methods that override those defined in a base class or implement those in an interface are not shown.
The “+” indicates public visibility, “#" indicates protected, and “-" indicates private. The classes shown with
dashed outlines are in the kernel.util subpackage.

Heterogeneous Concurrent Modeling and Design

The Kernel

This containment is mediated by the NamedList utility class, shown in figure 2.3. Unlike the con-
tainment association, however, the Port has no reference to a NamedList that refers to it, and any num-
ber of NamedList instances can refer to it. Only one Entity can contain it. The stronger form of
aggregation (containment or composition) is indicated by the filled diamond, while the weaker form is
indicated by the unfilled diamond.

As usual in UML, return types of methods are shown after a colon. Types of arguments are also
shown after a colon, but within the parenthese that delimit the argument list.

2.3 Ptolemy Il Conventions

We have made an effort to be consistent about haming of classes, methods and members. Class
names are capitalized, with internal word boundaried also capitalized (as in “NamedObj”). Method
names that are plural, such as getPorts(), usually return an enumeration (or sometimes an array). As
explained before, private and protected members and methods have a leading underscore. Members
and methods are not capitalized, although internal word boundaries usually are. Considerable discus-
sion was involved in the choice of most class and method names, although inevitably, we had to make
some compromises.

«Interface» «utility»
Nameable NamedList

-_container : Nameable
~ — —{+description() : String < — — — -_namedlist : LinkedList

+getContainer() : Nameable +append(element : Nameable)
+getFullName() : String +elements() : CollectionEnumeration

+getName() : String +first() : Nameable

+setName(name : String) +get(name : String) : Nameable

+includes(element : Nameable) : boolean

\
\
‘ +insertAfter(name : String, element : Nameable)
NamedObj +insertBefore(name : String, element : Nameable)
‘ +last() : Nameable
" n " 0.1 +prepend(element : Nameable)
[_attributes : Named.Llst ‘ 0.1 +remove(element : Nameable)
M‘M‘% “" _J+remove(name : String) : Nameable
[_name : String ‘ +removeAll()
- _workspace : Workspace +size() : int
+clone() : Object 1 ‘
+clone(destination : Workspace) ——— | 0.1
+deepContains(inside : NamedObj) : boolean 0.n
+description(detail : int) : String .
+getAttribute(name : String) : Nameable Workspace CrossRefList
+getAttributes() : Enumeration - - - -
[+ workspace() : Workspace -_contents : NamedList -7I|§lVer§|0n sint
l#_addAttribute(p : Parameter) +add(item : NamedObj) [_size : int
[#_description(detail : int, indent : int, bracket : int) : String +description() : String +first() : Object
|#_removeAttribute(name : String) +directory() : CollectionEnumeration +getLinks() : Enumeration
4 indent(level : int) : String +description(detail : int) : String +isLinked(o : Object) : boolean
+doneReading() +link(farList : CrossRefList)
+doneWriting() +size() : int
+getVersion() : long +unlink(o : Object)
+incrVersion() +unlinkAll()
+read()
+remove(item : NamedObj)
+removeAll()
+write()
Attribute # description(detail : int, indent : int, bracket : int) : String
- _container : NamedObj 0..n

[+setContainer(container : NamedObj)

FIGURE 2.3. Support classes in the kernel.util package.

2-4 Ptolemy Il

The Kernel

2.4 Non-Hierarchical Topologies

The classes shown in figure 2.2 support non-hierarchical topologies, like that shown in figure 2.1.

2.4.1 Links

An Entity contains any number of Ports; such an aggregation is indicated by the association with
an unfilled diamond and the label “0..n” to show that the Entity can contain any humber of Ports, and
the label “0..1” to show that the Port is contained by at most one Entity. This association is uses the
NamedList class shown at the bottom of figure 2.2. There is exactly one instance of NamedList associ-
ated with Entity, and it aggregates the ports.

A Port is associated with any number of Relations (the association is calliedlp &nd a Relation
is associated with any number of Ports. Link associations use CrossRefList, shown at the top of figure
2.2. There is exactly one instance of CrossRefList associated with each port and each relation. The
links define a web of interconnected entities.

2.4.2 Consistency

A major concern in the choice of methods to provide and in their design is maintaining consis-
tency. By ‘tonsistencyve mean that the following key properties are satisfied:
» Everylink is symmetric and bidirectional. That is, if a port has a link to a relation, then the relation
has a link back to that port.

» Every object that appears on a container’s list of contained objects has a back reference to its con-
tainer.

In particular, the design of these classes ensures that the _container attribute of a port refers to an entity
that includes the port on its _portList. This is done by limiting the access to both attributes. The only
way to specify that a port is contained by an entity is to call the setContainer() method of the port. That
method guarantees consistency by first removing the port from any previous container’s portList, then
adding it to the new container’s port list. A port is removed from an entity by calling setContainer()
with a null argument.

A change in a containment association involes several distinct objects, and therefore must be
atomic, in the sense that other threads must not be allowed to intervene and modify or access relevant
attributes halfway through the process. This is ensured by synchronization on the workspace, as
explained below in section 2.8. Moreover, if an exception is thrown at any point during the process of
changing a containment association, any changes that have been made must be undone so that a consis-
tent state is restored.

2.5 Support Classes

The kernel package has a subpackage called kernel.util that provides some underlying support
classes, some of which are shown in figure 2.3. These classes define notions basic to Ptolemy Il of
containment, naming, and parameterization, and provide generic support for relevant data structures.

2.5.1 Containers

Although these classes do not provide support for constructing clustered graphs, they provide rudi-

Heterogeneous Concurrent Modeling and Design 3-

The Kernel

mentary support focontainerassociations. An instance of these classes can have at most one con-
tainer. That container is viewed as the owner of the object, and “managed ownership” [12] is used as a
central tool in thread safety, as explained in section 2.8 below.

In the base classes shown in figure 2.2, only an instance of Port can have a non-null container. It is
the only class with a setContainer() method. Instances of all other classes have no container, and their
getContainer() method will return null. In the classes of figure 2.3, only Attribute has a setContainer()
method.

Every object is associated with exactly one instance of Workspace, as shown in figure 2.3, but the
workspace is not viewed as a container. The workspace is defined when an object is constructed, and
no methods are provided to change it. It is said téntrautable a critical property in its use for thread
safety.

2.5.2 Name and Full Name

The Nameable interface supports hieararchy in the naming so that individual named objects in a
hierarchy can be uniquely identified. By convention, tié nameof an object is a concatenation of
the full name of its container, if there is one, or the name of the workspace, if there is not, a period
(*.7), and the name of the object. The full name is used extensively for error reporting.

NamedObj is a concrete class implementing the Nameable interface. It also serves as an aggrega-
tion of attributes, as explained below in section 2.5.4.

Names of objects are only required to be unique within a container. Thus, even the full name is not
assured of being globally unique.

Here, names are a property of the instances themselves, rather than properties of an association
between entities. As argued by Rumbaugh in [24], this is not always the right choice. Often, a name is
more properly viewed as a property of an association. For example, a file name is a property of the
association between a directory and a file. A file may have multiple names (through the use of sym-
bolic links). Our design takes a stronger position on names, and views them as properties of the object,
much as we view the name of a person as a property of the person (vs. their employee number, for
example, which is a property of their association with an employer).

2.5.3 Workspace

Workspace is a concrete class that implements the Nameable interface, as shown in figure 2.2. All
objects in a topology are associated with a workspace, and almost all operations that involve multiple
objects are only supported for objects in the same workspace. This constraint is exploited to ensure
thread safety, as explained in section 2.8 below. The name of the workspace is always the first term in
the full name. If the workspace has no name (a common situation), then the full name simply has a
leading period.

2.5.4 Attributes

In almost all applications of Ptolemy I, entities, ports, and relations need to be parameterized. The
base classes shown in figure 2.3 provide for these objects to have any number of instances of the
Attribute class attached to them. Attribute is a NamedObj that can be contained by another NamedObj,
and serves as a base class for parameters.

Attributes are added to a NamedObj by calling their setContainer() method and passing it a refer-
ence to the container. They are removed by calling setContainer() with a null argument. The Named-

2-6 Ptolemy Il

The Kernel

Obj class provides the getAttribute() method, which takes an attribute name as an argument and returns
the attribute, and the getAttributes() method, which returns an enumeration of all the attributes in the
object.

By itself, an instance of the Attribute class carries only a name, which may not be sufficient to
parameterize objects. A derived class called Parameter is defined in the data package.

2.5.5 List Classes

Figure 2.3 shows two list classes that are used extensively in Ptolemy Il. NamedList implements
an ordered list of objects with the Nameable interface. It is unlike a hash table in that it maintains an
ordering of the entries that is independent of their names. It is unlike a vector or a linked list in that it
supports accesses by name. It is used in figure 2.3 to maintain a list of attributes, and in figure 2.2 to
maintain the list of ports contained by an entity.

The class CrossRefList is a bit more interesting. It mediates bidirectional links between objects
that contain CrossRefLists, in this case, ports and relations. It provides a simple and efficient mecha-
nism for constructing a web of objects, where each object maintains a list of the objects it is linked to.
That list is an instance of CrossRefList. The class ensures consistency. That is, if one object in the web
is linked to another, then the other is linked back to the one. CrossRefList also handles efficient modi-
fication of the cross references. In particular, if a link is removed from the list maintained by one
object, the back reference in the remote object also has to be deleted. This is done in O(1) time. A more
brute force solution would require searching the remote list for the back reference, increasing the time
required and making it proportional to the number of links maintained by each object.

2.6 Clustered Graphs

The classes shown in figure 2.2 provide only partial support for hierarchy, through the concept of a
container. Subclasses, shown in figure 2.4, extend these with more complete support for hierarchy.
ComponentEntity, ComponentPort, and ComponentRelation are used whenever a clustered graph is
used. All ports of a ComponentEntity are required to be instances of ComponentPort. CompositeEntity
extends ComponentEntity with the capability of containing ComponentEntity and ComponentRelation
objects. Thus, it contains a subgraph. The association between ComponentEntity and CompositeEntity
is the classic Composite design pattern [7].

2.6.1 Abstraction

Composite entities are non-atomic (isAtomic() return false). They can contain a graph (entities and
relations). By default, a CompositeEntity is transparent (isOpaque() returns false). Conceptually, this
means that its contents are visible from the outside. The hierarchy can be ignored (flattened) by algo-
rithms operating on the topology. Some subclasses of CompositeEntity are opaque (see the Actor chap-
ter for examples). This forces algorithms to respect the hierarchy, effectively hiding the contents of a
composite and making it appear indistinguishable from atomic entities.

A ComponentPort contained by a CompositeEntity has inside as well as outside links. It maintains
two lists of links, those to relations inside and those to relations outside. Such a port serves to expose
ports in the contained entities as ports of the composite. This is the converse of the “hiding” operator
often found in process algebras [16]. Ports within an entity are hidden by default, and must be explic-
itly exposed to be visible (linkable) from outside the er?tiﬂ]he composite entity with ports thus pro-
vides an abstraction of the contents of the composite.

Heterogeneous Concurrent Modeling and Design Z-

The Kernel

A port of a composite entity may be opaque or transparent. It is defined apdmpueif its con-
tainer is opaque. Conceptually, if it is opaque, then its inside links are not visible from the outside, and
the outside links are not visible from the inside. If it is opaque, it appears from the outside to be indis-
tinguishable from a port of an atomic entity.

The transparent port mechanism is illustrated by the example in figuteSbie of the ports in
figure 2.5 are filled in white rather than black. These ports are saidttafsparent Transparent ports
(P3 and P4) are linked to relations (R1 and R2) below their container (E1) in the hierarchy. They may

NamedObj
CrossRefList
1.1
1.1
Port
. -_container : Entity
) container -_relationsList : CrossRefList
Entity 0.1 +connectedPorts() : Enumeration) Relation
- " 0..n |+isLinked(r : Relation) : boolean link

-_portList : NamedList +isOpaque() : boolean " -

+connectedPorts() : Enumeration containee | jinkedRelations() : Enumeration 0..n 0.n »ipOI’tLISt CrossReflist -

+getPort(name : String) : Port +link(r : Relation) +|!nkedP0rts() : Enumeration .

+getPorts() : Enumeration +numLinks() : int link _ |*linkedPorts(except : Port) : Enumeration

+linkedRelations() : Enumeration +setContainer(c : Entity) +numL|nks() - int

+newPort(name : String) : Port +unlink(r : Relation) FuniinkAllQ

+removeAllPorts() +unlinkAll) [#_checkPort(p - Port)

i addPort(p : Port) 4 link() [# getPortList() : CrossRefList

#_removePort(p : Port) 1.1

% 0..n
0.n
. 1.1
ComponentEntity ComponentPort
o.n NamedList

|-_container : CompositeEntity -_insideLinks : CrossRefList

: 0 - 0.1 = -
+!SA10m|C() - boolean 0.1 +deepConnectedPorts() : Enumeration
[+isOpaque() : boolean) > +deeplnsidePorts() : Enumeration
[+setContainer(c : CompositeEntity) +insidePorts() : Enumeration

+insideRelations() : Enumeration
+isDeeplyConnected(p : ComponentPort) : boolean
+isInsideLinked(r : Relation) : boolean
+liberalLink(r : Relation)

+numinsideLinks() : int

CompositeEntity #_linkinside(r : ComponentRelation)

outside(entity : Nameable) : boolean

containee

container

-_containedEntities : NamedList

-_containedRelations : NamedList
+allowLevelCrossingConnect(b : boolean)

[+connect(pl : ComponentPort, p2 : ComponentPort)

[+connect(pl : ComponentPort, p2 : ComponentPort, name : String) .
+deepGetEntities() : Enumeration 0.n ComponentRelation
+getEntity(name : String) : ComponentEntity container eontainer ComposteEnty
+getEntities() : Enumeration [:

+getRelation(name : String) : ComponentRelation 0.1 0..n |+deeplinkedPorts() : Enumeration
+getRelations() : Enumeration containee +setContainer(c : CompositeEntity)

[+newRelation(name : String) : ComponentRelation
+numEntities() : int

+numRelations() : int

+removeAllEntities()

+removeAllRelations()

#_addEntity(e : ComponentEntity)
#_addRelation(r : ComponentRelation)
#_removeEntity(e : ComponentEntity)
##_removeRelation(r : ComponentRelation)

FIGURE 2.4. Key classes supporting clustered graphs.

1. Unless level-crossing links are allowed, which is discouraged.

2-8 Ptolemy Il

The Kernel

also be linked to relations at the same level (R3 and R4).

ComponentPort, ComponentRelation, and CompositeEntity have a set of methods with the prefix
“deep,” as shown in figure 2.4. These methods flatten the hierarchy by traversing it. Thus, for example,
the ports that are “deeply” connected to port P1 in figure 2.5 are P2, P5, and P6. No transparent port is
included, so note that P3 is not included.

Deep traversals of a graph follow a simple rule. If a transparent port is encountered from inside,
then the traversal continues with its outside links. If it is encountered from outside, then the traversal
continues with its inside links. Thus, for example, the ports deeply connected to P5 are P1 and P2.
Note that P6 is not included. Similarly, the deepGetEntities() method of CompositeEntity looks inside
transparent entities, but not inside opaque entities.

Since deep traversals are more expensive than just checking adjacent objects, both ComponentPort
and ComponentRelation cache them. To determine the validity of the cached list, the version of the
workspace is used. As shown in figure 2.2, the Workspace class includes a getVersion() and incrVer-
sion() method. All methods of objects within a workspace that modify the topology in any way are
expected to increment the version count of the workspace. That way, when a deep access is performed
by a ComponentPort, it can locally store the resulting list and the current version of the workspace.
The next time the deep access is requested, it checks the version of the workspace. If it is still the same,
then it returns the locally cached list. Otherwise, it reconstructs it.

For ComponentPort to support both inside links and outside links, it has to override the link() and
unlink() methods. Given a relation as an argument, these methods can determine whether a link is an
inside link or an outside link by checking the container of the relation. If that container is also the con-
tainer of the port, then the link is an inside link.

//El O =)

_)

FIGURE 2.5. Transparent ports (P3 and P4) are linked to relations (R1 and R2) below their container (E1)
in the hierarchy. They may also be linked to relations at the same level (R3 and R4).

1. In that figure, every object has been given a unique name. This is not necessary since names only need to be
unique within a container. In this case, we could refer to P5 by its full name .E0.E4.P5, assuming the workspace
has no name (the leading period indicates this). However, using unique names makes our explanations more
readable.

Heterogeneous Concurrent Modeling and Design 9-

The Kernel

2.6.2 Level-Crossing Connections

For a few applications, such as Statecharts [8], level-crossing links and connections are needed.
The example shown in figure 2.6 has three level-crossing connections that are slightly different from
one another. The links in these connections are created using the liberalLink() method of Component-
Port. The link() method prohibits such links, throwing an exception if they are attempted (most appli-
cations will prohibit level-crossing connections by using only the link() method).

An alternative that may be more convenient for a user interface is to use the connect() methods of
CompositeEntity rather than the link() or liberalLink() method of ComponentPort. To allow level-
crossing links using connect(), first call allowLevelCrossingConnect() wiitreargument.

The simplest level-crossing connection in figure 2.6 is at the bottom, connecting P2 to P7 via the
relation R5. The relation is contained by E1, but the connection would be essentially identical if it were
contained by any other entity. Thus, the notion of composite entities containing relations is somewhat
weaker when level-crossing connections are allowed.

The other two level-crossing connections in figure 2.6 are mediated by transparent ports. This sort
of hybrid could come about in heterogeneous representations, where level-crossing connections are
permitted in some parts but not in others. It is important, therefore, for the classes to support such
hybrids.

To support such hybrids, we have to modify slightly the algorithm by which a port recognizes an
inside link. Given a relation and a port, the link is an inside link if the relation is contained by an entity
that is either the same as or is deeply contained (i.e. directly or indirectly contained) by the entity that
contains the port. The deepContains() method of NamedObj supports this test.

[~ Eo I

R3

< ACHER

R2 R4

P4
R5

¢

.)
N)

FIGURE 2.6. An example with level-crossing transitions.

2-10 Ptolemy Il

The Kernel

2.6.3 Tunneling Entities

The transparent port mechanism we have described supports connections like that between P1 and
P5 in figure 2.7. That connection passes through the entity E2. The relation R2 is linked to the inside of
each of P2 and P4, in addition to its link to the outside of P3. Thus, the ports deeply connected to P1
are P3 and P5, and those deeply connected to P3 are P1 and P5, and those deeply connected to P5 are
P1and P3.

A tunneling entityis one that contains a relation with links to the inside of more than one port. It
may of course also contain more standard links, but the term “tunneling” suggests that at least some
deep graph traversals will see right through it.

Support for tunneling entities is a major increment in capability over the previous Ptolemy kernel
[4] (Ptolemy 0.x). That infrastructure required an entity (which was callsth@ to intervene in any
connection through a composite entity (which was calledadaxy). Two significant limitations
resulted. The first was that compositionality was compromised. A connection could not be subsumed
into a composite entity without fundamentally changing the structure of the application (by introduc-
ing a new intervening entity). The second was that implementation of higher-order functions that
mutated the graph [13] was made much more complicated. These higher-order functions had to be
careful to avoid mutations that created tunneling.

2.6.4 Description

The intent of Ptolemy Il is that most applications will use graphical rather than textual syntaxes to
visualize topologies. However, this is not always possible, and in any case, a graphical description may
depict only the starting point of a topology that mutates. It can get difficult to understand an intricate
topology.

The description() method in the Nameable interface (figure 2.3) provides a way to obtain detailed
information about a topology in a human and machine readable format. This method is implemented
by the NamedObj class, which also provides an alternative method that tdktailaargument. This
argument can be used to control how much information is obtained.

An example is shown in figure 2.8, which describes the topology in figure 2.7. The general syntax
for describing an object isctassnamd fullnamg keyword{valug keyword{valug”. The value is
often itself a description in exactly this form, or a list of descriptions in this form. For example, in fig-
ure 2.8, the keyword “attributes” is always followed by an empty value because no attributes have
been set. The keyword “ports” precedes a list of contained ports, each a description. The keyword

T N

o

FIGURE 2.7. A tunneling entity contains a relation with inside links to more than one port.

Heterogeneous Concurrent Modeling and Design 21

The Kernel

“entities” precedes a list of contained entities. The rest of the description should be evident.

2.6.5 Cloning

The kernel classes are all capable of baitaned with some restrictions. Cloning means that an
identical but entirely independent object is created. Thus, if the object being cloned contains other
objects, then those objects are also cloned. If those objects are linked, then the links are replicated in
the new objects. The clone() method in NamedObj provides the interface for doing this. Each subclass
provides an implementation.

There is a key restriction to cloning. Because they breaks modularity, level-crossing links prevent
cloning. With level-crossing links, a link does not clearly belong to any particular entity. An attempt to
clone a composite that contains level-crossing links will trigger an exception.

pt.kernel.CompositeEntity {.EQ} attributes { }
} ports { }
} entities { } relations {
pt.kernel.ComponentEntity {.E0.E1} attributes { pt.kernel.ComponentRelation {.E0.E2.R2} attributes {
} ports { }links {
pt.kernel.ComponentPort {.E0.E1.P1} attributes { pt.kernel.ComponentPort {.EQ.E2.P2} attributes {
} links { }
pt.kernel.ComponentRelation {.E0.R1} attributes { pt.kernel.ComponentPort {.E0.E2.E3.P3} attributes {
} }
} insidelinks { pt.kernel.ComponentPort {.E0.E2.P4} attributes {
} }
}
pt.kernel.CompositeEntity {.E0.E2} attributes {
} ports { pt.kernel.ComponentEntity {.E0.E4} attributes {
pt.kernel.ComponentPort {.E0.E2.P2} attributes { } ports {
} links { pt.kernel.ComponentPort {.E0.E4.P5} attributes {
pt.kernel.ComponentRelation {.E0.R1} attributes { }links {
pt.kernel.ComponentRelation {.E0.R3} attributes {
} insidelinks {
pt.kernel.ComponentRelation {.E0.E2.R2} attributes|{ }insidelinks {
} }
}
pt.kernel.ComponentPort {.E0.E2.P4} attributes { } relations {
} links { pt.kernel.ComponentRelation {.E0.R1} attributes {
pt.kernel.ComponentRelation {.E0.R3} attributes { }links {
} pt.kernel.ComponentPort {.EQ.E1.P1} attributes {
} insidelinks { }
pt.kernel.ComponentRelation {.E0.E2.R2} attributes|{ pt.kernel.ComponentPort {.E0.E2.P2} attributes {
} }
}
} entities { pt.kernel.ComponentRelation {.E0.R3} attributes {
pt.kernel.ComponentEntity {.E0.E2.E3} attributes { }links {
} ports { pt.kernel.ComponentPort {.EQ.E2.P4} attributes {
pt.kernel.ComponentPort {.E0.E2.E3.P3} attributes }
} links { pt.kernel.ComponentPort {.EQ.E4.P5} attributes {
pt.kernel.ComponentRelation {.E0.E2.R2} attributes { }
} }
} insidelinks { }

FIGURE 2.8. An example of the syntax returned by the description() method.

2-12 Ptolemy Il

The Kernel

2.6.6 An Elaborate Example

An elaborate example of a clustered graph is shown in figure 2.9. This example includes instances
of all the capabilities we have discussed. The top-level entity is named “EQ.” All other entities in this
example have containers. A Java class that implements this example is shown in figure 2.10. A script
in the Tcl language [18] that constructs the same graph is shown in figure 2.11. This script uses
TclBlend, an interface between Tcl and Java that is distributed by Sun Microsystems.

The order in which links are constructed matters, in the sense that methods that return lists of
objects preserve this order. The order implemented in both figures 2.10 and 2.11 is top-to-bottom and
left-to-right in figure 2.9. A graphical syntax, however, does not generally have a particularly conve-
nient way to completely control this order.

The results of various method accesses on the graph are shown in figure 2.12. This table can be
studied to better understand the precise meaning of each of the methods.

2.6.7 Mutations

Often it is necessary to carefully constrain when changes can be made in a topology. For example,

(e)

EO

o

FIGURE 2.9. An example of a clustered graph.

Heterogeneous Concurrent Modeling and Design 23

The Kernel

public class ExampleSystem {
private CompositeEntity €0, e3, e4, e7, el0;
private ComponentEntity el, e2, e5, €6, €8, €9;
private ComponentPort p0, p1, p2, p3, p4, p5 ,p6, p7, p8, p9, pl0, p1l, pl2, pl
private ComponentRelation r1, r2, r3, r4, 15, r6, r7, 18, r9, r10, r11, r12;

public ExampleSystem() throws lllegalActionException, NameDuplicationExcept
e0 = new CompositeEntity();
e0.setName("EQ");
e3 = new CompositeEntity(e0, "E3");
e4 = new CompositeEntity(e3, "E4");
e7 = new CompositeEntity(e0, "E7");
€10 = new CompositeEntity(e0, "E10");

el = new ComponentEntity(e4, "E1");
e2 = new ComponentEntity(e4, "E2");
e5 = new ComponentEntity(e3, "E5");
e6 = new ComponentEntity(e3, "E6");
e8 = new ComponentEntity(e7, "E8");
€9 = new ComponentEntity(e10, "E9");

pO = (ComponentPort) e4.newPort("P0");

pl = (ComponentPort) el.newPort("P1");

p2 = (ComponentPort) e2.newPort("P2");

p3 = (ComponentPort) e2.newPort("P3");

p4 = (ComponentPort) e4.newPort("P4");

p5 = (ComponentPort) e5.newPort("P5");

p6 = (ComponentPort) e5.newPort("P6");

p7 = (ComponentPort) e3.newPort("P7");

p8 = (ComponentPort) e7.newPort("P8");

p9 = (ComponentPort) e8.newPort("P9");
p10 = (ComponentPort) e8.newPort("P10");
p1l = (ComponentPort) e7.newPort("P11");
pl12 = (ComponentPort) e10.newPort("P12");
p13 = (ComponentPort) e10.newPort("P13");
pl4 = (ComponentPort) €9.newPort("P14");

rl = e4.connect(pl, p0, "R1");

r2 = e4.connect(pl, p4, "R2");
p3.link(r2);

r3 = e4.connect(pl, p2, "R3");

r4 = e3.connect(p4, p7, "R4");

r5 = e3.connect(p4, p5, "R5");
e3.allowLevelCrossingConnect(true);
ré = e3.connect(p3, p6, "R6");

r7 = e0.connect(p7, p13, "R7");

r8 = e7.connect(p9, p8, "R8");

r9 = e7.connect(pl10, p11, "R9");
r10 = e0.connect(p8, p12, "R10");
rll = el0.connect(pl2, p13, "R11");
rl2 = e10.connect(p14, p13, "R12");
p11.link(r7);

B

on {

FIGURE 2.10. The same topology as in figure 2.9 implemented as a Java class.

p4;

2-14

Ptolemy Il

The Kernel

Create composite entities
set e0 [java::new pt.kernel.CompositeEntity EQ]
set e3 [java::new pt.kernel.CompositeEntity $e0 E3]
set e4 [java::new pt.kernel.CompositeEntity $e3 E4]
set e7 [java::new pt.kernel.CompositeEntity $e0 E7]
set e10 [java::new pt.kernel.CompositeEntity $e0 E10]

Create component entities.

set el [java::new pt.kernel.ComponentEntity $e4 E1]
set e2 [java::new pt.kernel.ComponentEntity $e4 E2]
set e5 [java::new pt.kernel.ComponentEntity $e3 E5]
set e6 [java::new pt.kernel.ComponentEntity $e3 E6]
set e8 [java::new pt.kernel.ComponentEntity $e7 E8]
set e9 [java::new pt.kernel.ComponentEntity $e10 E9]

Create ports.

set pO [$e4 newPort PO]
set p1 [$el newPort P1]
set p2 [$e2 newPort P2]
set p3 [$e2 newPort P3]
set p4 [$e4 newPort P4]
set p5 [$e5 newPort P5]
set p6 [$e6 newPort P6]
set p7 [$e3 newPort P7]
set p8 [$e7 newPort P8]
set p9 [$e8 newPort P9]
set p10 [$e8 newPort P10]
set p11 [$e7 newPort P11]
set p12 [$e10 newPort P12]
set p13 [$e10 newPort P13]
set p14 [$e9 newPort P14]

Create links

set rl [$e4 connect $p1l $p0 R1]

set r2 [$e4 connect $pl $p4 R2]

$p3 link $r2

set r3 [$e4 connect $pl $p2 R3]

set r4 [$e3 connect $p4 $p7 R4]

set 15 [$e3 connect $p4 $p5 R5]

$e3 allowLevelCrossingConnect true
set 6 [$e3 connect $p3 $p6 R6]

set r7 [$e0 connect $p7 $p13 R7]

set r8 [$e7 connect $p9 $p8 R8]

set r9 [$e7 connect $p10 $pll R9]

set r10 [$e0 connect $p8 $p12 R10]
set r1l [$e10 connect $p12 $p13 R11]
set r12 [$e10 connect $p14 $p13 R12]
$p11 link $r7

FIGURE 2.11. The same topology as in figure 2.9 described by the TcIBlend commands to create it.

Heterogeneous Concurrent Modeling and Design

The Kernel

an application that uses the actor package to execute a program defined by a topology may require the
topology to remain fixed during segments of the execution. A subpackage of the kernel, called the
mutation package, provides support for carefully controlled mutations. This subpackage contains only
two interfaces, shown in figure 2.13.

The typical usage pattern is to create an object that implements Mutation and queue it with what-
ever object is in charge of the control flow (whatever object knows when it is safe to perform muta-
tions). That object then performs the mutation when it is safe to do so. In addition, it informs any
registered listeners of the mutation so that they can react accordingly.

For example, the Director class in the actor package allows mutations to occur only between itera-

Table 1: Methods of ComponentRelation

Method Name Rl1| R2| R3| R4| R5| R6| R7| R8 R9 R10 R11 R1P
getlLinkedPorts P1 |P1 |P1 |P4 |P4 |P3 |P7 |P9 |P10 |[P8 |P12 |P14
PO |P4 P2 |P7 |P5 |P6 (P13 |P8 |Pl11 (P12 |P13 |P13
P3 P11

deepGetLinkedPorts P1 P1jP1 |P1 |P1 |P3 |P1 |P9 |P10 (P9 |P9 |P14
P9 |P2 |P3 |P3 |P6 |P3 |P1 |P1 |P1 |P1 |P1

P14 P9 [P5 P9 (P33 |P3 [(P3 |P3 |P3
P10 P14 P14 |P10 |P9 |P10 |P10 |P10
P5 P10 P10 P14

P3

Table 2: Methods of ComponentPort

Method Name PO| P1| P2| P3| P4 P55 P& PT P8 PP P10 Pll R12 PR13 P14

getConnectedPorts PO| P1 P1L |P7 |P4 P3 P13| P12 | P8 P11} P7 (P8 | P7 |P13
P4 P4 |P5 P11 P13 P11
P3 P6
P2

deepGetConnectedPoiis P9 P1 P1L |[P9 |P1 |P3 PO |P1 |P1 |P1 [(P1 |P9 P1 |P1
P14 P9 |P14 |P3 P14 |P3 |P3 |P3 |P3 P3 | P3
P10 P14 | P10 P10 | P10 |P10 |P9 |[P9 P10 | P10
P5 P10 | P5 P14 | P14
P3 P5
P2 P6

FIGURE 2.12. Key methods applied to figure 2.9.

«Interface»
MutationListener «Interface»
Mutation

+addedEntity(e : Entity)
+addedPort(p : Port) +perform()

+addedRelation(r : Relation) +update(m : MutationListener)
+done()

+linked(r : Relation, p : Port)

+removedEntity(container : CompositeEntity, e : Entity)
+removedPort(container : Entity, p : Port)
+removedRelation(container : CompositeEntity, r : Relation)
+unlinked(r : Relation, p : Port)

FIGURE 2.13. Interfaces in the kernel.mutation package.

2-16 Ptolemy Il

The Kernel

tions of an iterative execution of an application (see the Actors chapter). To support this, it has a
gueueMutation() method that permits any other code to specify a mutation to be performed at the first
opportunity.

The Mutation interface is typically used by creating an anonymous inner class that implements the
interface. The class should implement two methods, perform() and update(). The first of these actually
performs the mutation, and the second informs any listeners of the mutation. Here is a section of code
that defines an instance of Mutation that creates a new entity:

import pt.kernel.mutation.*;

Mutation m = new Mutation() {
private _newentity
public void perform() {
_newentity = new Entity(“foo”);

public void update(MutationListener listener) {
listener.addedEntity(_newentity);
listener.done();

}
5

The instancen of this anonymous inner class would then typically be registered with a controller,
such as a director, that can invoke the perform() method when it is safe to perform the mutation.

In addition, the controller invokes the update() method, passing it any registered listeners. A lis-
tener is any object that needs to be informed of the mutation once it has occurred. For example, again
in the Director class of the actor package, when a new entity is added to an application, it needs to be
initialized. A listener is registered with the director so that after the actual addition of the new entity,
the entity can be initialized by the listener. Such a listener implements the addedEntity() method of
MutationListener to either directly perform the initialization, or queue the initialization to occur at a
later time. The ActorListener class of the actor package is a simple example of a MutationListener (see
the Actors chapter).

2.7 Composite Opaque Entities

One of the major tenets of the Ptolemy project is that of modeling heterogeneous systems through
the use of hierarchical heterogeneity. Information-hiding is a central part of this. In particular, transpar-
ent ports and entities compromise information hiding by exposing the internal topology of an entity. In
some circumstances, this is inappropriate, for example when the entity internally operates under a dif-
ferent model of computation from its environment. The entity should be opaque in this case.

An entity can be opague and composite at the same time. Ports are defined to be opaque if the
entity containing them is opaque (isOpaque() returns true), so deep traversals of the topology do not
cross these ports, even though the ports support inside and outside links. The actor package makes
extensive use of such entities to support mixed modeling. That use is described in the Actors chapter.
In the previous generation system, Ptolemy 0.x, composite opaque entities weracatibdles

2.8 Concurrency

We expect concurrency. Topologies often represent the structure of computations. Those computa-
tions themselves may be concurrent, and a user interface may be interacting with the topologies while

Heterogeneous Concurrent Modeling and Design 27

The Kernel

they execute their computation. Moreover, using RMI or CORBA, Ptolemy Il objects may interact
with other objects concurrently over the network via RMI or CORBA.

Both computations within an entity and the user interface are capable of modifying the topology.
Thus, extra care is needed to make sure that the topology remains consistent in the face of simulta-
neous modifications (we defined consistency in section 2.4.2).

Concurrency could easily corrupt a topology if a modification to a symmetric pair of references is
interrupted by another thread that also tries to modify the pair. Inconsistency could result if, for exam-
ple, one thread sets the reference to the container of an object while another thread adds the same
object to a different container’s list of contained objects.

Ptolemy Il prevents such inconsistencies from occurring. Such enforced consistency is called
thread safety

2.8.1 Limitations of Monitors

Java threads provide a low-level mechanism calledoaitor for controlling concurrent access to
data structures. A monitor locks an object preventing other threads from accessing the object (a design
pattern callednutual exclusiop However, the mechanism is fairly tricky to use correctly. It is non-
trivial to avoid deadlock and race conditions. One of the major objectives of Ptolemy Il is provide
higher-level concurrency models that can be used with confidence by non experts.

Monitors are invoked in Java via the “synchronized” keyword. This keyword annotates a body of
code or a method, as shown in figure 2.14. It indicates that an exclusive lock should be obtained on a
specific object before executing the body of code. If the keyword annotates a method, as in figure
2.14(a), then the method’s object is locked (an instance of class A in the figure). The keyword can also
be associated with an arbitrary body of code and can acquire a lock on an arbitrary object. In figure
2.14(b), the code body represented by ellipses (...) can be executed only after a lock has been acquired
on objectobj.

Modifications to a topology that run the risk of corrupting the consistency of the topology involve
more than one object. Java does not directly provide any mechanism for simultaneously acquiring a
lock on multiple objects. Acquiring the locks sequentially is not good enough because it introduces
deadlock potential. I.e., one thread could acquire the lock on the first object block trying to acquire a
lock on the second, while a second thread acquires a lock on the second object and blocks trying to
acquire a lock on the first. Both methods block permanently, and the application is deadlocked. Neither
thread can proceed.

One possible solution is to ensure that locks are always acquired in the same order [12]. For exam-
ple, we could use the containment hierarchy and always acquired locks top-down in the hierarchy.
Suppose for example that a body of code involves two obpeatsdb, wherea containsb (directly or
indirectly). In this case, “involved” means that it either modifies members of the objects or depends on
their values. Then this body of code would be surrounded by:

synchronized(a) {
synchronized (b) {

}
}

If all code that locksa andb respects this same order, then deadlock cannot occur. However, if the code
involves two objects where one does not contain the other, then it is not obvious what ordering to use
in acquiring the locks. Worse, a change might be initiated that reverses the containment hierarchy

2-18 Ptolemy Il

The Kernel

while another thread is in the process of acquiring locks on it. A lock must be acquired to read the con-
tainment structure before the containment structure can be used to acquire a lock! Some policy could
certainly be defined, but the resulting code would be difficult to guarantee. Moreover, testing for dead-
lock conditions is notoriously difficult, so we implement a more conservative, and much simpler strat-

eqgy.
2.8.2 Workspace

One way to guarantee thread safety without introducing the risk of deadlock is to give every object
an immutable association with another object, which we calidgkspacelmmutablemeans that the
association is set up when the object is constructed, and then cannot be modified. When a change
involves multiple objects, those objects must be associated with the same workspace. We can then
acquire a lock on the workspace before making any changes or reading any state, preventing other

threads from making changes at the same time.

Ptolemy Il uses monitors only on instances of the class Workspace. As shown in figure 2.3, every
instance of NamedObj (or derived classes) is associated with a single instance of Workspace. Each
body of code that alters or depends on the topology must acquire a lock on its workspace. Moreover,
the workspace associated with an object is immutable. It is set in the constructor and never modified.
This is enforced by a very simple mechanism: a reference to the workspace is stored in a private vari-
able of the base class NamedObj, as shown in figure 2.3, and no methods are provided to modify it.
Moreover, in instances of these kernel classes, a container and its containees must share the same

public class A {
public synchronized void foo() {

}
}

@

public class B {
public void foo() {
synchronized(obj) {

}
}
}

try {
workspace().read();
/I ... code that reads
} finally {

workspace().doneReading();

}

(b)

(d)

public class C extends NamedObj {
public void foo() {
synchronized(workspace()) {

}
}
}

try {
workspace().write();
/I ... code that writes

} finally {
workspace().doneWriting();
}

©

FIGURE 2.14. Using monitors for thread safety. The method used in Ptolemy Il is in (d) and (e).

(e)

Heterogeneous Concurrent Modeling and Design

29

The Kernel

workspace (derived classes may be more liberal in certain circumstances). This “managed ownership”
[12] is our central strategy in thread safety.

As shown in figure 2.14(c), a conservative approach would be to acquire a monitor on the work-
space for each body of code that reads or modified objects in the workspace. However, this approach is
too conservative. Instead, Ptolemy Il allows any number of readers to simultaneously access a work-
space. Only one writer can access the workspace, however, and only if no readers are concurrently
accessing the workspace.

The code for readers and writers is shown in figure 2.14(d) and (e). In (d), a reader first calls the
read() method of the Workspace class. That method does not return until it is safe to read data any-
where in the workspace. It is safe if there is no other thread concurrently holding a write lock on the
workspace (the thread calling read() may safely hold both a read and a write lock). When the user is
finished reading the workspace data, it must call doneReading(). Failure to do so will result in no
writer ever again gaining write access to the workspace. Because it is so important to call this method,
it is enclosed in the finally clause of a try statement. That clause is executed even if an exception
occurs in the body of the try statement.

The code for writers is shown in figure 2.14(e). The writer first calls the write() method of the
Workspace class. That method does not return until it is safe to write into the workspace. It is safe if no
other thread has read or write permission on the workspace. The calling thread, of course, may safely
have both read and write permission at the same time. Once again, it is essential that doneWriting() be
called after writing is complete.

This solution, while not as conservative as the single monitor of figure 2.14(c), is still conservative

in that mutual exclusion is applied even on write actions that are independent of one another if they
share the same workspace. This effectively serializes some maodifications that might otherwise occur in
parallel. However, there is no constraint in Ptolemy Il on the number of workspaces used, so sub-
classes of these kernel classes could judiciously use additional workspaces to increase the parallelism.
But they must do so carefully to avoid deadlock. Moreover, most of the methods in the kernel refuse to
operate on multiple objects that are not in the same workspace, throwing an exception on any attempt
to do so. Thus, derived classes that are more liberal will have to implement their own mechanisms sup-
porting interaction across workspaces.

2.9 EXxceptions

As a general rule, we use standard Java exceptions when they are appropriate. However, standard
Java exceptions do not provide a uniform mechanism for reporting errors that takes advantage of their
identification by full name. In order to obtain such uniformity, the Ptolemy Il kernel has its own set of
exceptions. These are summarized in the class diagram in figure 2.15.

2.9.1 Base Class

KernelExceptionNot used directly. Provides common functionality for the kernel exceptions. In par-
ticular, it provides methods that take zero, one, or two Nameable objects plus an optional detail mes-
sage (a String). The arguments provided are arranged in a default organization that is overridden in
derived classes.

2.9.2 Less Severe Exceptions

These exceptions generally indicate that an operation failed to complete. These can result in a

2-20 Ptolemy Il

The Kernel

topology that is not what the caller expects, since the caller's modifications to the topology did not suc-
ceed. However, they shoutgverresult in an inconsistent or contradictory topology.

lllegalActionExceptionThrown on an attempt to perform an action that is disallowed. For example,
the action would result in an inconsistent or contradictory data structure if it were allowed to complete.
E.g., attempt to set the container of an object to be another object that cannot contain it because it is of
the wrong class. This exception supports all the constructor forms of KernelException.

NameDuplicationExceptioff.hrown on an attempt to add a named object to a collection that requires
unigque names, and finding that there already is an object by that name in the collection. The construc-
tor forms are:

» NameDuplicationException(Nameable wouldBeContainee)

* NameDuplicationException(Nameable wouldBeContainee, String morelnfo)

* NameDuplicationException(Nameable container, Nameable wouldBeContainee)

* NameDuplicationException(Nameable container, Nameable wouldBeContainee, String morelnfo)

NoSuchltemExceptionThrown on access to an item that doesn't exist. E.g., attempt to remove a port
by name and no such port exists. The constructor forms are:

* NoSuchltemException(String message)
* NoSuchltemException(Nameable container, String message)

2.9.3 Very Severe Exceptions

The following exceptions should never trigger. If they trigger, it indicates a serious inconsistency
in the topology and/or a bug in the code. At the very least, the topology being operated on should be
abandoned and reconstructed from scratch. They are runtime exceptions, so they do not need to be
explicitly declared to be thrown.

Exception RuntimeException
KernelException InvalidStateException

-_message : String -_message : String
+getMessage() : String +getMessage() : String
j#_getName(obj : Nameable) : String [#_getName(obj : Nameable) : String
#_getFullName(obj : Nameable) : String # getFullName(obj : Nameable) : String
#_setMessage(message : String) # setMessage(message : String)
lllegalActionException NameDuplicationException NoSuchltemException

FIGURE 2.15. Summary of exceptions defined in the kernel.util package. These are used primarily through
constructor calls. The form of the constructors is shown in the text. Exception and RuntimeException are
Java exceptions.

Heterogeneous Concurrent Modeling and Design 21

The Kernel

InvalidStateExceptiorSome object or set of objects has a state that in theory is not permitted. E.g., a
NamedObj has a null name. Or a topology has inconsistent or contradictory information in it, e.g. an
entity contains a port that has a different entity as its container. Our design should make it impossible
for this exception to ever occur, so occurrence is a bug. This exception supports all the constructor
forms of KernelException, but is not derived from KernelException. It is derived from the Java Runt-
imeException.

InternalErrorExceptionAn unexpected error other than an inconsistent state has been encountered.
Our design should make it impossible for this exception to ever occur, so occurrence is a bug. This
exception supports only one constructor form, taking a string as an argument. It is derived from the
Java RuntimeException.

2-22 Ptolemy Il

AcCtors

3.1 Concurrent Computation

In the kernel package, entities have no semantics. They are syntactic placeholders. In many of the
uses of Ptolemy Il, entities are executable. The actor package provides basic support for executable
entities. In most uses, these executable entities conceptually (if not actually) execute concurrently. The
goal of the actor package is to provide a clean infrastructure for such concurrent execution that is neu-
tral about the model of computation. It is intended to support dataflow, discrete-event, synchronous-
reactive, communicating sequential processes, and process networks models of computation, at least.
The detailed model of computation is then implemented in a set of derived classes cddiethia
Each domain is a separate package.

Ptolemy Il is an object-oriented application framework. Aghacsors[1] extend the concept of
objects to concurrent computation. His actors encapsulate a thread of control and have interfaces for
interacting with other actors. They provide a framework for “open distributed object-oriented sys-
tems.” An actor can create other actors, send messages, and modify its own local state.

Inspired by this model, we group a certain set of classes that support computation within entities in
the actor package. Our use of the term “actors,” however, is somewhat broader than Agha’s, in that
ours does not require an entity to be associated with a single thread of control, nor does it require the
execution of threads associated with entities to be fair. Some subclasses, in other packages, impose
such requirements, as we will see, but not all.

Agha’s actors can only send messageadquaintances— actors whose addresses it was given at
creation time, or whose addresses it has received in a message, or actors it has created. Our equivalent
constraint is that an actor can only send a message to an actor if it has (or can obtain) a reference to an
input port of that actor. The usual mechanism for obtaining a reference to an input port uses the topol-
ogy, probing for a port that it is connected to. Our relations, therefore, provide explicit management of
acquaintance associations. Derived classes may provide additional implicit mechanisms. We define
actormore loosely to refer to an entity that processes data that it receives through its ports, or that cre-
ates and sends data to other entities through its ports.

The actor package provides two key support functions. It supports message passing and the execu-

Heterogeneous Concurrent Modeling and Design 3-

Actors

tion sequence. These are discussed in detail in the next two sections.

3.2 Message Passing

The actor package supports executable entities calibatsthat communicate with one another
via message passing. Messages are encapsuldtadeimg(see section 4 and figure 4.1). Messages are
sent via ports. IOPort is the key class supporting message transport, and is shown in figure 3.1. An

. ComponentPort H Receiver
H H 0..n
foorencneeneenes :
tecescccacasnsesas .
N E r— — — = +get() : Token
+getContainer() : IOPort
| +hasRoom() : boolean
+hasToken() : boolean
. +put(t : Token)
Mailbox +setContainer(port : IOPort)
IOPort -_container : I0Port A A N
-_token : Token ‘ ‘ ‘
-_isinput : boolean L [
-_ismultiport : boolean ‘ T T
-_isoutput : boolean o ‘ ‘
-_localReceiversTable : Hashtable ‘F | |
+broadcast(message : Token)
[+deepConnectedinPorts() : Enumeration QueueReceiver RendezvousReceiver EventReceiver
+deepConnectedOutPorts() : Enumeration
[+deepGetReceivers() : Receiver(][] [container - 10Port
+get(channelindex : int) : Token -_queue - FIFOReceiver
+getinsideReceivers() : Receiver(][] = - -
[+getReceivers() : Receiver{][] 0.1 +capacity() int)
[+getReceivers(r : IORelation) : Receiver[][] elements() : Enumeration 11
[+getRemoteReceivers() : Receiver(][] +get(offset : int) : Token 0.n
[+getRemoteReceivers(r : IORelation) : Receiver[][] +history() : Enl_Jmer.a.uon
L+ getwidth() : int :?slorygapacny() tint »
[+hasRoom(channel : int) : boolean istorySize() o PriorityQueue
+hasToken(channel : int) : boolean :Z;ég:;((;ﬁf;?ce[irlw?)t) : Taken
[+isIinput() : boolean :
+isMEIti;(J)ort() - boolean +sgtHistqryCapacity(c sint)
+isOutput() : boolean +size() : int
[+makelnput(t : boolean)
+makeMultiport(t : boolean)
[+makeOutput(t : boolean)
+send(channelindex : int, message : Token)
#_getinsideWidth(except : IORelation) : int
i#_newlInsideReceiver() : Receiver FIFOQueue
j#_newReceiver() : Receiver

Q
=}
3
=
s}
=3
@
3
2
)
o
=3
5}
=3

emeemen

IORelation

-_width : int

[+deepReceivers(except : IOPort) : Receiver [][]
[+getWidth() : int

[+linkedDestinationPorts() : Enumeration
+linkedDestinationPorts(except : IOPort) : Enumeration
+linkedSourcePorts() : Enumeration
+linkedSourcePorts(except : IOPort) : Enumeration
+setWidth(width : int)

[+widthFixed() : boolean

FIGURE 3.1. Port classes that support message passing under various communication protocols.

3-2 Ptolemy Il

Actors

IOPort can only be connected to other IOPort instances, and only via IORelations. The IORelation
class is also shown in figure 3.1.

An instance of IOPort can be an input, an output, or both.ifaut port (one that is capable of
receiving messages) contains one or more instances of objects that implement the Receiver interface.
Each of these receivers is capable of receiving messages from a distametel The type of receiver
used depends on the communication protocol, or model of computation.

3.2.1 Data Transport

Data transport is depicted in figure 3.2. The originating actor E1 has an output port P1, indicated in
the figure with an upwards arrow. The destination actor E2 has an input port P2, indicated in the figure
with a downwards arrow. E1 calls the send() method of P1 to send a toz@remote actor. The port
obtains a reference to a remote receiver (via the IORelation) and calls the put() method of the receiver,
passing it the token. The destination actor retrieves the token by calling the get() method of its input
port, which in turn calls the get() method of the designated receiver.

In figure 3.2 there is only a single channel, indexed 0. The “0” argument of the send() and get()
methods refer to this channel. A port can support more than one channel, however, as shown in figure
3.3. This can be represented by linking more than one relation to the port, or by linking a relation that
has a width greater than one. A port that supports this is calledliport The channels are indexed
0,...,N—1, whereN is the number of channels. An actor distinguishes between channels using this
index in its send() and get() methods. By default, an IOPort is not a multiport, and thus supports only
one channel. It is converted into a multiport by calling its makeMultiport() method witheaargu-
ment. After conversion, it can support any number of channels.

Multiports are typically used by actors that communicate via an indeterminate number of channels.

receiver.put(t)

FIGURE 3.2. Message passing is mediated by the IOPort class. Its send() method obtains a reference to a
remote receiver, and calls the put() method of the receiver, passing it thé. fbkerdestination actor
retrieves the token by calling the get() method of its input port.

receiver.put(tl)

FIGURE 3.3. A port can support more than one channel, permitting an entity to send distinct data to distinct
destinations via the same port. This feature is typically used when the number of destinations cannot be stat-
ically determined.

Heterogeneous Concurrent Modeling and Design 3-

Actors

For example, a “distributor” or “demultiplexor” actor might divide an input stream into a number of
output streams, where the number of output streams depends on the connections made to the actor. A
streamis a sequence of tokens sent over a channel.

An IORelation, by default, represents a single channel. By calling its setWidth() method, however,
it can be converted to bus A multiport may use a bus instead of multiple relations to distribute its
data, as shown in figure 3.4. Thddth of a relationis the number of channels supported by the rela-
tion. If the relation is not a bus, then its width is one.

The width of a portis the sum of the widths of the relations linked to it. In figure 3.4, both the
sending and receiving ports are multiports with width two. This is indicated by the “2” adjacent to each
port. Note that the width of a port could be zero, if there are no relations linked to a port (such a port is
said to badisconnected Thus, a port may have width zero, even though a relation cannot. By conven-
tion, in Ptolemy I, if a token is sent from such a port, the token goes nowhere. Similarly, if a token is
sent via a relation that is not linked to any input ports, then the token goes nowhere. Such a relation is
said to bedangling

A given channel may reach multiple ports, as shown in figure 3.5. This is represented by a relation
that is linked to multiple input ports. In the default implementation, in class |IOParipree of the
token is sent to all but the first destination (where the order is determined as usual by the order in
which links are made). The first destination receives the original token. What is meant by a clone
depends on the token, but for most simple tokens, a clone is simply a copy.

IOPort provides a broadcast() method for convenience. This method sends a specified token (or
clones thereof) to all receivers linked to the port, regardless of the width of the port.

receiver.put(t0)
receiver.put(tl)

(get(0), get(1)

| I E2

\> token 10, t1

FIGURE 3.4. A bus is an IORelation that represents multiple channels. It is indicated by a relation with a
slash through it, and the number adjacent to the bus is the width of the bus.

token
(clone of t)

get(0)
E3

FIGURE 3.5. Channels may reach multiple destinations. This is represented by relations linking multiple
input ports to an output port. It is accomplished by cloning the token that is sent.

34 Ptolemy Il

Actors

3.2.2 Example

An elaborate example showing all of the above features is shown in figure 3.6. In that example, we
assume that links are constructed in top-to-bottom order. Output ports are indicated with upwards
arrows, input ports with downward arrows, and ports that are both an input and output with a bidirec-
tional arrow. Multiports are indicated by adjacent numbers larger than one.

The top relation is a bus with width two, and the rest are not busses. The width ¢ Jisrfour.
Its first two outputs (channels zero and one) g@#pand a clone of these become the first two inputs
of P5. The third output oP1 goes nowhere. The fourth becomes the third inpir®fa clone becomes
the first input ofP6, and another clone goes®&8, which is both an input and an output. PdP@and
P8 send their outputs to the same set of destinations, exce@®@&uxtes not send to itself. PdPB has
width zero, so its send() method cannot be called without triggering an exceptiorP6Paas width
two, but its second input channel has no output ports connected to it, so calling get(1) will trigger an
exception that indicates that there is no data. P@thas width zero so calling get() with any argument
will trigger an exception.

3.2.3 Transparent Ports

Recall that a port is transparent if its container is transparent (isOpaque() ritiséisA Com-
positeActor is transparent unless it has a local director. Figure 3.7 shows an elaborate example where
busses, input, and output ports are combined with transparent ports. The transparent ports are filled in
white, and again outputs are denoted with upwards arrows, inputs with downward arrows, and bidirec-
tional ports with bidirectional arrows. The TcIBlend code to construct this example is shown in figure
3.8.

By definition, a transparent port is an input if either
e itis connected on the inside to the outside of an input port, or
* itis connected on the inside to the inside of an output port.

That is, a transparent port is an input port if it can accept data (which it may then just pass through to a
transparent output port). Correspondingly, a transparent port is an output port if either

» itis connected on the inside to the outside of an output port, or

FIGURE 3.6. An elaborate example showing several features of the data transport mechanism.

Heterogeneous Concurrent Modeling and Design 5-

Actors

FIGURE 3.7. An example showing busses combined with input, output, and transparent ports.

Top container
set e0 [java::new pt.actor.CompositeActor]
$e0 setExecutiveDirector $director
$e0 setName EO
First level of the hierarchy
set el [java::new pt.actor.CompositeActor $e0 E1]
set p2 [java::new pt.actor.lOPort $el P2]
$p2 makeMultiport true
set p3 [java::new pt.actor.lOPort $el P3]
$p3 makeMultiport true
set p4 [java::new pt.actor.lOPort $el P4]
$p4 makeMultiport true

set e3 [java::new pt.actor.CompositeActor $e0 E3]
set p5 [java::new pt.actor.lOPort $e3 P5]

$p5 makeMultiport true

set p6 [java::new pt.actor.lOPort $e3 P6]

set e6 [java::new pt.actor.AtomicActor $e0 E6]
set p7 [java::new pt.actor.lOPort $e6 P7]

$p7 makeMultiport true

$p7 makelnput true

set r2 [java::new pt.actor.lORelation $e0 R2]
$r2 setWidth 3
set r3 [java::new pt.actor.|ORelation $e0 R3]
set r4 [java::new pt.actor.lORelation $e0 R4]
$r4 setWidth 2

$p2 link $r2
$p2 link $r3
$p3 link $r4
$p5 link $r2
$p5 link $r3

$p6 link $r3
$p7 link $r4

Inside E1

set e2 [java::new pt.actor.AtomicActor $el E2]
set pl [java::new pt.actor.lOPort $e2 P1]
$p1 makeMultiport true

$p1 makeOutput true

set rl [java::new pt.actor.|ORelation $el R1]
$rl setWidth 0

$p1l link $r1

$p2 link $r1

$p3 link $r1

$p4 link $r1

Inside E3

set e4 [java::new pt.actor.AtomicActor $e3 E4]
set p8 [java::new pt.actor.lOPort $e4 P8]

$p8 makeMultiport true

$p8 makelnput true

set e5 [java::new pt.actor.AtomicActor $e3 E5]
set p9 [java::new pt.actor.lOPort $e5 P9]

$p9 makeMultiport true

$p9 makelnput true

set r5 [java::new pt.actor.|ORelation $e3 R5]
$r5 setWidth 0

set r6 [java::new pt.actor.|ORelation $e3 R6]
set r7 [java::new pt.actor.|ORelation $e3 R7]
$p5 link $r5

$p5 link $r6

$p6 link $r7

$p8 link $r5

$p9 link $r7

$p9 link $r6

FIGURE 3.8. TclBlend code to construct the example in figure 3.7.

Ptolemy Il

Actors

e itis connected on the inside to the inside of an input port.

Thus, assuming P1 is an output port and P7, P8, and P9 are input ports, then P2, P3, and P4 are both
input and output ports, while P5 and P6 are input ports only.

Two of the relations that are inside composite entities (R1 and R5) are labeled as busses with an
asterix instead of a number. These are busses with unspecified width. The width is inferred from the
topology. This is done by checking the ports that this relation is linked to from the inside and setting
the width to the maximum of those port widths, minus the widths of other relations linked to those
ports on the inside. Each such port is allowed to have at most one inside relation with an unspecified
width, or an exception is thrown. If this inference yields a width of zero, then the width is defined to
be one. Thus, R1 will have width 4 and R5 will have width 3 in this example. The width of a transpar-
ent port is the sum of the widths of the relations it is linked to on the outside (just like an ordinary
port). Thus, P4 has width 0, P3 has width 2, and P2 has width 4. Recall that a port can have width O,
but a relation cannot have width less than one.

When data is sent from P1, four distinct channels can be used. All four will go through P2 and P5,
the first three will reach P8, two copies of the fourth will reach P9, the first two will go through P3 to
P7, and none will go through P4.

By default, an IORelation is not a bus, so its width is one. To turn it into a bus with unspecified
width, call setWidth() with a zero argument. Note that getWidth() will nonetheless never return zero (it
returns at least one). To find out whether setWidth() has been called with a zero argument, call width-
Fixed() (see figure 3.1). If a bus with unspecified width is not linked on the inside to any transparent
ports, then its width is one. It is not allowed for a transparent port to have more than one bus with
unspecified width linked on the inside (an exception will be thrown on any attempt to construct such a
topology). Note further that a bus with unspecified width is still a bus, and so can only be linked to
multiports.

In general, bus widths inside and outside a transparent port need not agree. For exavhgl®\ if
in figure 3.9, then firsM channels from P1 reach P3, and theNasiM channels are dangling. If
M >N, then all N channels from P1 reach P3, but the lslst N channels at P3 are dangling.
Attempting to get a token from these channels will trigger an exception. Sending a token to these chan-
nels just results in loss of the token.

Note that data is not actually transported through the relations or transparent ports in Ptolemy II.
Instead, each output port caches a list of the destination receivers (in the form of the two-dimensional
array returned by getRemoteReceivers()), and sends data directly to them. The cache is invalidated
whenever the topology changes, and only at that point will the topology be traversed again. This sig-
nificantly improves the efficiency of data transport.

FIGURE 3.9. Bus widths inside and outside a transparent port need not agree..

Heterogeneous Concurrent Modeling and Design Z-

Actors

3.2.4 Data Transfer in Various Models of Computation

The receiver used by an input port determines the communication protocol. This is closely bound
to the model of computation. The IOPort class creates a new receiver when necessary by calling its
_newReceiver() protected method. That method delegates to the director returned by getDirector(),
calling its newReceiver() method (the Director class will be discussed in section 3.3 below). Thus, the
director controls the communication protocol, in addition to its primary function of determining the
flow of control. Here we discuss the receivers that are made available in the actor package. This should
not be viewed as an exhaustive set, but rather as a particularly useful set of receivers. These receivers
are shown in figure 3.1.

Mailbox CommunicatioriThe Director base class by default returns a simple receiver called a Mail-
box. A mailboxis a receiver has capacity for a single token. It will throw an exception if it is empty
and get() is called, or it is full and put() is called. Thus, any practical use of the base class IOPort
should schedule these calls so that these exceptions do not occur, or it should catch these exceptions.

Asynchronous Message Passifis is supported by the QueueReceiver class. A QueueReceiver con-
tains an instance of FIFOQueue, from the actor.util package, which implements a first-in, first-out
gueue. This is appropriate for all flavors of dataflow as well as Kahn process networks.

In the Kahn process networks model of computation [11], which is a generalization of dataflow
[13], each actor has its own thread of execution. The thread calling get() will stall if the corresponding
gueue is empty. If the size of the queue is bounded, then the thread calling put() may stall if the queue
is full. This mechanism supports implementation of a strategy that ensures bounded queues whenever
possible [19].

In the process networks model of computation,hifstory of tokens that traverse any connection is
determinate under certain simple conditions. With certain technical restrictions on the functionality of
the actors (they must implement monotonic functions under prefix ordering of sequences), our imple-
mentation ensures determinacy in that the history does not depend on the order in which the actors
carry out their computation. Thus, the history does not depend on the policies used by the thread
scheduler.

FIFOQueue is a support class that implements a first-in, first-out queue. This class has two special-
ized features that make it particularly useful in this context. First, its capacity can be constrained or
unconstrained. Second, it can record a finite or infinite history, the sequence of objects previously
removed from the queue. The history mechanism is useful both to support tracing and debugging and
to provide access to a finite buffer of previously consumed tokens.

FIXME: Showv code for actors to send and reeeilata in arious vays (broadcast, etc.).

Rendezvous CommunicatioR&endezvous, or synchronous communication, requires that the origina-

tor of a token and the recipient of a token both be simultaneously ready for the data transfer. As with
process networks, the originator and the recipient are separate threads. The originating thread indicates
a willingness to rendezvous by calling send(), which in turn calls the put() method of the appropriate
receiver. The recipient indicates a willingness to rendezvous by calling get() on an input port, which in
turn calls get() of the designated receiver. Whichever thread does this first must stall until the other
thread is ready to complete the rendezvous.

This style of communication is supported by the RendezvousReceiver class. The put() method sus-
pends the calling thread if the get() method has not been called. The get() method suspends the calling
thread if the put() method has not been called. When the second of these two methods is called, it

3-8 Ptolemy Il

Actors

wakes up the suspended thread and completes the data transfer.

Nondeterministic transfers can be easily implemented using this mechanism. Suppose for example
that a recipient is willing to rendezvous with any of several originating threads. It could spawn a thread
for each. These threads should each call get(), which will suspend the thread until the originator is will-
ing to rendezvous. When one of the originating threads is willing to rendezvous with it, it will call
put(). The multiple recipient threads will all be awakened, but only of them will detect that its rendez-
vous has been enabled. That one will complete the rendezvous, and others will die. Thus, the first orig-
inating thread to indicate willingness to rendezvous will be the one that will transfer data. Guarded
communication [3] is equally easy to implement.

FIXME: Show code for actors to send and reeedlata in grious vays.

Discrete-Event Communicatioim the discrete-event model of computation, tokens that are trans-
ferred between actors havetime stampwhich specifies the order in which tokens should be pro-
cessed by the recipients. The order is chronological, by increasing time stamp. To implement this, a
discrete-event system will normally use a single, global, sorted queue rather than an instance of FIFO-
Queue in each input port. This is EventReceiver, which uses the SortedQueue class from the actor.util
package.

FIXME: Design needed here. Describe CalendarQueue class.

3.2.5 Discussion of the Data Transfer Mechanism

This data transfer mechanism has a number of interesting features. First, note that the actual trans-
fer of data does not involve relations, so a model of computation could be defined that did not rely on
relations. For example, a global name server might be used to address recipient ports. For example, to
construct simulations of highly dynamic networks, such as wireless communication systems, it may be
more intuitive to model a system as a aggregation of unconnected actors with addresses. A name server
would return a reference to a port given an address. This could be accomplished simply by overriding
the getRemoteReceivers() method of I0Port, or by providing an alternative method for getting refer-
ences to receivers.

Note further that the mechanism here supports bidirectional ports. An IOPort may return true to
both the isInput() and isOutput() methods.

3.3 Execution

The Executable interface, shown in figure 3.10, defines how an object can be invoked. There are
five methods. The initialize() method is assumed to be invoked exactly once during the lifetime of an
execution of an application. It may be invoked again to restart an execution. The prefire(), fire(), and
postfire() methods will usually be invoked many times. The fire() method may be invoked several
times between invocations of prefire() and postfire().i#enation is defined to be one invocation of
prefire(), any number of invocation of fire(), and one invocation of postfire(). The wrapup() method
will be invoked exactly once per execution, when the execution terminates. Thusxeantionis
defined to be one invocation of initialize(), followed by any number of iterations, followed by one
invocation of wrapup(). The methods initialize(), prefire(), fire(), postfire(), and wrapup() are called
theaction methods

Heterogeneous Concurrent Modeling and Design 9-

Actors

3.3.1 Director

The Executable interface, shown in figure 3.10, is implemented by the Director class, and is
extended by the Actor interface. Attoris an executable entity. There are two types of actors, Atom-
icActor, which extends ComponentEntity, and CompositeActor, which extends CompositeEntity. As
the names imply, an AtomicActor is a single entity, while a CompositeActor is an aggregation of
actors.

A director governs the execution of a composite entity. An example of the use of these classes is
shown in figure 3.11. In that example, a top-level entity, EO, has an instance of Director, DO, that
serves the role of its executive director. Arecutive directors responsible for the overall control of
an application. It will start and stop an execution, and may have a control panel GUI associated with it.
The top-level entity EO also has a local directorlokal directoris responsible for execution of the
components within the composite. It will perform any scheduling that might be necessary, dispatch
threads that need to be started, generate code that needs to be generated, etc.

A composite actor that is not at the top level may or may not have its own local director. If it has a
local director, then it defined to be opaque (isOpaque() retwua. In figure 3.11, E2 has a local
director and E3 does not. The contents of E3 are directly under the control of D1, as if the hierarchy
were flattened. By contrast, the contents of E2 are under the control of D2, which in turn is under the
control of D1. In the terminology of the previous generation, Ptolemy 0.x, E2 was calledrahole

«Interface»
Executable

+fire()
+initialize()

«Interface» +postfire() : boolean
Actor wprefie) boolean |4 liiiieeieeceens
s
+wrapup() T H «Interface»
‘ MutationListener

+getDirector() : Director :

+inputPorts() : Enumeration ‘

+newReceiver() : Receiver S

+outputPorts() : Enumeration <+ 1 ‘

Director

-_actorListener : ActorListener
-_container : CompositeActor
-_executivedirector : boolean
‘ -_mutationListeners : LinkedList
- _pendingMutations : LinkedList
r— _ ‘ [+addMutationListener(m : MutationListener) —
| +iterate() : boolean

0..2 [fnewReceiver() : Receiver

CompositeActor +run()

+run(iterations : int)

[+queueMutation(mutation : Mutation)
+removeMutationListener(m : MutationListener)
+transferinputs(port : I0Port)
+transferOutputs(port : I0Port)
[#_makeDirectorOf(cast : CompositeActor)
[#_makeExecDirectorOf(cast : CompositeActor)
j# _performMutations() : boolean

AtomicActor

0..1 [-_director : Director 1
-_execdirector : Director
+getExecutiveDirector() : Director
+newlnsideReceiver() : Receiver
+setDirector(d : Director)
+setExecutiveDirector(execdir : Director)

1
ActorListener

|-_director : Director
-_newActors : LinkedList

+initializeNewActors()

FIGURE 3.10. Classes in the actors package that support execution.

3-10 Ptolemy Il

Actors

In Ptolemy II, we simply call it a composite opaque actor. It will be explained in more detail below in
section 3.3.4.

We define thedirector (vs. local director or executive director) of an actor to be either its local
director (if it has one) or its executive director (if it does not). A composite actor that is not at the top
level has as its executive director the director of the container. Every executable actor has a director,
and that director is what is returned by the getDirector() method of the Actor interface (see figure
3.10).

The Director class provides a default implementation of an execution sequence. Although specific
domains may override this implementation, in order to ensure interoperability of domains, they should
stick fairly closely to the sequence. A complete execution can be obtained by invoking the run()
method, which optionally takes an argument specifying the number of iterations. An execution can
alternatively be terminated by returnifajseto the postfire() method.

The implementation of the run() method is shown in figure 3.12. It invokes initialize(), followed
by some number of invocations of iterate(), followed by wrapup(). The iterate() method is invoked
until either it returndalseor the specified number of iterations have been completed, if a number was
specified. The behavior of the initialize() and wrapup() methods depends on whether the director is an
executive director or a local director. If it is an executive director, then they simply invoke the corre-
sponding methods of the composite actor under the control of the executive director. This composite
actor in turn invokes the corresponding methods of its local director. If it is a local director, the they
invoke the corresponding methods of the contained actors, in the order in which these actors were cre
ated.

The initialize() method of each actor gets invoked exactly once, much like the begin() method in
Ptolemy 0.x. Typical actions of the initialize() method include creating and initializing private data
members and producing initial outputs. Note that while delays in dataflow were implemented as anno-
tations on the arcs in Ptolemy 0.x, they become actors in Ptolemy II. Their initialize methods produce
the initial tokens that they represent, and their fire() methods are never invoked (the scheduler simply
does not schedule them).

The wrapup() method is also invoked exactly once by the run() method, unless an exception
occurs. Typical actions include displaying final results of a run.

The iterate() method is a bit more complicated than initialize() or wrapup(), and hence it is
expanded in figure 3.12. It controls the sequence of invocations of prefire(), fire(), and postfire(). The
prefire() method returns a boolean, and if ifagsg then the application is not ready for invocation of
the fire() or postfire() methods, so they are skipped. If it retiras, then the fire() and postfire()
methods are invoked. The behavior of the fire() and postfire() methods again depends on whether the

DO: executive director

(EO D1: local director)
E2 D2: local director

FIGURE 3.11. Example application, showing a typical arrangement of actors and directors.

Heterogeneous Concurrent Modeling and Design 21

Actors

director is a local or executive director. If it is an executive director, they invoke the corresponding
methods of the actor. If it is a local director, then they invoke the corresponding methods of the constit-

The prefire() method again is a bit more complicated, so it too is expanded in figure 3.12. This

uent actors.
method supportmutations where the topology of the graph changes during the execution of an appli-
cation. Mutations are explained in the next section. If there are no mutations to be performed, then the

prefire() method simply invokes the prefire() method of the actor under control (if it is an executive

director) or of the component actors (if it is a local director).

/ ,/"'//

/ iterate method T prefire method

i P
A

|
prefire

Pending
Mutations?

3\
Perform
Mutations

i
i
i
iz
i \\
\
Yes Y
Y y
\
Type resolution

: ‘/\ i
run method {
i
i
i \
I A
i \
4 / fire i
\ No
N
by
A
i
\\
. Initialize actors

i
i
initialize
No
{
i
i
/
4 /
. i
postfire N
\
\
\
1\
y

iterate

Prefire actors or
(if atomic) actor

No. v
N return Y
\
\
1
|
\
\ A 4
\
\
\ return
!

Yes
wrapup 1
y
return
FIGURE 3.12. Execution sequence implemented by run() method of the Director class.
Ptolemy Il

3-12

Actors

3.3.2 Mutations

A mutationis a run-time modification of an application. In most domains, it is not safe for muta-
tions to occur at arbitrary times during an execution. For example, a scheduler may need to be re-run to
take into account the mutation. Or a domain may wish to have tight control over when parameters of an
application change.

The Director class leverages the mutation subpackage of the kernel, which provides two interfaces,
Mutation and MutationListener. A class that implements Mutation has a method that actually performs
the mutation. A class that implements MutationListener has methods that are called to inform it of
mutations that have been performed.

The general strategy in Director is simple. Any code that wishes to perform mutation queues that
mutation with the director rather than performing it directly (using the queueMutation() method,
shown in figure 3.10). When it is safe, that mutation is performed, and all mutation listeners that have
been registered with the director (using the addMutationListener() method) are informed of the muta-
tion. In the Director class, the mutations are performed in the prefire() method.

When mutations are used, the Director class automatically registers a particular mutation listener,
an instance of class ActorListener (see figure 3.10). This listener listens for the addition of new actors.
When a new actor is added, this listener makes a record of it. When all pending mutations have been
performed, the director asks the listener to initialize each new actor by invoking its initializeNewAc-
tors() method.

It is possible that initialization of the new actors will result in further mutations (for example, if
they are higher-order functions). Thus, the prefire() method of Director iterates, as shown in figure
3.12, until there are no further pending mutations.

3.3.3 Excecution Sequence for Process Networks MOC

FIXME: This needs to be updated when PN has been updated.

PNDirector is derived from Director in the actors package. It uses the default run() method of the
Director class. The run method calls the initialize() method, which currently does not do anything in
the PN domain. The iterate() method is called repeatedly until it returns true. When iterate returns true,
the run() method calls wrapup() and returns.

PNDirector uses the default implementation of the iterate() method in the director. The iterate()
method calls prefire(), and if prefire() returns true, then it calls fire() and postfire().

In case of PN, the prefire() calls the getNewActors(), which returns an enumeration of actors that
have been added (by mutation of the graph). Note that all the actors are added to this list by calling reg-
isterNewActor() in their constructors. The prefire() method starts a thread for each of these actors.
Then it clears the list by calling the clearNewActors().

After prefire returns true, the fire() method takes over. The fire() method in PN handles deadlock.
The postfire() method does not do anything in case of PN domain.

The iterate() method returns false if mutations have occurred, resulting in the iterate method being
called again. The iterate() method returns true to indicate a real deadlock, causing the wrapup() method
to be called and the simulation to be terminated. The wrapup method terminates all threads.

FIXME: Need to she here hav this execution sequence maps into & fef the MoCs.

Heterogeneous Concurrent Modeling and Design 23

Actors

3.3.4 Composite Opaque Actors

One of the key features of Ptolemy Il is its ability to hierarchically mix models of computation in a
disciplined way. The way that it does this is to have actors that are composite (hon-atomic) and
opaque. Such an actor was called@mholein the earlier generation of Ptolemy. Its ports are opaque
and its contents are not visible via methods like deepGetEntities().

Recall that an instance of CompositeActor that is at the top level of the hierarchy must have a local
director in order to be executable. A CompositeActor at a lower level of the hierarchy may also have a
local director, in which case, it is opaque (isOpaque() retrus). It also has an executive director,
which is simply the director of its container. For a composite opaque actor, the local director and exec-
utive director need not follow the same model of computation. Hence hierarchical heterogeneity.

The ports of a composite opaque actor are opaque, but it is a composite (it can contain actors and
relations). This has a number of implications on execution. Consider the simple example shown in fig-
ure 3.13. Assume that both EO and E2 have local directors (D1 and D2), so E2 is opaque. The ports of
E2 therefore are opaque, as indicated in the figure by their solid fill. Since its ports are opaque, when a
token is sent from the output port P1, it is deposited in P2, not P5.

In the execution sequence of figure 3.12, E2 is treated as an atomic actor by D1; i.e. D1 acts as an
executive director to E2. Thus, the prefire() method of D1 invokes the prefire() methods of E1, E2, and
E3. The prefire() method of E2 is responsible for transferring the token from P2 to P5. It does this by
delegating to its local director, invoking its transferlnputs() method. It then invokes the prefire()
method of D2, which in turn invokes the prefire() method of E4.

During its fire() method, E2 will invoke the fire() method of D2, which typically will fire the actor
E4, which may send a token via P6. Again, since the ports of E2 are opaque, that token goes only as far
as P3. The postfire() method of E2 is responsible for transferring that token to P4. It does this by dele-
gating to itsexecutivedirector, invoking its transferOutputs() method.

The CompositeActor class delegates transfer of its inputs to its local director, and transfer of its
outputs to its executive director. This is the correct organization, because in each case, the director
appropriate to the model of computation of the destination port is the one handling the transfer. It can
therefore handle it in a manner appropriate to the model of computation.

Note that the port P3 is an output, but it has to be capable of receiving data from the inside, as well
as sending data to the outside. Thus, despite being an output, it contains a receiver. Such a receiver is
called aninside receiverThe methods of IOPort offer only limited access to the inside receivers (only
via the getinsideReceivers() method and getReceiadasipn), whererelation is an inside linked

DO: executive director

(EO D1: local director)
E2 D2: local director

FIGURE 3.13. An example of a composite opaque actor. EO and E2 both have local directors, not necessarily
implementing the same model of computation.

3-14 Ptolemy Il

Actors

relation).

In general, a port may be both an input and an output. An opaque port of a composite opaque actor,
thus, must be capable of storing two distinct types of receivers, a set appropriate to the inside model of
computation, obtained from the local director, and a set appropriate to the outside model of computa-
tion, obtained from its executive director. Most methods that access receivers, such as hasToken() or
hasRoom(), refer only to the outside receivers. The use of the inside receivers is rather specialized,
only for handling composite opaque actors, so a more basic interface is sufficient.

3.4 Utilities

FIXME: discussion of the util package.

3.5 Library

FIXME: discussion of the lib package.

Heterogeneous Concurrent Modeling and Design 25

Actors

3-16 Ptolemy Il

Data

Figure 4.1 shows the classes that carry data between actors. The class hierarchy here defines a par-
tial order that is used in type resolution. The bottom element of the partial order is the class Token
(thus, the inheritance diagram is upside down compared to a representation of the partial order). The

partial order is converted to a lattice by adding a top element called NotAType. This element is used to
flag type conflicts found during type resolution.

Heterogeneous Concurrent Modeling and Design

Data

Token
clone()
fromString(string)
toString()
| |
ScalarToken CompositeToken S
Objectloken _contents: Hashtable
. ; MatrixTok
byteValue() _value: Object atrixtoken clear()
complexValue() getValue() contains(token)
doubleValue() setValue(object) containsKey(key)
fixValue() elements()
intvalue() A get(key)
longValue() keys()
put(key, token)
remove(key)
VectorToken StringToken YA size()
ByteToken ComplexToken DoubleToken
_value: byte _value: Complex _value: double
FixToken IntToken LongToken
_value: long
ByteMatrixToken DoubleMatrixToken ComplexMatrixToken

_value: double

FixMatrixToken IntMatrixToken LongMatrixToken

FIGURE 4.1. Token classes are used to convey data between actors.

4-2 Ptolemy Il

Graph

Many Ptolemy Il applications apply graph algorithms to representations of a topology. This is
done for instance to support scheduling or synthesis. Two graph packages are included in Ptolemy II.
The staticgraphpackage is the simpler of the two, and supports only graphs that are not changed after
they are constructed. Thiynamicgraptpackage uses the Ptolemy Il abstract syntax, but specializes it
to mathematical graphs, and then provides graph algorithms that operate on it.

figure 5.1.
Typical usage:Use CompositeEntity::deepGetEntities{d get an enumerationof objects that
implement the GraphNode intade. Then pass that enumeration a graph algorithm.

Requirements:
¢ Need to be able to decorate nodes and edges.
* Need to be able to return a subset of tiemgraph (some edges, some nodes).

Heterogeneous Concurrent Modeling and Design %-

Graph

Graph

matching algorithms?
planar graph algorithms?
graph drawing algorithms?

allPairsShortestPath()
bellmanFordAlgorithm()
breadthFirstSearch()
connectedComponents()
depthFirstSearch()
dijkstrasAlgorithm()
maxFlow()

minCut()

minFlow()

mixMaxFlow()
minimumSpanningTree()
stronglyConnectedComponents()
topologicalSort()
transitiveClosure()

GraphNode

getAdjacentNodes()
getDecoration()
setDecoration(decoration)

DigraphNode

getDownstreamNodes()
Fat=\il 'r\.streamNodes()

Node

level: int

Edge
weight: int

shadowed: Entity visited: boolean

visited: boolean

FIGURE 5.1. Interfaces for graph algorithms.

5-2

Ptolemy Il

Higher-Order
Functions

Higher order functions like those in the HOF domain of Ptolemy 0.x [13] are supported hypthe
package. These can be used to construct scalable visual representations and data parallel specifications

[9].

Heterogeneous Concurrent Modeling and Design -

Higher-Order Functions

6-2

Ptolemy Il

Automata

Actors have entities that perform computations. A rather different kind of topology in Ptolemy I
uses entities to represent states of computation rather than the computations themselves. The transi-
tions package supports this style of topology.

Heterogeneous Concurrent Modeling and Design 1-

Automata

7-2

Ptolemy Il

nthesis

8.1 Separating Interface fr om Implementation

8.1.1 Syntactic Pr operties of the Interface

Core/Corona model.

8.1.2 Semantic Pr operties of the Interface

Agha[2] amguesthatthatno modelof concurreng canor shouldallow all communicatiorabstrac-
tions to be directly expressedSimple messaggassingis akin to “gotos” in their lack of structure.
Instead actorsshouldbe composedisinganinteractionpolicy or “interactionpattern’. Aghasuggests
that therearetwo usefulinteractionpolicies, called“atomicity” and“precedenceonstraints. These
aresimilar to our rendezwusanddataflav, but in factthereare several otherinteractionpatternshat
prove useful.

FIXME: SR, AN, DE.

FIXME: How the corona/coreconcepttranscendslomainsfor functional actors.Point out that
non-functionakctorsmayhave moredependencen theinteractionpatternse.g.agueuen DE with a
demand input (actuallys this a goodx@ample? The same queue couldrkvin DDF).

Heterogeneous Concurrent Modeling and Design &-

Synthesis

Ptolemy Il

Conclusions

Heterogeneous Concurrent Modeling and Design

Conclusions

9-2

Ptolemy Il

References

[1] G. A. Agha, Actors: A Model of Concurrent Computation in Distributed Systelhd Press,
Cambridge, MA, 1986.

[2] G. A. Agha, “Abstracting Interaction Patterns: A Programming Paradigm for Open Distributed
Systems,” inFormal Methods for Open Object-based Distributed SystéRiB Transactions, E.
Najm and J.-B. Stefani, Eds., Chapman & Hall, 1997.

[3] G. R. AndrewsConcurrent Programming — Principles and Practiéeldison-Wesley, 1991.

[4] J.T.Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A Framework for Simulating
and Prototyping Heterogeneous Systens,’ Journal of Computer Simulatigispecial issue on
“Simulation Software Development,” vol. 4, pp. 155-182, April, 1994. (http://ptolemy.eecs.ber-
keley.edu/papers/JEurSim).

[5] S. A. Edwards, “The Specification and Execution of Heterogeneous Synchronous Reactive Sys-
tems,”Ph.D. thesis University of California, Berkeley, May 1997. Available as UCB/ERL M97/
31. (http://ptolemy.eecs.berkeley.edu/papers/97/sedwardsThesis/)

[6] M. Fowler and K. ScottML Distilled, Addison-Wesley, 1997.

[7] E.Gamma, R. Helm, R. Johnson, and J. Vlissid¥essign Patterns: Elements of Reusable Object-
Oriented SoftwareAddison-Wesley, Reading MA, 1995.

[8] D. Harel, “Statecharts: A Visual Formalism for Complex Systenssi. Comput. Programyol
8, pp. 231-274, 1987.

[9] P. G. Harrison, “A Higher-Order Approach to Parallel Algorithm$iie Computer Journahol.
35, No. 6, 1992.

[10] C. A. R. Hoare, “Communicating Sequential Process€sjhmunications of the ACM/ol. 21,
No. 8, August 1978.

[11] G. Kahn, “The Semantics of a Simple Language for Parallel Programming,” Proc. of the IFIP
Congress 74, North-Holland Publishing Co., 1974.

[12] D. Lea,Concurrent Programming in Jal¥y, Addison-Wesley, Reading, MA, 1997.

[13] E. A. Lee and T. M. Parks, “Dataflow Process NetworkBfpceedings of the IEEE/0Il. 83, no.
5, pp. 773-801, May, 1995. (http://ptolemy.eecs.berkeley.edu/papers/processNets)

[14] S. McConnell,Code Complete : A Practical Handbook of Software Constructdicrosoft
Press, 1993.

[15] B. Meyer,Object Oriented Software Constructjdind ed., Prentice Hall, 1997.
[16] R. Milner, Communication and Concurrendyrentice-Hall, Englewood Cliffs, NJ, 1989.

Heterogeneous Concurrent Modeling and Design

References

[17] NASA Office of Safety and Mission Assuran&@oftware Formal Inspections Guidebg@tugust
1993 (http://satc.gsfc.nasa.gov/fi/gdb/fitext.txt).

[18] J. K. Ousterhouflcl and the Tk ToolkitAddison-Wesley, Reading, MA, 1994.

[19] T. M. Parks,Bounded Scheduling of Process Networkschnical Report UCB/ERL-95-105.
Ph.D. Dissertation EECS Department, University of California. Berkeley, CA 94720, December
1995. (http://ptolemy.eecs.berkeley.edu/papers/parksThesis).

[20] Rational Software CorporatiolJML Notation Guide Version 1.1, September 1997, http://
www.rational.com/uml/html/notation/.

[21] A. J. Riel,Object Oriented Design HeuristicAddison Wesley, 1996.

[22] 3. Rowson and A. Sangiovanni-Vincentelli, “Interface Based Desifngc. of DAC ‘97
FIXME- check reference

[23] J. Rumbaughet al Object-Oriented Modeling and Desigtrentice Hall, 1991.
[24] J. RumbaughQMT Insights SIGS Books, 1996.

Ptolemy Il

IN

Symbols

_newReceiver() method
IOPort class 3-8

A

abstract class 2-3

abstract syntax 1-1, 2-1

abstraction 2-7

acquaintances 3-1

action methods 3-9

actor 3-10

Actor interface 3-10

actor package 3-1, 3-2

ActorListener class 2-17, 3-13

actors 3-1, 3-2

addedEntity() method
MutationListener 2-17

addMutationListener() method
Director class 3-13

aggregation association 2-5

aggregation UML notation 2-3

allowLevelCrossingConnect() method
CompositeEntity class 2-10

anytype particle 1-2

application framework 3-1

arc 2-1

associations 2-3

asynchronous communication 3-8

AtomicActor class 3-10

Attribute class 2-6

attributes 2-2

B

base class 2-2

begin() method
Ptolemy 0 3-11

bidirectional ports 3-9

broadcast() method 3-4

buffer 3-8

ex

bus 3-4
bus widths and transparent ports 3-7
busses, unspecified width 3-7
C
channel 3-3
class diagrams 2-2
clone of a token 3-4
clone() method

NamedObj class 2-12
cloning 2-12
clustered graphs 1-1, 2-1
communication protocol 3-3, 3-8
ComponentEntity class 2-7, 2-8
ComponentPort class 2-7, 2-8
ComponentRelation class 2-7, 2-8
components 1-1
Composite design pattern 2-7
composite opaque actor 3-11
composite opaque entities 2-17
CompositeActor class 3-10
CompositeEntity class 2-7, 2-8
composition 2-3
concrete class 2-3
concrete syntax 2-1
concurrent computation 3-1
concurrent design 1-1
connect() method

CompositeEntity class 2-10
connection 2-1
consistency 2-5
container 2-6
containment 2-3
CORBA 1-1
CrossRefList class 2-7
D
dangling relation 3-4
dataflow 3-8

Heterogeneous Concurrent Modeling and Design

Index

deadlock 2-18
deep traversals 2-9

full name 2-6
G

deepContains() methodNamedODbj class 2-1@alaxy 2-11

deepGetEntities() method
CompositeEntity class 2-9, 3-14

demultiplexor actor 3-4

derived class 2-2

description() method 2-11, 2-12

design patterns 1-2

design refinement 1-2

determinacy 3-8

directed graph 2-1

director 3-8, 3-10, 3-11

Director class 2-16, 3-8, 3-10

disconnected port 3-4

discrete-event model of computation 3-9

distributor actor 3-4

domain 3-1

domains 1-1

doneReading() method
Workspace class 2-20

doneWriting() method
Workspace class 2-20

dynamic networks 3-9

E

EDIF 2-1

entities 2-1

Entity class 2-3, 2-5

EventReceiver class 3-9

executable entities 3-1

Executable interface 3-9

execution 3-9

executive director 3-10, 3-14

F

FIFOQueue class 3-8

finally keyword 2-20

finite buffer 3-8

fire() method
CompositeActor class 3-14
Director class 3-11, 3-14
Executable interface 3-9

fixed-point simulations 1-2

floating-point simulations 1-2

generalize 2-2
get() method
IOPort class 3-3
Receiver interface 3-3
getAttribute() method
NamedObj class 2-7
getAttributes() method
NamedObj class 2-7
getContainer() method
Nameable interface 2-6
getDirector() method
Actor interface 3-11
getinsideReceivers() method
IOPort class 3-14
getReceivers() method
IOPort class 3-14
getRemoteReceivers() method 3-9
IOPort class 3-7
getWidth() method
IORelation class 3-7
graphical syntaxes 2-11
guarded communication 3-9
H
hasRoom() method
IOPort class 3-15
hasToken() method
IOPort class 3-15
heterogeneity 1-1, 2-17, 3-14
hiding 2-7
hierarchical heterogeneity 2-17, 3-14
hierarchy 2-7
history 3-8
I
Immutable 2-19
immutable 2-6
implementing an interface 2-3
information-hiding 2-17
inheritance 2-2
initialize() method
Director class 3-11

Ptolemy Il

Index

Executable interface 3-9
initializeNewActors() method
ActorListener class 3-13
input port 3-3
inputs
transparent ports 3-5
inside links 2-7
inside receiver 3-14
interface 2-3
interoperability 1-1
IOPort class 3-2
IORelation class 3-3, 3-4
isAtomic() method
CompositetEntity class 2-7
isinput() metho 3-9
isOpaque() method
ComponentPort 2-17
CompositeActor class 3-10, 3-14
CompositeEntity class 2-7, 3-5
isOutput() method 3-9
iterate() method
Director class 3-11
iteration 3-9
K
Kahn process networks 3-8
L
level-crossing links 2-8, 2-10
liberalLink() method
ComponentPort class 2-10
link 2-1, 2-5
link() method
Port class 2-10
listener 2-17
local director 3-10, 3-14
lock 2-18
M
mailbox 3-8
Mailbox class 3-8
makeMultiport() method
IOPort class 3-3
managed ownership 2-6
mathematical graphs 2-1
Mediator design pattern 2-2

message passing 3-2
model of computation 3-1, 3-3
models of computation
mixing 3-14
monitor 2-18
monitors 1-2
monotonic functions 3-8
multiport 3-3
mutation 1-2, 3-13
Mutation interface 2-17, 3-13
mutation package 2-16
mutation subpackage 3-13
MutationListener interface 3-13
mutual exclusion 2-18
N
name 2-6
name server 3-9
Nameable interface 2-3, 2-6
NamedList class 2-7
NamedObj class 2-3, 2-6
newReceiver() method
Director class 3-8
nondeterminism with rendezvous 3-9
O
object model 2-2
object modeling 1-2
object-oriented concurrency 3-1
opaque actors 3-10, 3-14
opaque composite actor 3-11
opaque composite entities 2-17
opaque port 2-8
override 2-2
P
package structure 1-2
packages 1-1
partial order 1-2
perform() method
Mutation interface 2-17
polymorphism 1-2
Port class 2-3, 2-5
ports 2-1
postfire() method
CompositeActor class 3-14

Heterogeneous Concurrent Modeling and Design

Index

Director class 3-11
Executable interface 3-9
prefire() method
CompositeActor class 3-14
Director class 3-11, 3-14
Executable interface 3-9
prefix order 3-8
private members and methods 2-2
private methods 2-2
process algebras 2-7
process networks 3-8
protected members and methods 2-2
protocol 3-3
public members and methods 2-2
put() method
Receiver interface 3-3
Q
queue 3-8
gueueMutation() method
Director class 2-17, 3-13
QueueReceiver class 3-8
R
race conditions 2-18
read() method
Workspace class 2-20
read/write semaphores 1-2
readers and writers 2-20
receiver
wormhole ports 3-14
Receiver interface 3-3
reduced-order modeling 1-1
Relation class 2-3, 2-5
relations 2-1
rendezvous 3-8
RendezvousReceiver class 3-8
Rumbaugh 2-6
run() method
Director class 3-11
S
semantics 1-1
send() method
IOPort class 3-3
setContainer() method

kernel classes 2-5
setWidth() method
IORelation class 3-4, 3-7
software components 1-1
software engineering 1-2
SortedQueue class 3-9
specialize 2-2
star 2-11
static structure diagrams 2-2
stream 3-4
subclass 2-2
subclass UML notation 2-2
superclass 2-2
synchronized keyword 2-18
synchronous communication 3-8
T
thread safety 2-6, 2-17, 2-18
threads 3-8
thread-safety 1-2
time stamp 3-9
tokens 3-2
topology 2-1
transferinputs() method
Director class 3-14
transferOutputs() method
Director class 3-14
transparent entities 2-7
transparent ports 2-8, 3-5
tunneling entity 2-11
type resolution 1-2
U
UML 2-2
unigueness of names 2-6
update() method
Mutation interface 2-17
\%
vertex 2-1
w
width of a port 3-4
width of a relation 3-4
width of a transparent 3-7
widthFixed() method
IORelation class 3-7

Ptolemy Il

Index

wireless communication systems 3-9
workspace 2-19
Workspace class 2-3, 2-6, 2-20
wormhole 1-1, 2-17, 3-10, 3-14
wrapup() method

Director class 3-11

Executable interface 3-9
write() method

Workspace class 2-20

Heterogeneous Concurrent Modeling and Design

	— DRAFT — NOT FOR DISTRIBUTION —
	Contents
	1. Introduction 1-1
	1.1. Objectives 1-1
	1.2. Package Structure 1-2

	2. The Kernel 2-1
	2.1. Abstract Syntax 2-1
	2.2. UML Notation 2-2
	2.3. Ptolemy II Conventions 2-4
	2.4. Non-Hierarchical Topologies 2-5
	2.4.1. Links 2-5
	2.4.2. Consistency 2-5

	2.5. Support Classes 2-5
	2.5.1. Containers 2-5
	2.5.2. Name and Full Name 2-6
	2.5.3. Workspace 2-6
	2.5.4. Attributes 2-6
	2.5.5. List Classes 2-7

	2.6. Clustered Graphs 2-7
	2.6.1. Abstraction 2-7
	2.6.2. Level-Crossing Connections 2-10
	2.6.3. Tunneling Entities 2-11
	2.6.4. Description 2-11
	2.6.5. Cloning 2-12
	2.6.6. An Elaborate Example 2-13
	2.6.7. Mutations 2-13

	2.7. Composite Opaque Entities 2-17
	2.8. Concurrency 2-17
	2.8.1. Limitations of Monitors 2-18
	2.8.2. Workspace 2-19

	2.9. Exceptions 2-20
	2.9.1. Base Class 2-20
	2.9.2. Less Severe Exceptions 2-20
	2.9.3. Very Severe Exceptions 2-21

	3. Actors 3-1
	3.1. Concurrent Computation 3-1
	3.2. Message Passing 3-2
	3.2.1. Data Transport 3-3
	3.2.2. Example 3-5
	3.2.3. Transparent Ports 3-5
	3.2.4. Data Transfer in Various Models of Computation 3-8
	3.2.5. Discussion of the Data Transfer Mechanism 3-9

	3.3. Execution 3-9
	3.3.1. Director 3-10
	3.3.2. Mutations 3-13
	3.3.3. Excecution Sequence for Process Networks MOC 3-13
	3.3.4. Composite Opaque Actors 3-14

	3.4. Utilities 3-15
	3.5. Library 3-15

	4. Data 4-1
	5. Graph 5-1
	6. Higher-Order Functions 6-1
	7. Automata 7-1
	8. Synthesis 8-1
	8.1. Separating Interface from Implementation 8-1
	8.1.1. Syntactic Properties of the Interface 8-1
	8.1.2. Semantic Properties of the Interface 8-1

	9. Conclusions 9-1

	1 Introduction
	1.1 Objectives
	FIGURE 1.1. The package structure of Ptolemy II.

	1.2 Package Structure

	2 The Kernel
	2.1 Abstract Syntax
	FIGURE 2.1. Visual notation and terminology.

	2.2 UML Notation
	FIGURE 2.2. Key classes in the kernel package and their methods supporting basic (non-hierarchica...
	FIGURE 2.3. Support classes in the kernel.util package.

	2.3 Ptolemy II Conventions
	2.4 Non-Hierarchical Topologies
	2.4.1 Links
	2.4.2 Consistency

	2.5 Support Classes
	2.5.1 Containers
	2.5.2 Name and Full Name
	2.5.3 Workspace
	2.5.4 Attributes
	2.5.5 List Classes

	2.6 Clustered Graphs
	FIGURE 2.4. Key classes supporting clustered graphs.
	2.6.1 Abstraction
	FIGURE 2.5. Transparent ports (P3 and P4) are linked to relations (R1 and R2) below their contain...

	2.6.2 Level-Crossing Connections
	FIGURE 2.6. An example with level-crossing transitions.

	2.6.3 Tunneling Entities
	FIGURE 2.7. A tunneling entity contains a relation with inside links to more than one port.

	2.6.4 Description
	FIGURE 2.8. An example of the syntax returned by the description() method.

	2.6.5 Cloning
	2.6.6 An Elaborate Example
	FIGURE 2.9. An example of a clustered graph.
	FIGURE 2.10. The same topology as in figure 2.9 implemented as a Java class.
	FIGURE 2.11. The same topology as in figure 2.9 described by the TclBlend commands to create it.
	FIGURE 2.12. Key methods applied to figure 2.9.

	2.6.7 Mutations
	FIGURE 2.13. Interfaces in the kernel.mutation package.

	2.7 Composite Opaque Entities
	2.8 Concurrency
	2.8.1 Limitations of Monitors
	FIGURE 2.14. Using monitors for thread safety. The method used in Ptolemy II is in (d) and (e).

	2.8.2 Workspace

	2.9 Exceptions
	FIGURE 2.15. Summary of exceptions defined in the kernel.util package. These are used primarily t...
	2.9.1 Base Class
	KernelException

	2.9.2 Less Severe Exceptions
	IllegalActionException
	NameDuplicationException
	NoSuchItemException

	2.9.3 Very Severe Exceptions
	InvalidStateException
	InternalErrorException

	3 3 Actors
	3.1 Concurrent Computation
	3.2 Message Passing
	FIGURE 3.1. Port classes that support message passing under various communication protocols.
	3.2.1 Data Transport
	FIGURE 3.2. Message passing is mediated by the IOPort class. Its send() method obtains a referenc...
	FIGURE 3.3. A port can support more than one channel, permitting an entity to send distinct data ...
	FIGURE 3.4. A bus is an IORelation that represents multiple channels. It is indicated by a relati...
	FIGURE 3.5. Channels may reach multiple destinations. This is represented by relations linking mu...

	3.2.2 Example
	FIGURE 3.6. An elaborate example showing several features of the data transport mechanism.

	3.2.3 Transparent Ports
	FIGURE 3.7. An example showing busses combined with input, output, and transparent ports.
	FIGURE 3.8. TclBlend code to construct the example in figure 3.7.
	FIGURE 3.9. Bus widths inside and outside a transparent port need not agree..

	3.2.4 Data Transfer in Various Models of Computation
	Mailbox Communication
	Asynchronous Message Passing
	Rendezvous Communications
	Discrete-Event Communication

	3.2.5 Discussion of the Data Transfer Mechanism

	3.3 Execution
	FIGURE 3.10. Classes in the actors package that support execution.
	3.3.1 Director
	FIGURE 3.11. Example application, showing a typical arrangement of actors and directors.
	FIGURE 3.12. Execution sequence implemented by run() method of the Director class.

	3.3.2 Mutations
	3.3.3 Excecution Sequence for Process Networks MOC
	3.3.4 Composite Opaque Actors
	FIGURE 3.13. An example of a composite opaque actor. E0 and E2 both have local directors, not nec...

	3.4 Utilities
	3.5 Library

	4 4 Data
	FIGURE 4.1. Token classes are used to convey data between actors.

	5 Graph
	FIGURE 5.1. Interfaces for graph algorithms.

	6 Higher-Order Functions
	7 Automata
	8 Synthesis
	8.1 Separating Interface from Implementation
	8.1.1 Syntactic Properties of the Interface
	8.1.2 Semantic Properties of the Interface

	9 Conclusions
	References
	[1] G. A. Agha, Actors: A Model of Concurrent Computation in Distributed Systems, MIT Press, Camb...
	[2] G. A. Agha, “Abstracting Interaction Patterns: A Programming Paradigm for Open Distributed Sy...
	[3] G. R. Andrews, Concurrent Programming — Principles and Practice, Addison-Wesley, 1991.
	[4] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A Framework for Simulating a...
	[5] S. A. Edwards, “The Specification and Execution of Heterogeneous Synchronous Reactive Systems...
	[6] M. Fowler and K. Scott, UML Distilled, Addison-Wesley, 1997.
	[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object...
	[8] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,” Sci. Comput. Program., vol 8...
	[9] P. G. Harrison, “A Higher-Order Approach to Parallel Algorithms,” The Computer Journal, Vol. ...
	[10] C. A. R. Hoare, “Communicating Sequential Processes,” Communications of the ACM, Vol. 21, No...
	[11] G. Kahn, “The Semantics of a Simple Language for Parallel Programming,” Proc. of the IFIP Co...
	[12] D. Lea, Concurrent Programming in JavaTM, Addison-Wesley, Reading, MA, 1997.
	[13] E. A. Lee and T. M. Parks, “Dataflow Process Networks,”, Proceedings of the IEEE, vol. 83, n...
	[14] S. McConnell, Code Complete : A Practical Handbook of Software Construction, Microsoft Press...
	[15] B. Meyer, Object Oriented Software Construction, 2nd ed., Prentice Hall, 1997.
	[16] R. Milner, Communication and Concurrency, Prentice-Hall, Englewood Cliffs, NJ, 1989.
	[17] NASA Office of Safety and Mission Assurance, Software Formal Inspections Guidebook, August 1...
	[18] J. K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, Reading, MA, 1994.
	[19] T. M. Parks, Bounded Scheduling of Process Networks, Technical Report UCB/ERL-95-105. Ph.D. ...
	[20] Rational Software Corporation, UML Notation Guide, Version 1.1, September 1997, http:// www....
	[21] A. J. Riel, Object Oriented Design Heuristics, Addison Wesley, 1996.
	[22] J. Rowson and A. Sangiovanni-Vincentelli, “Interface Based Design,” Proc. of DAC ‘97. FIXME-...
	[23] J. Rumbaugh, et al. Object-Oriented Modeling and Design Prentice Hall, 1991.
	[24] J. Rumbaugh, OMT Insights, SIGS Books, 1996.

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

