
-PTOLEMY II-

HETEROGENEOUS
CONCURRENT
MODELING AND DESIGN
IN JAVA
John Davis, II
Ron Galicia
Mudit Goel
Christopher Hylands
Edward A. Lee
Jie Liu
John Reekie
Neil Smyth
Yuhong Xiong

Copyright 1998 The Regents of the University of California.
All rights reserved.

Department of Electrical Engineering and Computer Science
University of California at Berkeley

Note: This document is a draft of the final design
document for Ptolemy II. It reflects work in
progress. Most is still under design, and thus is sub-
ject to fairly radical changes.

A

•T

H
E

•U
N

IV
E

R
S I T Y • O F • C

A
L

I F
O

R
N

IA
•

•1868•

LE
T THE R E BE

LIG H T
— DRAFT — NOT FOR DISTRIBUTION —

“Java” is a registered trademark of Sun Microsystems.

Contents

1. Introduction 1-1

1.1.Objectives 1-1
1.2.Package Structure 1-2

2. The Kernel 2-1
2.1.Abstract Syntax 2-1
2.2.UML Notation 2-2
2.3.Ptolemy II Conventions 2-4
2.4.Non-Hierarchical Topologies 2-5

2.4.1. Links 2-5
2.4.2. Consistency 2-5

2.5.Support Classes 2-5
2.5.1. Containers 2-5
2.5.2. Name and Full Name 2-6
2.5.3. Workspace 2-6
2.5.4. Attributes 2-6
2.5.5. List Classes 2-7

2.6.Clustered Graphs 2-7
2.6.1. Abstraction 2-7
2.6.2. Level-Crossing Connections 2-10
2.6.3. Tunneling Entities 2-11
2.6.4. Description 2-11
2.6.5. Cloning 2-12
2.6.6. An Elaborate Example 2-13
2.6.7. Mutations 2-13

2.7.Composite Opaque Entities 2-17
2.8.Concurrency 2-17

2.8.1. Limitations of Monitors 2-18
2.8.2. Workspace 2-19

2.9.Exceptions 2-20
2.9.1. Base Class 2-20
2.9.2. Less Severe Exceptions 2-20
2.9.3. Very Severe Exceptions 2-21

3. Actors 3-1
3.1.Concurrent Computation 3-1
3.2.Message Passing 3-2

3.2.1. Data Transport 3-3
3.2.2. Example 3-5
3.2.3. Transparent Ports 3-5
3.2.4. Data Transfer in Various Models of Computation 3-8
Heterogeneous Concurrent Modeling and Design

3.2.5. Discussion of the Data Transfer Mechanism 3-9
3.3.Execution 3-9

3.3.1. Director 3-10
3.3.2. Mutations 3-13
3.3.3. Excecution Sequence for Process Networks MOC 3-13
3.3.4. Composite Opaque Actors 3-14

3.4.Utilities 3-15
3.5.Library 3-15

4. Data 4-1
5. Graph 5-1
6. Higher-Order Functions 6-1
7. Automata 7-1
8. Synthesis 8-1

8.1.Separating Interface from Implementation 8-1
8.1.1. Syntactic Properties of the Interface 8-1
8.1.2. Semantic Properties of the Interface 8-1

9. Conclusions 9-1
References R-1
Index 3
Ptolemy II

Heterogeneous Concurrent Modeling and Desi
1

Introduction
hich
hat we

ese
o-
eling,

a
 a

e
s with
th

s
d
mecha-
 the

s of
iffer-
 hier-
1.1 Objectives
Ptolemy II is a complete, from the ground up, redesign of the Ptolemy design environment, w

supports heterogeneous concurrent modeling and design [4]. Some of the major capabilites t
believe to be new technology in design and simulation environments include:
• Higher level concurrent design in JavaTM. Java support for concurrent design is very low level.

Maintaining safety and liveness can be quite difficult [12]. Ptolemy II provides a number of
domains that support design of concurrent systems at a much higher level of abstraction. Th
include simulation models of various types, process networks, communicating sequential pr
cesses (rendezvous based), dataflow, synchronous/reactive modeling, continuous-time mod
and hierarchical concurrent finite-state machines.

• Interoperability through software components. Ptolemy II uses CORBA in a number of ways.
Components (actors) in a Ptolemy II application may be implemented on a remote server vi
CORBA. Also, components may be parameterized where parameter values are supplied by
CORBA server (this mechanism supportsreduced-order modeling, where the model is provided
by the server). Finally, a Ptolemy II application can be exported via a CORBA server.

• Better modularization through the use of packages. Ptolemy II is divided into packages that can b
used independently and distributed on the net, or drawn on demand from a server. This break
tradition in CAD software, where design tools usually consist of huge integrated systems wi
interdependent parts.

• Complete separation of the abstract syntax from the semantics. Ptolemy designs are structured a
clustered graphs. Ptolemy II defines a clean and thorough abstract syntax for such clustere
graphs, and separates into distinct packages the infrastructure supporting such graphs from
nisms that attach semantics (such as dataflow, analog circuits, finite-state machines, etc.) to
graphs.

• Improved heterogeneity. The Ptolemy wormhole mechanism for coupling heterogeneous model
computation is improved to provide better support for models of computation that are very d
ent from dataflow, the best supported model in prior versions of Ptolemy. These will include
gn 1-1

Introduction

ues.
t,
orts

red
ays.
t upon

d
d they
simpli-
].
-
ion
s a
 func-
ing

efini-
re

 below.
d
here

e enti-

t

 phase

oups

s.
d by

trixes
archical concurrent finite-state machines and a variety of continuous-time modeling techniq
• Thread-safe concurrent execution. Ptolemy applications are typically concurrent, but in the pas

support for concurrent execution of a Ptolemy application has been primitive. Ptolemy II supp
concurrency throughout, allowing for instance for an application to mutate (modify its cluste
graph structure) while the user interface simultaneously modifies the structure in different w
Consistency is maintained through the use of monitors and read/write semaphores [10] buil
the lower level synchronization primitives of JavaTM.

• A software architecture based on object modeling. Since the first Ptolemy implementation, soft-
ware engineering has seen the emergence of sophisticated object modeling [15][21][23] an
design patterns [7] concepts. We have applied these concepts to the design of Ptolemy II, an
have resulted in a more consistent, cleaner, and more robust design. We have also applied a
fied software engineering process that includes systematic design and code reviews [14][17

• A truly polymorphic type system. Earlier implementations of Ptolemy support rudimentary poly
morphism through the “anytype particle.” Even with such limited polymorphism, type resolut
has proved challenging, and current implementations are ad-hoc and fragile. Ptolemy II ha
more modern type system based on a partial order of types and monotonic type refinement
tions associated with functional blocks. Type resolution will consist of finding a fixed point, us
algorithms recently developed within the project [5]..

• Improved design refinement. Earlier versions of Ptolemy had only very weak mechanisms for
migrating designs from idealized floating-point simulations through fixed-point simulations to
embedded software, FPGA, and hardware designs. Ptolemy II will separate the interface d
tion of component blocks from their implementation, allowing libraries to be constructed whe
compatability across implementation technologies is assured [22].

1.2 Package Structure
The package structure is shown in figure 1.1. The role of each of the packages is explained

• kernel. This package provides the software architecture for the key abstract syntax, clustere
graphs. The classes support entities with ports and relations that link the ports. Clustering is w
a collection of entities is encapsulated in a single entity and a subset of the ports of the insid
ties are exposed as ports of the cluster entity.

• actor. This package supports executable entities that receive and send data through ports. I
includes a library of polymorphic actors.

• automata. This package supports sequential computation where entities represent a state or
of computation.

• domains. This set of packages support particular models of computation.
• actor libraries. This set of packages collect actors for particular models of computation or gr

of models of computation.
• graph. This package provides algorithms for manipulating and anlyzing mathematical graph
• data. This package provides classes that encapsulate and manipulate data that is transporte

Ptolemy applications. It supports a rich expression parser and interpreter.
• math. This package encapsulates mathematical functions and methods for operating on ma

and vectors.
• plot. This package provides 2-dimensional signal plotting widgets.
1-2 Ptolemy II

Introduction
FIGURE 1.1. The package structure of Ptolemy II.

kernel

ComponentEntity
ComponentPort
ComponentRelation
CompositeEntity
Entity
Port
Relation

kernel.mutation

Mutation
MutationListener

kernel.util

CrossRefList
IllegalActionException
InvalidStateException
KernelException
NameDuplicationException
Nameable
NamedList
NamedObj
Workspace

actor

Actor
CompositeActor
Director
EventReceiver
Executable
IOPort
IORelation
Mailbox
QueueReceiver
Receiver
RendezvousReceiver

actor.util

FIFOQueue
PriorityQueue

actor.lib

Add
Const
Demux
Expression
FunctionGenerator
Gain
Multiply
Mux
Plot
Print
Repeat
Select
Switch
XYPlot

automata

data

BooleanMatrixToken
BooleanToken
DoubleMatrixToken
DoubleToken
ExprParameter
IntMatrixToken
IntToken
LongMatrixToken
LongToken
MatrixToken
NullToken
ObjectToken
ScalarToken
StringToken
Token
TokenPublisher
TypeCPO

math

DSP
Matrix

domains.ct

CTActor
CTDirector
CTRK4Director
CTScheduler

graph

CPO
DirectedGraph
FiniteCPO
Graph

domains.ct.lib

CTIntegrator

plot

CmdLineArgException
Plot
PlotApplet
PlotBox
PlotDataException
PlotLive
PlotPoint
Pxgraph

filter

gui

Message

domains.pn

PNActor
PNDirector

domains.pn.lib

Alternate
Interleave
Redirect
Sieve

data.expr

ASCII_CharStream
JJTPtParserState
Node
Parameter
ParseException
PtParser
PtParserConstants
PtParserTokenManager
PtParserTreeConstants
SimpleNode
Token
TokenMgrError
... various nodes
Heterogeneous Concurrent Modeling and Design 1-3

Introduction
• filter. This package encapsulates a set of classes supporting signal processing.
1-4 Ptolemy II

Heterogeneous Concurrent Modeling and Desi
2

The Kernel
general
raphs.
etc. An

rticular

l [4],
ards
ting
rtain

e

inks.
athe-

vertex
irected
ther of
rts, one
one or
ting an
sets.
multi-
athe-
2.1 Abstract Syntax
The kernel defines a small set of Java classes that implement a data structure supporting a

form of uninterpreted clustered graphs, plus methods for accessing and manipulating such g
These graphs provide an abstract syntax for netlists, state transition diagrams, block diagrams,
abstract syntaxis a conceptual data organization. It can be contrasted with aconcrete syntax, which is
a syntax for a persistent, readable representation of the data, such as EDIF for netlists. A pa
graph configuration is called atopology.

Although this idea of an uninterpreted abstract syntax is present in the original Ptolemy kerne
in fact the original Ptolemy kernel has more semantics than we would like. It is heavily biased tow
dataflow, the model of computation used most heavily. Much of the effort involved in implemen
models of computation that are very different from dataflow stems from having to work around ce
assumptions in the kernel that, in retrospect, proved to be particular to dataflow.

A topology is a collection ofentitiesandrelations. We use the graphical notation shown in figur
2.1, where entities are depicted as rounded boxes and relations as diamonds. Entities haveports,
shown as filled circles, and relations connect the ports. We consistently use the termconnectionto
denote the association between connected ports (or their entities), and the termlink to denote the asso-
ciation between ports and relations. Thus, a connection consists of a relation and two or more l

The use of ports and hierarchy distinguishes our topologies from mathematical graphs. In a m
matical graph, an entity would be a vertex, and an arc would be a connection between entities. A
could be represented in our schema using entities that always contain exactly one port. In a d
graph, the connections are divided into two subsets, one consisting of incoming arcs, and the o
outgoing arcs. The vertices in such a graph could be represented by entities that contain two po
for incoming arcs and one for outgoing arcs. Thus, in mathematical graphs, entities always have
two ports, depending on whether the graph is directed. Our schema generalizes this by permit
entity to have any number of ports, thus dividing its connections into an arbitrary number of sub

A second difference between our graphs and mathematical graphs is that our relations are
way associations, whereas an arc in a graph is a two-way association. A third difference is that m
gn 2-1

The Kernel

amma,
plic-
t could

entities.
method
twork.

figure

-
s (they
ey indi-

on the

ay
hose
all the
ds of a

s, our
object

meth-
ave a
matical graphs normally have no notion of hierarchy (clustering).
Relations are intended to serve a mediators, in the sense of the Mediator design pattern of G

et al. [7]. “Mediator promotes loose coupling by keeping objects from referring to each other ex
itly...” For example, a relation could be used to direct messages passed between entities. Or i
denote a transition between states in a finite state machine, where the states are represented as
Or it could mediate rendezvous between processes represented as entities. Or it could mediate
calls between loosely associated objects, as for example in remote method invocation over a ne

2.2 UML Notation
The most basic classes in the Ptolemy II kernel package and their relationships are shown in

2.2, using UML notation [6][20]. Such relationships are called anobject model, and represent many
essential features about the design. We show only thestatic structure diagrams, or class diagramsof
UML.

The class name is shown at the top of each box, itsattributesare shown below that, and its meth
ods below that. The attributes are usually not directly visible to a programmer using these classe
are implemented as private members). But they are a useful part of the object model because th
cate the state information contained by an instance of the class.

Subclasses are indicated by lines with white triangles (or outlined arrow heads). The class
side of the arrow head is thesuperclassor base class. The class on the other end is thesubclassor
derived class. The derived class is said tospecializethe base class, or conversely, the base class togen-
eralizethe derived class. The derived classinheritsall the methods shown in the base class, and m
overrideor some of them. In our object models, we do not explicitly show methods that override t
defined in a base class or inherited from a base class. For example, in figure 2.3, Attribute has
methods of NamedObj, but only shows the one method it adds. Thus, the complete set of metho
class is cumulative. Every class has its own methods plus those of all its superclasses.

Our object models do not show private methods, which are not inhertited. For completenes
object models do show all public and protected methods of these classes, although a proper
model might only show those relevant to the issues being discussed.

Attributes with leading underscores, such as _portList, are private or protected members or
ods. In the UML diagrams, private members are indicated with a leading “-”. Public methods h

FIGURE 2.1. Visual notation and terminology.

Port

Entity Entity

PortRelation

Link Link

Connection

Entity

Port

Connection Connection

Li
nk
2-2 Ptolemy II

The Kernel

amed-
us a
case of

l
g an
n-
ts
show
plicit

ti-
, and

l.
r with

gation
leading “+” and protected methods a leading “#”.
Classes shown in boxes outlined with dashed lines, such as NamedObj, CrossRefList, and N

List in figure 2.2, are fully described elsewhere. This is not standard UML notation, but it gives
convenient way to partition diagrams. Often, these classes belong to another package. In the
figure 2.2, those classes are shown fully in figure 2.3.

Figure 2.3 also shows an example of aninterface, Nameable, which is indicated by the labe
“<<Interface>>” and by italics in the name. An interface defines a set of methods without providin
implementation for them. When a classimplementsan interface, the object model shows the relatio
ship with a dotted-line with an arrow. Anyconcrete class(one that can be instantiated) that implemen
an interface must provide implementations of all its methods. In our object models, we do not
those methods explicitly in the concrete class, just like inherited methods, but their presence is im
in the relationship.

We will occasionally showabstract classes, which like interfaces in that they cannot be instan
ated, but unlike interfaces in that they may provide default implementations for some methods
may even have private members. Abstract classes are indicated by italics in the class name.

Inheritance and implementation are types ofassociationsbetween entities in the object mode
Associations of other types are indicated by other lines, often annotated with ranges like “0..n” o
diamonds on one end or the other.

Aggregations are shown as associations with diamonds. For example, an Entity is an aggre
of any number (0..n) instances of Port. More strongly, we say that a Port iscontainedby 0 or 1
instances of Entity, or that Entity is acomposition of Ports.

FIGURE 2.2. Key classes in the kernel package and their methods supporting basic (non-hierarchical) topol-
ogies. Methods that override those defined in a base class or implement those in an interface are not shown.
The “+” indicates public visibility, “#” indicates protected, and “-” indicates private. The classes shown with
dashed outlines are in the kernel.util subpackage.

NamedObj

Entity

+connectedPorts() : Enumeration
+getPort(name : String) : Port
+getPorts() : Enumeration
+linkedRelations() : Enumeration
+newPort(name : String) : Port
+removeAllPorts()
#_addPort(p : Port)
#_removePort(p : Port)

-_portList : NamedList

Port

+connectedPorts() : Enumeration
+isLinked(r : Relation) : boolean
+isOpaque() : boolean
+linkedRelations() : Enumeration
+link(r : Relation)
+numLinks() : int
+setContainer(c : Entity)
+unlink(r : Relation)
+unlinkAll()
#_link()

-_container : Entity
-_relationsList : CrossRefList

0..n0..1

containee

container

Relation

+linkedPorts() : Enumeration
+linkedPorts(except : Port) : Enumeration
+numLinks() : int
+unlinkAll()
#_checkPort(p : Port)
#_getPortList() : CrossRefList

-_portList : CrossRefList0..n 0..n

link

link

NamedList

CrossRefList

1..1

1..11..1

1..1

1..1

1..1
0..n

0..1
Heterogeneous Concurrent Modeling and Design 2-3

The Kernel

con-
y num-
m of
rm is

also

. Class
thod
ay). As
embers
discus-
make
This containment is mediated by the NamedList utility class, shown in figure 2.3. Unlike the
tainment association, however, the Port has no reference to a NamedList that refers to it, and an
ber of NamedList instances can refer to it. Only one Entity can contain it. The stronger for
aggregation (containment or composition) is indicated by the filled diamond, while the weaker fo
indicated by the unfilled diamond.

As usual in UML, return types of methods are shown after a colon. Types of arguments are
shown after a colon, but within the parenthese that delimit the argument list.

2.3 Ptolemy II Conventions
We have made an effort to be consistent about naming of classes, methods and members

names are capitalized, with internal word boundaried also capitalized (as in “NamedObj”). Me
names that are plural, such as getPorts(), usually return an enumeration (or sometimes an arr
explained before, private and protected members and methods have a leading underscore. M
and methods are not capitalized, although internal word boundaries usually are. Considerable
sion was involved in the choice of most class and method names, although inevitably, we had to
some compromises.

FIGURE 2.3. Support classes in the kernel.util package.

NamedObj

+clone() : Object
+clone(destination : Workspace)
+deepContains(inside : NamedObj) : boolean
+description(detail : int) : String
+getAttribute(name : String) : Nameable
+getAttributes() : Enumeration
+workspace() : Workspace
#_addAttribute(p : Parameter)
#_description(detail : int, indent : int, bracket : int) : String
#_removeAttribute(name : String)
#_indent(level : int) : String

-_attributes : NamedList
-_defaultworkspace : Workspace
-_name : String
-_workspace : Workspace

«Interface»
Nameable

+description() : String
+getContainer() : Nameable
+getFullName() : String
+getName() : String
+setName(name : String)

Workspace

+add(item : NamedObj)
+description() : String
+directory() : CollectionEnumeration
+description(detail : int) : String
+doneReading()
+doneWriting()
+getVersion() : long
+incrVersion()
+read()
+remove(item : NamedObj)
+removeAll()
+write()
#_description(detail : int, indent : int, bracket : int) : String

-_contents : NamedList

0..n

1

«utility»
NamedList

+append(element : Nameable)
+elements() : CollectionEnumeration
+first() : Nameable
+get(name : String) : Nameable
+includes(element : Nameable) : boolean
+insertAfter(name : String, element : Nameable)
+insertBefore(name : String, element : Nameable)
+last() : Nameable
+prepend(element : Nameable)
+remove(element : Nameable)
+remove(name : String) : Nameable
+removeAll()
+size() : int

-_container : Nameable
-_namedlist : LinkedList

CrossRefList

+first() : Object
+getLinks() : Enumeration
+isLinked(o : Object) : boolean
+link(farList : CrossRefList)
+size() : int
+unlink(o : Object)
+unlinkAll()

-_listVersion : int
-_size : int

Attribute

+setContainer(container : NamedObj)

-_container : NamedObj

0..n

0..1

0..1

0..1

0..n

0..1
2-4 Ptolemy II

The Kernel

e 2.1.

with
, and
s the
ssoci-

figure
n. The

nsis-

tion

its con-

n entity
only

. That
t, then
er()

ust be
elevant
ce, as
ss of
a consis-

upport
y II of
tures.

e rudi-
2.4 Non-Hierarchical Topologies
The classes shown in figure 2.2 support non-hierarchical topologies, like that shown in figur

2.4.1 Links

An Entity contains any number of Ports; such an aggregation is indicated by the association
an unfilled diamond and the label “0..n” to show that the Entity can contain any number of Ports
the label “0..1” to show that the Port is contained by at most one Entity. This association is use
NamedList class shown at the bottom of figure 2.2. There is exactly one instance of NamedList a
ated with Entity, and it aggregates the ports.

A Port is associated with any number of Relations (the association is called a “link), and a Relation
is associated with any number of Ports. Link associations use CrossRefList, shown at the top of
2.2. There is exactly one instance of CrossRefList associated with each port and each relatio
links define a web of interconnected entities.

2.4.2 Consistency

A major concern in the choice of methods to provide and in their design is maintaining co
tency. By “consistency we mean that the following key properties are satisfied:
• Every link is symmetric and bidirectional. That is, if a port has a link to a relation, then the rela

has a link back to that port.
• Every object that appears on a container’s list of contained objects has a back reference to

tainer.

In particular, the design of these classes ensures that the _container attribute of a port refers to a
that includes the port on its _portList. This is done by limiting the access to both attributes. The
way to specify that a port is contained by an entity is to call the setContainer() method of the port
method guarantees consistency by first removing the port from any previous container’s portLis
adding it to the new container’s port list. A port is removed from an entity by calling setContain
with a null argument.

A change in a containment association involes several distinct objects, and therefore m
atomic, in the sense that other threads must not be allowed to intervene and modify or access r
attributes halfway through the process. This is ensured by synchronization on the workspa
explained below in section 2.8. Moreover, if an exception is thrown at any point during the proce
changing a containment association, any changes that have been made must be undone so that
tent state is restored.

2.5 Support Classes
The kernel package has a subpackage called kernel.util that provides some underlying s

classes, some of which are shown in figure 2.3. These classes define notions basic to Ptolem
containment, naming, and parameterization, and provide generic support for relevant data struc

2.5.1 Containers

Although these classes do not provide support for constructing clustered graphs, they provid
Heterogeneous Concurrent Modeling and Design 2-5

The Kernel

con-
d as a

er. It is
d their

iner()

ut the
ed, and

ts in a
f
eriod

ggrega-

is not

ociation
me is
of the
sym-

object,
er, for

.2. All
ultiple
ensure
erm in
has a

. The
of the

edObj,

refer-
med-
mentary support forcontainerassociations. An instance of these classes can have at most one
tainer. That container is viewed as the owner of the object, and “managed ownership” [12] is use
central tool in thread safety, as explained in section 2.8 below.

In the base classes shown in figure 2.2, only an instance of Port can have a non-null contain
the only class with a setContainer() method. Instances of all other classes have no container, an
getContainer() method will return null. In the classes of figure 2.3, only Attribute has a setConta
method.

Every object is associated with exactly one instance of Workspace, as shown in figure 2.3, b
workspace is not viewed as a container. The workspace is defined when an object is construct
no methods are provided to change it. It is said to beimmutable, a critical property in its use for thread
safety.

2.5.2 Name and Full Name

The Nameable interface supports hieararchy in the naming so that individual named objec
hierarchy can be uniquely identified. By convention, thefull nameof an object is a concatenation o
the full name of its container, if there is one, or the name of the workspace, if there is not, a p
(“.”), and the name of the object. The full name is used extensively for error reporting.

NamedObj is a concrete class implementing the Nameable interface. It also serves as an a
tion of attributes, as explained below in section 2.5.4.

Names of objects are only required to be unique within a container. Thus, even the full name
assured of being globally unique.

Here, names are a property of the instances themselves, rather than properties of an ass
between entities. As argued by Rumbaugh in [24], this is not always the right choice. Often, a na
more properly viewed as a property of an association. For example, a file name is a property
association between a directory and a file. A file may have multiple names (through the use of
bolic links). Our design takes a stronger position on names, and views them as properties of the
much as we view the name of a person as a property of the person (vs. their employee numb
example, which is a property of their association with an employer).

2.5.3 Workspace

Workspace is a concrete class that implements the Nameable interface, as shown in figure 2
objects in a topology are associated with a workspace, and almost all operations that involve m
objects are only supported for objects in the same workspace. This constraint is exploited to
thread safety, as explained in section 2.8 below. The name of the workspace is always the first t
the full name. If the workspace has no name (a common situation), then the full name simply
leading period.

2.5.4 Attributes

In almost all applications of Ptolemy II, entities, ports, and relations need to be parameterized
base classes shown in figure 2.3 provide for these objects to have any number of instances
Attribute class attached to them. Attribute is a NamedObj that can be contained by another Nam
and serves as a base class for parameters.

Attributes are added to a NamedObj by calling their setContainer() method and passing it a
ence to the container. They are removed by calling setContainer() with a null argument. The Na
2-6 Ptolemy II

The Kernel

returns
in the

nt to

ents
ns an
hat it
2.2 to

jects
echa-

ed to.
e web
modi-
one
more

e time

t of a
rarchy.
raph is
Entity
lation
eEntity

s and
y, this
y algo-
r chap-
s of a

tains
xpose

erator
xplic-
-

Obj class provides the getAttribute() method, which takes an attribute name as an argument and
the attribute, and the getAttributes() method, which returns an enumeration of all the attributes
object.

By itself, an instance of the Attribute class carries only a name, which may not be sufficie
parameterize objects. A derived class called Parameter is defined in the data package.

2.5.5 List Classes

Figure 2.3 shows two list classes that are used extensively in Ptolemy II. NamedList implem
an ordered list of objects with the Nameable interface. It is unlike a hash table in that it maintai
ordering of the entries that is independent of their names. It is unlike a vector or a linked list in t
supports accesses by name. It is used in figure 2.3 to maintain a list of attributes, and in figure
maintain the list of ports contained by an entity.

The class CrossRefList is a bit more interesting. It mediates bidirectional links between ob
that contain CrossRefLists, in this case, ports and relations. It provides a simple and efficient m
nism for constructing a web of objects, where each object maintains a list of the objects it is link
That list is an instance of CrossRefList. The class ensures consistency. That is, if one object in th
is linked to another, then the other is linked back to the one. CrossRefList also handles efficient
fication of the cross references. In particular, if a link is removed from the list maintained by
object, the back reference in the remote object also has to be deleted. This is done in O(1) time. A
brute force solution would require searching the remote list for the back reference, increasing th
required and making it proportional to the number of links maintained by each object.

2.6 Clustered Graphs
The classes shown in figure 2.2 provide only partial support for hierarchy, through the concep

container. Subclasses, shown in figure 2.4, extend these with more complete support for hie
ComponentEntity, ComponentPort, and ComponentRelation are used whenever a clustered g
used. All ports of a ComponentEntity are required to be instances of ComponentPort. Composite
extends ComponentEntity with the capability of containing ComponentEntity and ComponentRe
objects. Thus, it contains a subgraph. The association between ComponentEntity and Composit
is the classic Composite design pattern [7].

2.6.1 Abstraction

Composite entities are non-atomic (isAtomic() return false). They can contain a graph (entitie
relations). By default, a CompositeEntity is transparent (isOpaque() returns false). Conceptuall
means that its contents are visible from the outside. The hierarchy can be ignored (flattened) b
rithms operating on the topology. Some subclasses of CompositeEntity are opaque (see the Acto
ter for examples). This forces algorithms to respect the hierarchy, effectively hiding the content
composite and making it appear indistinguishable from atomic entities.

A ComponentPort contained by a CompositeEntity has inside as well as outside links. It main
two lists of links, those to relations inside and those to relations outside. Such a port serves to e
ports in the contained entities as ports of the composite. This is the converse of the “hiding” op
often found in process algebras [16]. Ports within an entity are hidden by default, and must be e
itly exposed to be visible (linkable) from outside the entity1. The composite entity with ports thus pro
vides an abstraction of the contents of the composite.
Heterogeneous Concurrent Modeling and Design 2-7

The Kernel

, and
indis-

may
A port of a composite entity may be opaque or transparent. It is defined to beopaqueif its con-
tainer is opaque. Conceptually, if it is opaque, then its inside links are not visible from the outside
the outside links are not visible from the inside. If it is opaque, it appears from the outside to be
tinguishable from a port of an atomic entity.

The transparent port mechanism is illustrated by the example in figure 2.51. Some of the ports in
figure 2.5 are filled in white rather than black. These ports are said to betransparent. Transparent ports
(P3 and P4) are linked to relations (R1 and R2) below their container (E1) in the hierarchy. They

1. Unless level-crossing links are allowed, which is discouraged.

FIGURE 2.4. Key classes supporting clustered graphs.

NamedObj

Entity

+connectedPorts() : Enumeration
+getPort(name : String) : Port
+getPorts() : Enumeration
+linkedRelations() : Enumeration
+newPort(name : String) : Port
+removeAllPorts()
#_addPort(p : Port)
#_removePort(p : Port)

-_portList : NamedList

Port

+connectedPorts() : Enumeration
+isLinked(r : Relation) : boolean
+isOpaque() : boolean
+linkedRelations() : Enumeration
+link(r : Relation)
+numLinks() : int
+setContainer(c : Entity)
+unlink(r : Relation)
+unlinkAll()
#_link()

-_container : Entity
-_relationsList : CrossRefList

0..n
0..1

containee

container

Relation

+linkedPorts() : Enumeration
+linkedPorts(except : Port) : Enumeration
+numLinks() : int
+unlinkAll()
#_checkPort(p : Port)
#_getPortList() : CrossRefList

-_portList : CrossRefList0..n 0..n

link

link

ComponentEntity

+isAtomic() : boolean
+isOpaque() : boolean
+setContainer(c : CompositeEntity)

-_container : CompositeEntity

CompositeEntity

+allowLevelCrossingConnect(b : boolean)
+connect(p1 : ComponentPort, p2 : ComponentPort)
+connect(p1 : ComponentPort, p2 : ComponentPort, name : String)
+deepGetEntities() : Enumeration
+getEntity(name : String) : ComponentEntity
+getEntities() : Enumeration
+getRelation(name : String) : ComponentRelation
+getRelations() : Enumeration
+newRelation(name : String) : ComponentRelation
+numEntities() : int
+numRelations() : int
+removeAllEntities()
+removeAllRelations()
#_addEntity(e : ComponentEntity)
#_addRelation(r : ComponentRelation)
#_removeEntity(e : ComponentEntity)
#_removeRelation(r : ComponentRelation)

-_containedEntities : NamedList
-_containedRelations : NamedList

0..n

0..1

containee

container

ComponentPort

+deepConnectedPorts() : Enumeration
+deepInsidePorts() : Enumeration
+insidePorts() : Enumeration
+insideRelations() : Enumeration
+isDeeplyConnected(p : ComponentPort) : boolean
+isInsideLinked(r : Relation) : boolean
+liberalLink(r : Relation)
+numInsideLinks() : int
#_linkInside(r : ComponentRelation)
#_outside(entity : Nameable) : boolean

-_insideLinks : CrossRefList

ComponentRelation

+deeplinkedPorts() : Enumeration
+setContainer(c : CompositeEntity)

-_container : CompositeEntity

NamedList

CrossRefList

1..1

1..11..1

1..1

1..1

2..2

1..1

1..1

0..n

0..1

0..n

0..n

0..n

0..1

0..n0..1

containee

container
2-8 Ptolemy II

The Kernel

prefix
mple,
port is

side,
versal
d P2.
side

entPort
of the
crVer-
are

rformed
pace.
same,

) and
k is an
con-

e
e

also be linked to relations at the same level (R3 and R4).
ComponentPort, ComponentRelation, and CompositeEntity have a set of methods with the

“deep,” as shown in figure 2.4. These methods flatten the hierarchy by traversing it. Thus, for exa
the ports that are “deeply” connected to port P1 in figure 2.5 are P2, P5, and P6. No transparent
included, so note that P3 is not included.

Deep traversals of a graph follow a simple rule. If a transparent port is encountered from in
then the traversal continues with its outside links. If it is encountered from outside, then the tra
continues with its inside links. Thus, for example, the ports deeply connected to P5 are P1 an
Note that P6 is not included. Similarly, the deepGetEntities() method of CompositeEntity looks in
transparent entities, but not inside opaque entities.

Since deep traversals are more expensive than just checking adjacent objects, both Compon
and ComponentRelation cache them. To determine the validity of the cached list, the version
workspace is used. As shown in figure 2.2, the Workspace class includes a getVersion() and in
sion() method. All methods of objects within a workspace that modify the topology in any way
expected to increment the version count of the workspace. That way, when a deep access is pe
by a ComponentPort, it can locally store the resulting list and the current version of the works
The next time the deep access is requested, it checks the version of the workspace. If it is still the
then it returns the locally cached list. Otherwise, it reconstructs it.

For ComponentPort to support both inside links and outside links, it has to override the link(
unlink() methods. Given a relation as an argument, these methods can determine whether a lin
inside link or an outside link by checking the container of the relation. If that container is also the
tainer of the port, then the link is an inside link.

1. In that figure, every object has been given a unique name. This is not necessary since names only need to b
unique within a container. In this case, we could refer to P5 by its full name .E0.E4.P5, assuming the workspac
has no name (the leading period indicates this). However, using unique names makes our explanations more
readable.

P1

P2

P3

P4 E4

P5

P6

FIGURE 2.5. Transparent ports (P3 and P4) are linked to relations (R1 and R2) below their container (E1)
in the hierarchy. They may also be linked to relations at the same level (R3 and R4).

R1
R2

R3

R4

E1

E3

E2

E5

E0
Heterogeneous Concurrent Modeling and Design 2-9

The Kernel

eeded.
t from
onent-
ppli-

ods of
vel-

ia the
were
ewhat

is sort
ns are

t such

s an
ntity
y that
2.6.2 Level-Crossing Connections

For a few applications, such as Statecharts [8], level-crossing links and connections are n
The example shown in figure 2.6 has three level-crossing connections that are slightly differen
one another. The links in these connections are created using the liberalLink() method of Comp
Port. The link() method prohibits such links, throwing an exception if they are attempted (most a
cations will prohibit level-crossing connections by using only the link() method).

An alternative that may be more convenient for a user interface is to use the connect() meth
CompositeEntity rather than the link() or liberalLink() method of ComponentPort. To allow le
crossing links using connect(), first call allowLevelCrossingConnect() with atrue argument.

The simplest level-crossing connection in figure 2.6 is at the bottom, connecting P2 to P7 v
relation R5. The relation is contained by E1, but the connection would be essentially identical if it
contained by any other entity. Thus, the notion of composite entities containing relations is som
weaker when level-crossing connections are allowed.

The other two level-crossing connections in figure 2.6 are mediated by transparent ports. Th
of hybrid could come about in heterogeneous representations, where level-crossing connectio
permitted in some parts but not in others. It is important, therefore, for the classes to suppor
hybrids.

To support such hybrids, we have to modify slightly the algorithm by which a port recognize
inside link. Given a relation and a port, the link is an inside link if the relation is contained by an e
that is either the same as or is deeply contained (i.e. directly or indirectly contained) by the entit
contains the port. The deepContains() method of NamedObj supports this test.

FIGURE 2.6. An example with level-crossing transitions.

P1

P2

P3

P4

E6

P6

P5

R1
R2 R4

R3

E1

E4

E3

E5
E0

E2

E7

P7

R5
2-10 Ptolemy II

The Kernel

P1 and
ide of
to P1
to P5 are

t. It
t some

rnel

umed
duc-
that
to be

es to
n may
icate

tailed
ented

yntax

fig-
have
yword
2.6.3 Tunneling Entities

The transparent port mechanism we have described supports connections like that between
P5 in figure 2.7. That connection passes through the entity E2. The relation R2 is linked to the ins
each of P2 and P4, in addition to its link to the outside of P3. Thus, the ports deeply connected
are P3 and P5, and those deeply connected to P3 are P1 and P5, and those deeply connected
P1 and P3.

A tunneling entityis one that contains a relation with links to the inside of more than one por
may of course also contain more standard links, but the term “tunneling” suggests that at leas
deep graph traversals will see right through it.

Support for tunneling entities is a major increment in capability over the previous Ptolemy ke
[4] (Ptolemy 0.x). That infrastructure required an entity (which was called astar) to intervene in any
connection through a composite entity (which was called agalaxy). Two significant limitations
resulted. The first was that compositionality was compromised. A connection could not be subs
into a composite entity without fundamentally changing the structure of the application (by intro
ing a new intervening entity). The second was that implementation of higher-order functions
mutated the graph [13] was made much more complicated. These higher-order functions had
careful to avoid mutations that created tunneling.

2.6.4 Description

The intent of Ptolemy II is that most applications will use graphical rather than textual syntax
visualize topologies. However, this is not always possible, and in any case, a graphical descriptio
depict only the starting point of a topology that mutates. It can get difficult to understand an intr
topology.

The description() method in the Nameable interface (figure 2.3) provides a way to obtain de
information about a topology in a human and machine readable format. This method is implem
by the NamedObj class, which also provides an alternative method that takes adetail argument. This
argument can be used to control how much information is obtained.

An example is shown in figure 2.8, which describes the topology in figure 2.7. The general s
for describing an object is “classname{ fullname} keyword{ value} keyword{ value}”. The value is
often itself a description in exactly this form, or a list of descriptions in this form. For example, in
ure 2.8, the keyword “attributes” is always followed by an empty value because no attributes
been set. The keyword “ports” precedes a list of contained ports, each a description. The ke

FIGURE 2.7. A tunneling entity contains a relation with inside links to more than one port.

R3 E4

P5

E0

E2

P2 P4R2

P3

E3

P1

E1 R1
Heterogeneous Concurrent Modeling and Design 2-11

The Kernel

n
other
ated in
bclass

event
pt to
“entities” precedes a list of contained entities. The rest of the description should be evident.

2.6.5 Cloning

The kernel classes are all capable of beingcloned, with some restrictions. Cloning means that a
identical but entirely independent object is created. Thus, if the object being cloned contains
objects, then those objects are also cloned. If those objects are linked, then the links are replic
the new objects. The clone() method in NamedObj provides the interface for doing this. Each su
provides an implementation.

There is a key restriction to cloning. Because they breaks modularity, level-crossing links pr
cloning. With level-crossing links, a link does not clearly belong to any particular entity. An attem
clone a composite that contains level-crossing links will trigger an exception.

pt.kernel.CompositeEntity {.E0} attributes {
} ports {
} entities {
 pt.kernel.ComponentEntity {.E0.E1} attributes {
 } ports {
 pt.kernel.ComponentPort {.E0.E1.P1} attributes {
 } links {
 pt.kernel.ComponentRelation {.E0.R1} attributes {
 }
 } insidelinks {
 }
 }
 pt.kernel.CompositeEntity {.E0.E2} attributes {
 } ports {
 pt.kernel.ComponentPort {.E0.E2.P2} attributes {
 } links {
 pt.kernel.ComponentRelation {.E0.R1} attributes {
 }
 } insidelinks {
 pt.kernel.ComponentRelation {.E0.E2.R2} attributes {
 }
 }
 pt.kernel.ComponentPort {.E0.E2.P4} attributes {
 } links {
 pt.kernel.ComponentRelation {.E0.R3} attributes {
 }
 } insidelinks {
 pt.kernel.ComponentRelation {.E0.E2.R2} attributes {
 }
 }
 } entities {
 pt.kernel.ComponentEntity {.E0.E2.E3} attributes {
 } ports {
 pt.kernel.ComponentPort {.E0.E2.E3.P3} attributes {
 } links {
 pt.kernel.ComponentRelation {.E0.E2.R2} attributes {
 }
 } insidelinks {

FIGURE 2.8. An example of the syntax returned by the description() method.

 }
 }
 } relations {
 pt.kernel.ComponentRelation {.E0.E2.R2} attributes {
 } links {
 pt.kernel.ComponentPort {.E0.E2.P2} attributes {
 }
 pt.kernel.ComponentPort {.E0.E2.E3.P3} attributes {
 }
 pt.kernel.ComponentPort {.E0.E2.P4} attributes {
 }
 }
 }
 pt.kernel.ComponentEntity {.E0.E4} attributes {
 } ports {
 pt.kernel.ComponentPort {.E0.E4.P5} attributes {
 } links {
 pt.kernel.ComponentRelation {.E0.R3} attributes {
 }
 } insidelinks {
 }
 }
} relations {
 pt.kernel.ComponentRelation {.E0.R1} attributes {
 } links {
 pt.kernel.ComponentPort {.E0.E1.P1} attributes {
 }
 pt.kernel.ComponentPort {.E0.E2.P2} attributes {
 }
 }
 pt.kernel.ComponentRelation {.E0.R3} attributes {
 } links {
 pt.kernel.ComponentPort {.E0.E2.P4} attributes {
 }
 pt.kernel.ComponentPort {.E0.E4.P5} attributes {
 }
 }
}

2
-12
 Ptolemy II

The Kernel

tances
this
script
uses

ists of
m and
nve-

can be

ample,
2.6.6 An Elaborate Example

An elaborate example of a clustered graph is shown in figure 2.9. This example includes ins
of all the capabilities we have discussed. The top-level entity is named “E0.” All other entities in
example have containers. A Java class that implements this example is shown in figure 2.10. A
in the Tcl language [18] that constructs the same graph is shown in figure 2.11. This script
TclBlend, an interface between Tcl and Java that is distributed by Sun Microsystems.

The order in which links are constructed matters, in the sense that methods that return l
objects preserve this order. The order implemented in both figures 2.10 and 2.11 is top-to-botto
left-to-right in figure 2.9. A graphical syntax, however, does not generally have a particularly co
nient way to completely control this order.

The results of various method accesses on the graph are shown in figure 2.12. This table
studied to better understand the precise meaning of each of the methods.

2.6.7 Mutations

Often it is necessary to carefully constrain when changes can be made in a topology. For ex

FIGURE 2.9. An example of a clustered graph.

P1

E1

E4

E2P2

R3

R1 R2

E5

P5

R5

P4
P0

P7

E3

R4

E6

P6

R6

P9E8

E7

R8 P8

P10
R9

P11

R7

E0

P3

E10

P12 P13R11

P14

E9

R10

R12
Heterogeneous Concurrent Modeling and Design 2-13

The Kernel
FIGURE 2.10. The same topology as in figure 2.9 implemented as a Java class.

public class ExampleSystem {
private CompositeEntity e0, e3, e4, e7, e10;
private ComponentEntity e1, e2, e5, e6, e8, e9;
private ComponentPort p0, p1, p2, p3, p4 , p5 ,p6, p7, p8, p9, p10, p11, p12, p13, p4;
private ComponentRelation r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12;

public ExampleSystem() throws IllegalActionException, NameDuplicationException {
e0 = new CompositeEntity();
e0.setName("E0");
e3 = new CompositeEntity(e0, "E3");
e4 = new CompositeEntity(e3, "E4");
e7 = new CompositeEntity(e0, "E7");
e10 = new CompositeEntity(e0, "E10");

e1 = new ComponentEntity(e4, "E1");
e2 = new ComponentEntity(e4, "E2");
e5 = new ComponentEntity(e3, "E5");
e6 = new ComponentEntity(e3, "E6");
e8 = new ComponentEntity(e7, "E8");
e9 = new ComponentEntity(e10, "E9");

p0 = (ComponentPort) e4.newPort("P0");
p1 = (ComponentPort) e1.newPort("P1");
p2 = (ComponentPort) e2.newPort("P2");
p3 = (ComponentPort) e2.newPort("P3");
p4 = (ComponentPort) e4.newPort("P4");
p5 = (ComponentPort) e5.newPort("P5");
p6 = (ComponentPort) e5.newPort("P6");
p7 = (ComponentPort) e3.newPort("P7");
p8 = (ComponentPort) e7.newPort("P8");
p9 = (ComponentPort) e8.newPort("P9");
p10 = (ComponentPort) e8.newPort("P10");
p11 = (ComponentPort) e7.newPort("P11");
p12 = (ComponentPort) e10.newPort("P12");
p13 = (ComponentPort) e10.newPort("P13");
p14 = (ComponentPort) e9.newPort("P14");

r1 = e4.connect(p1, p0, "R1");
r2 = e4.connect(p1, p4, "R2");
p3.link(r2);
r3 = e4.connect(p1, p2, "R3");
r4 = e3.connect(p4, p7, "R4");
r5 = e3.connect(p4, p5, "R5");
e3.allowLevelCrossingConnect(true);
r6 = e3.connect(p3, p6, "R6");
r7 = e0.connect(p7, p13, "R7");
r8 = e7.connect(p9, p8, "R8");
r9 = e7.connect(p10, p11, "R9");
r10 = e0.connect(p8, p12, "R10");
r11 = e10.connect(p12, p13, "R11");
r12 = e10.connect(p14, p13, "R12");
p11.link(r7);

}
...

}

2-14 Ptolemy II

The Kernel
FIGURE 2.11. The same topology as in figure 2.9 described by the TclBlend commands to create it.

 # Create composite entities
 set e0 [java::new pt.kernel.CompositeEntity E0]
 set e3 [java::new pt.kernel.CompositeEntity $e0 E3]
 set e4 [java::new pt.kernel.CompositeEntity $e3 E4]
 set e7 [java::new pt.kernel.CompositeEntity $e0 E7]
 set e10 [java::new pt.kernel.CompositeEntity $e0 E10]

 # Create component entities.
 set e1 [java::new pt.kernel.ComponentEntity $e4 E1]
 set e2 [java::new pt.kernel.ComponentEntity $e4 E2]
 set e5 [java::new pt.kernel.ComponentEntity $e3 E5]
 set e6 [java::new pt.kernel.ComponentEntity $e3 E6]
 set e8 [java::new pt.kernel.ComponentEntity $e7 E8]
 set e9 [java::new pt.kernel.ComponentEntity $e10 E9]

 # Create ports.
 set p0 [$e4 newPort P0]
 set p1 [$e1 newPort P1]
 set p2 [$e2 newPort P2]
 set p3 [$e2 newPort P3]
 set p4 [$e4 newPort P4]
 set p5 [$e5 newPort P5]
 set p6 [$e6 newPort P6]
 set p7 [$e3 newPort P7]
 set p8 [$e7 newPort P8]
 set p9 [$e8 newPort P9]
 set p10 [$e8 newPort P10]
 set p11 [$e7 newPort P11]
 set p12 [$e10 newPort P12]
 set p13 [$e10 newPort P13]
 set p14 [$e9 newPort P14]

 # Create links
 set r1 [$e4 connect $p1 $p0 R1]
 set r2 [$e4 connect $p1 $p4 R2]
 $p3 link $r2
 set r3 [$e4 connect $p1 $p2 R3]
 set r4 [$e3 connect $p4 $p7 R4]
 set r5 [$e3 connect $p4 $p5 R5]
 $e3 allowLevelCrossingConnect true
 set r6 [$e3 connect $p3 $p6 R6]
 set r7 [$e0 connect $p7 $p13 R7]
 set r8 [$e7 connect $p9 $p8 R8]
 set r9 [$e7 connect $p10 $p11 R9]
 set r10 [$e0 connect $p8 $p12 R10]
 set r11 [$e10 connect $p12 $p13 R11]
 set r12 [$e10 connect $p14 $p13 R12]
 $p11 link $r7
Heterogeneous Concurrent Modeling and Design 2-15

The Kernel

uire the
d the
s only

what-
uta-
any

itera-
an application that uses the actor package to execute a program defined by a topology may req
topology to remain fixed during segments of the execution. A subpackage of the kernel, calle
mutation package, provides support for carefully controlled mutations. This subpackage contain
two interfaces, shown in figure 2.13.

The typical usage pattern is to create an object that implements Mutation and queue it with
ever object is in charge of the control flow (whatever object knows when it is safe to perform m
tions). That object then performs the mutation when it is safe to do so. In addition, it informs
registered listeners of the mutation so that they can react accordingly.

For example, the Director class in the actor package allows mutations to occur only between

FIGURE 2.12. Key methods applied to figure 2.9.

Table 1: Methods of ComponentRelation

Method Name R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

getLinkedPorts P1
P0

P1
P4
P3

P1
P2

P4
P7

P4
P5

P3
P6

P7
P13
P11

P9
P8

P10
P11

P8
P12

P12
P13

P14
P13

deepGetLinkedPorts P1 P1
P9
P14
P10
P5
P3

P1
P2

P1
P3
P9
P14
P10

P1
P3
P5

P3
P6

P1
P3
P9
P14
P10

P9
P1
P3
P10

P10
P1
P3
P9
P14

P9
P1
P3
P10

P9
P1
P3
P10

P14
P1
P3
P10

Table 2: Methods of ComponentPort

Method Name P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

getConnectedPorts P0
P4
P3
P2

P1 P1
P4
P6

P7
P5

P4 P3 P13
P11

P12 P8 P11 P7
P13

P8 P7
P11

P13

deepGetConnectedPorts P9
P14
P10
P5
P3
P2

P1 P1
P9
P14
P10
P5
P6

P9
P14
P10
P5

P1
P3

P3 P9
P14
P10

P1
P3
P10

P1
P3
P10

P1
P3
P9
P14

P1
P3
P9
P14

P9 P1
P3
P10

P1
P3
P10

FIGURE 2.13. Interfaces in the kernel.mutation package.

«Interface»
MutationListener

+addedEntity(e : Entity)
+addedPort(p : Port)
+addedRelation(r : Relation)
+done()
+linked(r : Relation, p : Port)
+removedEntity(container : CompositeEntity, e : Entity)
+removedPort(container : Entity, p : Port)
+removedRelation(container : CompositeEntity, r : Relation)
+unlinked(r : Relation, p : Port)

«Interface»
Mutation

+perform()
+update(m : MutationListener)
2-16 Ptolemy II

The Kernel

has a
e first

ts the
ctually
f code

ller,
.
A lis-
, again
s to be
ntity,
od of
at a
r (see

rough
spar-
ity. In
r a dif-

e if the
do not
makes

hapter.

mputa-
while
tions of an iterative execution of an application (see the Actors chapter). To support this, it
queueMutation() method that permits any other code to specify a mutation to be performed at th
opportunity.

The Mutation interface is typically used by creating an anonymous inner class that implemen
interface. The class should implement two methods, perform() and update(). The first of these a
performs the mutation, and the second informs any listeners of the mutation. Here is a section o
that defines an instance of Mutation that creates a new entity:

import pt.kernel.mutation.*;

Mutation m = new Mutation() {
private _newentity
public void perform() {

_newentity = new Entity(“foo”);
}
public void update(MutationListener listener) {

listener.addedEntity(_newentity);
listener.done();

}
};

The instancem of this anonymous inner class would then typically be registered with a contro
such as a director, that can invoke the perform() method when it is safe to perform the mutation

In addition, the controller invokes the update() method, passing it any registered listeners.
tener is any object that needs to be informed of the mutation once it has occurred. For example
in the Director class of the actor package, when a new entity is added to an application, it need
initialized. A listener is registered with the director so that after the actual addition of the new e
the entity can be initialized by the listener. Such a listener implements the addedEntity() meth
MutationListener to either directly perform the initialization, or queue the initialization to occur
later time. The ActorListener class of the actor package is a simple example of a MutationListene
the Actors chapter).

2.7 Composite Opaque Entities
One of the major tenets of the Ptolemy project is that of modeling heterogeneous systems th

the use of hierarchical heterogeneity. Information-hiding is a central part of this. In particular, tran
ent ports and entities compromise information hiding by exposing the internal topology of an ent
some circumstances, this is inappropriate, for example when the entity internally operates unde
ferent model of computation from its environment. The entity should be opaque in this case.

An entity can be opaque and composite at the same time. Ports are defined to be opaqu
entity containing them is opaque (isOpaque() returns true), so deep traversals of the topology
cross these ports, even though the ports support inside and outside links. The actor package
extensive use of such entities to support mixed modeling. That use is described in the Actors c
In the previous generation system, Ptolemy 0.x, composite opaque entities were calledwormholes.

2.8 Concurrency
We expect concurrency. Topologies often represent the structure of computations. Those co

tions themselves may be concurrent, and a user interface may be interacting with the topologies
Heterogeneous Concurrent Modeling and Design 2-17

The Kernel

ract

logy.
imulta-

es is
xam-
e same

called

design
n-
vide

dy of
d on a
figure
n also
figure
cquired

olve
iring a
uces

uire a
ying to
either

exam-
archy.

ds on

code
to use
rarchy
they execute their computation. Moreover, using RMI or CORBA, Ptolemy II objects may inte
with other objects concurrently over the network via RMI or CORBA.

Both computations within an entity and the user interface are capable of modifying the topo
Thus, extra care is needed to make sure that the topology remains consistent in the face of s
neous modifications (we defined consistency in section 2.4.2).

Concurrency could easily corrupt a topology if a modification to a symmetric pair of referenc
interrupted by another thread that also tries to modify the pair. Inconsistency could result if, for e
ple, one thread sets the reference to the container of an object while another thread adds th
object to a different container’s list of contained objects.

Ptolemy II prevents such inconsistencies from occurring. Such enforced consistency is
thread safety.

2.8.1 Limitations of Monitors

Java threads provide a low-level mechanism called amonitor for controlling concurrent access to
data structures. A monitor locks an object preventing other threads from accessing the object (a
pattern calledmutual exclusion). However, the mechanism is fairly tricky to use correctly. It is no
trivial to avoid deadlock and race conditions. One of the major objectives of Ptolemy II is pro
higher-level concurrency models that can be used with confidence by non experts.

Monitors are invoked in Java via the “synchronized” keyword. This keyword annotates a bo
code or a method, as shown in figure 2.14. It indicates that an exclusive lock should be obtaine
specific object before executing the body of code. If the keyword annotates a method, as in
2.14(a), then the method’s object is locked (an instance of class A in the figure). The keyword ca
be associated with an arbitrary body of code and can acquire a lock on an arbitrary object. In
2.14(b), the code body represented by ellipses (...) can be executed only after a lock has been a
on objectobj.

Modifications to a topology that run the risk of corrupting the consistency of the topology inv
more than one object. Java does not directly provide any mechanism for simultaneously acqu
lock on multiple objects. Acquiring the locks sequentially is not good enough because it introd
deadlock potential. I.e., one thread could acquire the lock on the first object block trying to acq
lock on the second, while a second thread acquires a lock on the second object and blocks tr
acquire a lock on the first. Both methods block permanently, and the application is deadlocked. N
thread can proceed.

One possible solution is to ensure that locks are always acquired in the same order [12]. For
ple, we could use the containment hierarchy and always acquired locks top-down in the hier
Suppose for example that a body of code involves two objectsa andb, wherea containsb (directly or
indirectly). In this case, “involved” means that it either modifies members of the objects or depen
their values. Then this body of code would be surrounded by:

synchronized(a) {
synchronized (b) {

...
}

}

If all code that locksa andb respects this same order, then deadlock cannot occur. However, if the
involves two objects where one does not contain the other, then it is not obvious what ordering
in acquiring the locks. Worse, a change might be initiated that reverses the containment hie
2-18 Ptolemy II

The Kernel

con-
could

dead-
strat-

bject

change
n then

g other

every
. Each
eover,
dified.
e vari-
dify it.
e same
while another thread is in the process of acquiring locks on it. A lock must be acquired to read the
tainment structure before the containment structure can be used to acquire a lock! Some policy
certainly be defined, but the resulting code would be difficult to guarantee. Moreover, testing for
lock conditions is notoriously difficult, so we implement a more conservative, and much simpler
egy.

2.8.2 Workspace

One way to guarantee thread safety without introducing the risk of deadlock is to give every o
an immutable association with another object, which we call itsworkspace. Immutablemeans that the
association is set up when the object is constructed, and then cannot be modified. When a
involves multiple objects, those objects must be associated with the same workspace. We ca
acquire a lock on the workspace before making any changes or reading any state, preventin
threads from making changes at the same time.

Ptolemy II uses monitors only on instances of the class Workspace. As shown in figure 2.3,
instance of NamedObj (or derived classes) is associated with a single instance of Workspace
body of code that alters or depends on the topology must acquire a lock on its workspace. Mor
the workspace associated with an object is immutable. It is set in the constructor and never mo
This is enforced by a very simple mechanism: a reference to the workspace is stored in a privat
able of the base class NamedObj, as shown in figure 2.3, and no methods are provided to mo
Moreover, in instances of these kernel classes, a container and its containees must share th

FIGURE 2.14. Using monitors for thread safety. The method used in Ptolemy II is in (d) and (e).

public class A {
public synchronized void foo() {

...
}

}

(a)

public class B {
public void foo() {

synchronized(obj) {
...

}
}

}

(b)

public class C extends NamedObj {
public void foo() {

synchronized(workspace()) {
...

}
}

}

(c)

try {
workspace().read();
// ... code that reads

} finally {
workspace().doneReading();

}

(d)

try {
workspace().write();
// ... code that writes

} finally {
workspace().doneWriting();

}

(e)
Heterogeneous Concurrent Modeling and Design 2-19

The Kernel

ership”

work-
oach is
work-
rrently

ls the
a any-
n the
ser is

in no
ethod,
eption

the
e if no
safely

ng() be

ative
if they
ccur in

sub-
llelism.
se to
ttempt
s sup-

tandard
of their
t of

ar-
l mes-
den in

lt in a
workspace (derived classes may be more liberal in certain circumstances). This “managed own
[12] is our central strategy in thread safety.

As shown in figure 2.14(c), a conservative approach would be to acquire a monitor on the
space for each body of code that reads or modified objects in the workspace. However, this appr
too conservative. Instead, Ptolemy II allows any number of readers to simultaneously access a
space. Only one writer can access the workspace, however, and only if no readers are concu
accessing the workspace.

The code for readers and writers is shown in figure 2.14(d) and (e). In (d), a reader first cal
read() method of the Workspace class. That method does not return until it is safe to read dat
where in the workspace. It is safe if there is no other thread concurrently holding a write lock o
workspace (the thread calling read() may safely hold both a read and a write lock). When the u
finished reading the workspace data, it must call doneReading(). Failure to do so will result
writer ever again gaining write access to the workspace. Because it is so important to call this m
it is enclosed in the finally clause of a try statement. That clause is executed even if an exc
occurs in the body of the try statement.

The code for writers is shown in figure 2.14(e). The writer first calls the write() method of
Workspace class. That method does not return until it is safe to write into the workspace. It is saf
other thread has read or write permission on the workspace. The calling thread, of course, may
have both read and write permission at the same time. Once again, it is essential that doneWriti
called after writing is complete.

This solution, while not as conservative as the single monitor of figure 2.14(c), is still conserv
in that mutual exclusion is applied even on write actions that are independent of one another
share the same workspace. This effectively serializes some modifications that might otherwise o
parallel. However, there is no constraint in Ptolemy II on the number of workspaces used, so
classes of these kernel classes could judiciously use additional workspaces to increase the para
But they must do so carefully to avoid deadlock. Moreover, most of the methods in the kernel refu
operate on multiple objects that are not in the same workspace, throwing an exception on any a
to do so. Thus, derived classes that are more liberal will have to implement their own mechanism
porting interaction across workspaces.

2.9 Exceptions
As a general rule, we use standard Java exceptions when they are appropriate. However, s

Java exceptions do not provide a uniform mechanism for reporting errors that takes advantage
identification by full name. In order to obtain such uniformity, the Ptolemy II kernel has its own se
exceptions. These are summarized in the class diagram in figure 2.15.

2.9.1 Base Class

KernelException.Not used directly. Provides common functionality for the kernel exceptions. In p
ticular, it provides methods that take zero, one, or two Nameable objects plus an optional detai
sage (a String). The arguments provided are arranged in a default organization that is overrid
derived classes.

2.9.2 Less Severe Exceptions

These exceptions generally indicate that an operation failed to complete. These can resu
2-20 Ptolemy II

The Kernel

t suc-

ple,
plete.

it is of

ires
struc-

eInfo)

port

ency
uld be
d to be
topology that is not what the caller expects, since the caller’s modifications to the topology did no
ceed. However, they shouldnever result in an inconsistent or contradictory topology.

IllegalActionException.Thrown on an attempt to perform an action that is disallowed. For exam
the action would result in an inconsistent or contradictory data structure if it were allowed to com
E.g., attempt to set the container of an object to be another object that cannot contain it because
the wrong class. This exception supports all the constructor forms of KernelException.

NameDuplicationException.Thrown on an attempt to add a named object to a collection that requ
unique names, and finding that there already is an object by that name in the collection. The con
tor forms are:
• NameDuplicationException(Nameable wouldBeContainee)
• NameDuplicationException(Nameable wouldBeContainee, String moreInfo)
• NameDuplicationException(Nameable container, Nameable wouldBeContainee)
• NameDuplicationException(Nameable container, Nameable wouldBeContainee, String mor

NoSuchItemException.Thrown on access to an item that doesn't exist. E.g., attempt to remove a
by name and no such port exists. The constructor forms are:
• NoSuchItemException(String message)
• NoSuchItemException(Nameable container, String message)

2.9.3 Very Severe Exceptions

The following exceptions should never trigger. If they trigger, it indicates a serious inconsist
in the topology and/or a bug in the code. At the very least, the topology being operated on sho
abandoned and reconstructed from scratch. They are runtime exceptions, so they do not nee
explicitly declared to be thrown.

FIGURE 2.15. Summary of exceptions defined in the kernel.util package. These are used primarily through
constructor calls. The form of the constructors is shown in the text. Exception and RuntimeException are
Java exceptions.

KernelException

+getMessage() : String
#_getName(obj : Nameable) : String
#_getFullName(obj : Nameable) : String
#_setMessage(message : String)

-_message : String

IllegalActionException NameDuplicationException

Exception

InvalidStateException

+getMessage() : String
#_getName(obj : Nameable) : String
#_getFullName(obj : Nameable) : String
#_setMessage(message : String)

-_message : String

RuntimeException

NoSuchItemException
Heterogeneous Concurrent Modeling and Design 2-21

The Kernel

.g., a

.g. an
ssible
tructor
unt-

tered.
. This
m the
InvalidStateException.Some object or set of objects has a state that in theory is not permitted. E
NamedObj has a null name. Or a topology has inconsistent or contradictory information in it, e
entity contains a port that has a different entity as its container. Our design should make it impo
for this exception to ever occur, so occurrence is a bug. This exception supports all the cons
forms of KernelException, but is not derived from KernelException. It is derived from the Java R
imeException.

InternalErrorException.An unexpected error other than an inconsistent state has been encoun
Our design should make it impossible for this exception to ever occur, so occurrence is a bug
exception supports only one constructor form, taking a string as an argument. It is derived fro
Java RuntimeException.
2-22 Ptolemy II

Heterogeneous Concurrent Modeling and Desi
3

Actors
of the
cutable
ly. The
is neu-
nous-
at least.

ces for
sys-

ties in
in that
ire the
impose

at
uivalent
e to an
topol-

ent of
define
at cre-

execu-
3.1 Concurrent Computation
In the kernel package, entities have no semantics. They are syntactic placeholders. In many

uses of Ptolemy II, entities are executable. The actor package provides basic support for exe
entities. In most uses, these executable entities conceptually (if not actually) execute concurrent
goal of the actor package is to provide a clean infrastructure for such concurrent execution that
tral about the model of computation. It is intended to support dataflow, discrete-event, synchro
reactive, communicating sequential processes, and process networks models of computation,
The detailed model of computation is then implemented in a set of derived classes called adomain.
Each domain is a separate package.

Ptolemy II is an object-oriented application framework. Agha’sactors [1] extend the concept of
objects to concurrent computation. His actors encapsulate a thread of control and have interfa
interacting with other actors. They provide a framework for “open distributed object-oriented
tems.” An actor can create other actors, send messages, and modify its own local state.

Inspired by this model, we group a certain set of classes that support computation within enti
the actor package. Our use of the term “actors,” however, is somewhat broader than Agha’s,
ours does not require an entity to be associated with a single thread of control, nor does it requ
execution of threads associated with entities to be fair. Some subclasses, in other packages,
such requirements, as we will see, but not all.

Agha’s actors can only send messages toacquaintances— actors whose addresses it was given
creation time, or whose addresses it has received in a message, or actors it has created. Our eq
constraint is that an actor can only send a message to an actor if it has (or can obtain) a referenc
input port of that actor. The usual mechanism for obtaining a reference to an input port uses the
ogy, probing for a port that it is connected to. Our relations, therefore, provide explicit managem
acquaintance associations. Derived classes may provide additional implicit mechanisms. We
actormore loosely to refer to an entity that processes data that it receives through its ports, or th
ates and sends data to other entities through its ports.

The actor package provides two key support functions. It supports message passing and the
gn 3-1

Actors

r
re
.1. An
tion sequence. These are discussed in detail in the next two sections.

3.2 Message Passing
The actor package supports executable entities calledactors that communicate with one anothe

via message passing. Messages are encapsulated intokens(see section 4 and figure 4.1). Messages a
sent via ports. IOPort is the key class supporting message transport, and is shown in figure 3

FIGURE 3.1. Port classes that support message passing under various communication protocols.

ComponentPort

ComponentRelation

IOPort

+broadcast(message : Token)
+deepConnectedInPorts() : Enumeration
+deepConnectedOutPorts() : Enumeration
+deepGetReceivers() : Receiver[][]
+get(channelindex : int) : Token
+getInsideReceivers() : Receiver[][]
+getReceivers() : Receiver[][]
+getReceivers(r : IORelation) : Receiver[][]
+getRemoteReceivers() : Receiver[][]
+getRemoteReceivers(r : IORelation) : Receiver[][]
+getWidth() : int
+hasRoom(channel : int) : boolean
+hasToken(channel : int) : boolean
+isInput() : boolean
+isMultiport() : boolean
+isOutput() : boolean
+makeInput(t : boolean)
+makeMultiport(t : boolean)
+makeOutput(t : boolean)
+send(channelindex : int, message : Token)
#_getInsideWidth(except : IORelation) : int
#_newInsideReceiver() : Receiver
#_newReceiver() : Receiver

-_isinput : boolean
-_ismultiport : boolean
-_isoutput : boolean
-_localReceiversTable : Hashtable

FIFOQueue

1..1

0..n

IORelation

+deepReceivers(except : IOPort) : Receiver [][]
+getWidth() : int
+linkedDestinationPorts() : Enumeration
+linkedDestinationPorts(except : IOPort) : Enumeration
+linkedSourcePorts() : Enumeration
+linkedSourcePorts(except : IOPort) : Enumeration
+setWidth(width : int)
+widthFixed() : boolean

-_width : int

Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

Mailbox

-_container : IOPort
-_token : Token

0..1

0..n

QueueReceiver

+capacity() : int
+elements() : Enumeration
+get(offset : int) : Token
+history() : Enumeration
+historyCapacity() : int
+historySize()
+previous(offset : int) : Token
+setCapacity(c : int)
+setHistoryCapacity(c : int)
+size() : int

-_container : IOPort
-_queue : FIFOReceiver

RendezvousReceiver EventReceiver

PriorityQueue

1..1
0..n
3-2 Ptolemy II

Actors

lation

terface.

ted in
figure

ceiver,
input

get()
figure

n that

g this
only

nnels.
IOPort can only be connected to other IOPort instances, and only via IORelations. The IORe
class is also shown in figure 3.1.

An instance of IOPort can be an input, an output, or both. Aninput port (one that is capable of
receiving messages) contains one or more instances of objects that implement the Receiver in
Each of these receivers is capable of receiving messages from a distinctchannel. The type of receiver
used depends on the communication protocol, or model of computation.

3.2.1 Data Transport

Data transport is depicted in figure 3.2. The originating actor E1 has an output port P1, indica
the figure with an upwards arrow. The destination actor E2 has an input port P2, indicated in the
with a downwards arrow. E1 calls the send() method of P1 to send a tokent to a remote actor. The port
obtains a reference to a remote receiver (via the IORelation) and calls the put() method of the re
passing it the token. The destination actor retrieves the token by calling the get() method of its
port, which in turn calls the get() method of the designated receiver.

In figure 3.2 there is only a single channel, indexed 0. The “0” argument of the send() and
methods refer to this channel. A port can support more than one channel, however, as shown in
3.3. This can be represented by linking more than one relation to the port, or by linking a relatio
has a width greater than one. A port that supports this is called amultiport. The channels are indexed

, where is the number of channels. An actor distinguishes between channels usin
index in its send() and get() methods. By default, an IOPort is not a multiport, and thus supports
one channel. It is converted into a multiport by calling its makeMultiport() method with atrue argu-
ment. After conversion, it can support any number of channels.

Multiports are typically used by actors that communicate via an indeterminate number of cha

FIGURE 3.2. Message passing is mediated by the IOPort class. Its send() method obtains a reference to a
remote receiver, and calls the put() method of the receiver, passing it the tokent. The destination actor
retrieves the token by calling the get() method of its input port.

P2
P1

E1

E2

send(0,t)
receiver.put(t) get(0)

token t
R1

FIGURE 3.3. A port can support more than one channel, permitting an entity to send distinct data to distinct
destinations via the same port. This feature is typically used when the number of destinations cannot be stat-
ically determined.

P2P1E1 E2

send(0,t0)
receiver.put(t0) get(0)

token t0
R1

P3 E3

get(0)

token t1

R2

send(1,t1)

receiver.put(t1)

0 … N 1–, , N
Heterogeneous Concurrent Modeling and Design 3-3

Actors

r of
actor. A

ever,
its
la-

he
each
ort is
ven-
en is
tion is

lation

der in
clone

en (or
For example, a “distributor” or “demultiplexor” actor might divide an input stream into a numbe
output streams, where the number of output streams depends on the connections made to the
stream is a sequence of tokens sent over a channel.

An IORelation, by default, represents a single channel. By calling its setWidth() method, how
it can be converted to abus. A multiport may use a bus instead of multiple relations to distribute
data, as shown in figure 3.4. Thewidth of a relationis the number of channels supported by the re
tion. If the relation is not a bus, then its width is one.

The width of a portis the sum of the widths of the relations linked to it. In figure 3.4, both t
sending and receiving ports are multiports with width two. This is indicated by the “2” adjacent to
port. Note that the width of a port could be zero, if there are no relations linked to a port (such a p
said to bedisconnected). Thus, a port may have width zero, even though a relation cannot. By con
tion, in Ptolemy II, if a token is sent from such a port, the token goes nowhere. Similarly, if a tok
sent via a relation that is not linked to any input ports, then the token goes nowhere. Such a rela
said to bedangling.

A given channel may reach multiple ports, as shown in figure 3.5. This is represented by a re
that is linked to multiple input ports. In the default implementation, in class IOPort, acloneof the
token is sent to all but the first destination (where the order is determined as usual by the or
which links are made). The first destination receives the original token. What is meant by a
depends on the token, but for most simple tokens, a clone is simply a copy.

IOPort provides a broadcast() method for convenience. This method sends a specified tok
clones thereof) to all receivers linked to the port, regardless of the width of the port.

FIGURE 3.4. A bus is an IORelation that represents multiple channels. It is indicated by a relation with a
slash through it, and the number adjacent to the bus is the width of the bus.

P2P1E1 E2

send(0,t0) get(0), get(1)

token t0, t1
R1send(1,t1)

2

receiver.put(t0)
receiver.put(t1)

2 2

FIGURE 3.5. Channels may reach multiple destinations. This is represented by relations linking multiple
input ports to an output port. It is accomplished by cloning the token that is sent.

P2P1E1 E2

send(0,t)
receiver.put(t) get(0)

token t
R1

P3

E3

send(1,t1)

receiver.put(t.clone())

get(0) token
(clone of t)
3-4 Ptolemy II

Actors

le, we
wards
irec-

ts

er an
t

where
filled in
idirec-
gure

h to a
3.2.2 Example

An elaborate example showing all of the above features is shown in figure 3.6. In that examp
assume that links are constructed in top-to-bottom order. Output ports are indicated with up
arrows, input ports with downward arrows, and ports that are both an input and output with a bid
tional arrow. Multiports are indicated by adjacent numbers larger than one.

The top relation is a bus with width two, and the rest are not busses. The width of portP1 is four.
Its first two outputs (channels zero and one) go toP4, and a clone of these become the first two inpu
of P5. The third output ofP1goes nowhere. The fourth becomes the third input ofP5, a clone becomes
the first input ofP6, and another clone goes toP8, which is both an input and an output. PortsP2 and
P8send their outputs to the same set of destinations, except thatP8does not send to itself. PortP3has
width zero, so its send() method cannot be called without triggering an exception. PortP6 has width
two, but its second input channel has no output ports connected to it, so calling get(1) will trigg
exception that indicates that there is no data. PortP7has width zero so calling get() with any argumen
will trigger an exception.

3.2.3 Transparent Ports

Recall that a port is transparent if its container is transparent (isOpaque() returnsfalse). A Com-
positeActor is transparent unless it has a local director. Figure 3.7 shows an elaborate example
busses, input, and output ports are combined with transparent ports. The transparent ports are
white, and again outputs are denoted with upwards arrows, inputs with downward arrows, and b
tional ports with bidirectional arrows. The TclBlend code to construct this example is shown in fi
3.8.

By definition, a transparent port is an input if either
• it is connected on the inside to the outside of an input port, or
• it is connected on the inside to the inside of an output port.

That is, a transparent port is an input port if it can accept data (which it may then just pass throug
transparent output port). Correspondingly, a transparent port is an output port if either
• it is connected on the inside to the outside of an output port, or

FIGURE 3.6. An elaborate example showing several features of the data transport mechanism.
Heterogeneous Concurrent Modeling and Design 3-5

Actors
FIGURE 3.7. An example showing busses combined with input, output, and transparent ports.

P1

P7

*

2

3

P2

P3
P4

P5

P6

P8

P9

*

E2

E1

E3
E4

E5

E6

R2

R1
R3

R4

R5

R6

R7

2

4

4

0

4

1

2

2

3

 # Top container
 set e0 [java::new pt.actor.CompositeActor]
 $e0 setExecutiveDirector $director
 $e0 setName E0
 # First level of the hierarchy
 set e1 [java::new pt.actor.CompositeActor $e0 E1]
 set p2 [java::new pt.actor.IOPort $e1 P2]
 $p2 makeMultiport true
 set p3 [java::new pt.actor.IOPort $e1 P3]
 $p3 makeMultiport true
 set p4 [java::new pt.actor.IOPort $e1 P4]
 $p4 makeMultiport true

 set e3 [java::new pt.actor.CompositeActor $e0 E3]
 set p5 [java::new pt.actor.IOPort $e3 P5]
 $p5 makeMultiport true
 set p6 [java::new pt.actor.IOPort $e3 P6]

 set e6 [java::new pt.actor.AtomicActor $e0 E6]
 set p7 [java::new pt.actor.IOPort $e6 P7]
 $p7 makeMultiport true
 $p7 makeInput true

 set r2 [java::new pt.actor.IORelation $e0 R2]
 $r2 setWidth 3
 set r3 [java::new pt.actor.IORelation $e0 R3]
 set r4 [java::new pt.actor.IORelation $e0 R4]
 $r4 setWidth 2

 $p2 link $r2
 $p2 link $r3
 $p3 link $r4
 $p5 link $r2
 $p5 link $r3

FIGURE 3.8. TclBlend code to construct the example in figure 3.7.

 $p6 link $r3
 $p7 link $r4

 # Inside E1
 set e2 [java::new pt.actor.AtomicActor $e1 E2]
 set p1 [java::new pt.actor.IOPort $e2 P1]
 $p1 makeMultiport true
 $p1 makeOutput true
 set r1 [java::new pt.actor.IORelation $e1 R1]
 $r1 setWidth 0
 $p1 link $r1
 $p2 link $r1
 $p3 link $r1
 $p4 link $r1

 # Inside E3
 set e4 [java::new pt.actor.AtomicActor $e3 E4]
 set p8 [java::new pt.actor.IOPort $e4 P8]
 $p8 makeMultiport true
 $p8 makeInput true
 set e5 [java::new pt.actor.AtomicActor $e3 E5]
 set p9 [java::new pt.actor.IOPort $e5 P9]
 $p9 makeMultiport true
 $p9 makeInput true
 set r5 [java::new pt.actor.IORelation $e3 R5]
 $r5 setWidth 0
 set r6 [java::new pt.actor.IORelation $e3 R6]
 set r7 [java::new pt.actor.IORelation $e3 R7]
 $p5 link $r5
 $p5 link $r6
 $p6 link $r7
 $p8 link $r5
 $p9 link $r7
 $p9 link $r6
3
-6
 Ptolemy II

Actors

re both

ith an
m the
tting

hose
ecified
d to
par-
nary
idth 0,

d P5,
3 to

ified
ro (it
width-
arent
with

uch a
d to

ing. If
gling.
chan-

my II.
sional
lidated
is sig-
• it is connected on the inside to the inside of an input port.

Thus, assuming P1 is an output port and P7, P8, and P9 are input ports, then P2, P3, and P4 a
input and output ports, while P5 and P6 are input ports only.

Two of the relations that are inside composite entities (R1 and R5) are labeled as busses w
asterix instead of a number. These are busses with unspecified width. The width is inferred fro
topology. This is done by checking the ports that this relation is linked to from the inside and se
the width to the maximum of those port widths, minus the widths of other relations linked to t
ports on the inside. Each such port is allowed to have at most one inside relation with an unsp
width, or an exception is thrown. If this inference yields a width of zero, then the width is define
be one. Thus, R1 will have width 4 and R5 will have width 3 in this example. The width of a trans
ent port is the sum of the widths of the relations it is linked to on the outside (just like an ordi
port). Thus, P4 has width 0, P3 has width 2, and P2 has width 4. Recall that a port can have w
but a relation cannot have width less than one.

When data is sent from P1, four distinct channels can be used. All four will go through P2 an
the first three will reach P8, two copies of the fourth will reach P9, the first two will go through P
P7, and none will go through P4.

By default, an IORelation is not a bus, so its width is one. To turn it into a bus with unspec
width, call setWidth() with a zero argument. Note that getWidth() will nonetheless never return ze
returns at least one). To find out whether setWidth() has been called with a zero argument, call
Fixed() (see figure 3.1). If a bus with unspecified width is not linked on the inside to any transp
ports, then its width is one. It is not allowed for a transparent port to have more than one bus
unspecified width linked on the inside (an exception will be thrown on any attempt to construct s
topology). Note further that a bus with unspecified width is still a bus, and so can only be linke
multiports.

In general, bus widths inside and outside a transparent port need not agree. For example, if
in figure 3.9, then first channels from P1 reach P3, and the last channels are dangl

, then all channels from P1 reach P3, but the last channels at P3 are dan
Attempting to get a token from these channels will trigger an exception. Sending a token to these
nels just results in loss of the token.

Note that data is not actually transported through the relations or transparent ports in Ptole
Instead, each output port caches a list of the destination receivers (in the form of the two-dimen
array returned by getRemoteReceivers()), and sends data directly to them. The cache is inva
whenever the topology changes, and only at that point will the topology be traversed again. Th
nificantly improves the efficiency of data transport.

M N<

FIGURE 3.9. Bus widths inside and outside a transparent port need not agree..

P1
N P2 M P3N M M

M N M–
M N> N M N–
Heterogeneous Concurrent Modeling and Design 3-7

Actors

ound
ling its
ctor(),
s, the
the
should
ceivers

ail-
pty

Port
ptions.

con-
t-out

flow
ding

queue
enever

is
lity of
imple-
actors

thread

pecial-
ed or
iously
ng and

ina-
s with
dicates
riate

ich in
other

d sus-
calling
lled, it
3.2.4 Data Transfer in Various Models of Computation

The receiver used by an input port determines the communication protocol. This is closely b
to the model of computation. The IOPort class creates a new receiver when necessary by cal
_newReceiver() protected method. That method delegates to the director returned by getDire
calling its newReceiver() method (the Director class will be discussed in section 3.3 below). Thu
director controls the communication protocol, in addition to its primary function of determining
flow of control. Here we discuss the receivers that are made available in the actor package. This
not be viewed as an exhaustive set, but rather as a particularly useful set of receivers. These re
are shown in figure 3.1.

Mailbox Communication.The Director base class by default returns a simple receiver called a M
box. A mailbox is a receiver has capacity for a single token. It will throw an exception if it is em
and get() is called, or it is full and put() is called. Thus, any practical use of the base class IO
should schedule these calls so that these exceptions do not occur, or it should catch these exce

Asynchronous Message Passing.This is supported by the QueueReceiver class. A QueueReceiver
tains an instance of FIFOQueue, from the actor.util package, which implements a first-in, firs
queue. This is appropriate for all flavors of dataflow as well as Kahn process networks.

In the Kahn process networks model of computation [11], which is a generalization of data
[13], each actor has its own thread of execution. The thread calling get() will stall if the correspon
queue is empty. If the size of the queue is bounded, then the thread calling put() may stall if the
is full. This mechanism supports implementation of a strategy that ensures bounded queues wh
possible [19].

In the process networks model of computation, thehistoryof tokens that traverse any connection
determinate under certain simple conditions. With certain technical restrictions on the functiona
the actors (they must implement monotonic functions under prefix ordering of sequences), our
mentation ensures determinacy in that the history does not depend on the order in which the
carry out their computation. Thus, the history does not depend on the policies used by the
scheduler.

FIFOQueue is a support class that implements a first-in, first-out queue. This class has two s
ized features that make it particularly useful in this context. First, its capacity can be constrain
unconstrained. Second, it can record a finite or infinite history, the sequence of objects prev
removed from the queue. The history mechanism is useful both to support tracing and debuggi
to provide access to a finite buffer of previously consumed tokens.

FIXME: Show code for actors to send and receive data in various ways (broadcast, etc.).

Rendezvous Communications.Rendezvous, or synchronous communication, requires that the orig
tor of a token and the recipient of a token both be simultaneously ready for the data transfer. A
process networks, the originator and the recipient are separate threads. The originating thread in
a willingness to rendezvous by calling send(), which in turn calls the put() method of the approp
receiver. The recipient indicates a willingness to rendezvous by calling get() on an input port, wh
turn calls get() of the designated receiver. Whichever thread does this first must stall until the
thread is ready to complete the rendezvous.

This style of communication is supported by the RendezvousReceiver class. The put() metho
pends the calling thread if the get() method has not been called. The get() method suspends the
thread if the put() method has not been called. When the second of these two methods is ca
3-8 Ptolemy II

Actors

ample
read

s will-
call
dez-
t orig-
rded

ns-
o-
this, a
FIFO-
tor.util

l trans-
ly on
ple, to
ay be

e server
rriding
refer-

ue to

re are
of an
), and
veral
f
thod

one
lled
wakes up the suspended thread and completes the data transfer.
Nondeterministic transfers can be easily implemented using this mechanism. Suppose for ex

that a recipient is willing to rendezvous with any of several originating threads. It could spawn a th
for each. These threads should each call get(), which will suspend the thread until the originator i
ing to rendezvous. When one of the originating threads is willing to rendezvous with it, it will
put(). The multiple recipient threads will all be awakened, but only of them will detect that its ren
vous has been enabled. That one will complete the rendezvous, and others will die. Thus, the firs
inating thread to indicate willingness to rendezvous will be the one that will transfer data. Gua
communication [3] is equally easy to implement.

FIXME: Show code for actors to send and receive data in various ways.

Discrete-Event Communication.In the discrete-event model of computation, tokens that are tra
ferred between actors have atime stamp, which specifies the order in which tokens should be pr
cessed by the recipients. The order is chronological, by increasing time stamp. To implement
discrete-event system will normally use a single, global, sorted queue rather than an instance of
Queue in each input port. This is EventReceiver, which uses the SortedQueue class from the ac
package.

FIXME: Design needed here. Describe CalendarQueue class.

3.2.5 Discussion of the Data Transfer Mechanism

This data transfer mechanism has a number of interesting features. First, note that the actua
fer of data does not involve relations, so a model of computation could be defined that did not re
relations. For example, a global name server might be used to address recipient ports. For exam
construct simulations of highly dynamic networks, such as wireless communication systems, it m
more intuitive to model a system as a aggregation of unconnected actors with addresses. A nam
would return a reference to a port given an address. This could be accomplished simply by ove
the getRemoteReceivers() method of IOPort, or by providing an alternative method for getting
ences to receivers.

Note further that the mechanism here supports bidirectional ports. An IOPort may return tr
both the isInput() and isOutput() methods.

3.3 Execution
The Executable interface, shown in figure 3.10, defines how an object can be invoked. The

five methods. The initialize() method is assumed to be invoked exactly once during the lifetime
execution of an application. It may be invoked again to restart an execution. The prefire(), fire(
postfire() methods will usually be invoked many times. The fire() method may be invoked se
times between invocations of prefire() and postfire(). Aniteration is defined to be one invocation o
prefire(), any number of invocation of fire(), and one invocation of postfire(). The wrapup() me
will be invoked exactly once per execution, when the execution terminates. Thus, anexecutionis
defined to be one invocation of initialize(), followed by any number of iterations, followed by
invocation of wrapup(). The methods initialize(), prefire(), fire(), postfire(), and wrapup() are ca
theaction methods.
Heterogeneous Concurrent Modeling and Design 3-9

Actors

nd is
m-
y. As
n of

ses is
, that
f
ith it.

patch

as a

archy
er the
3.3.1 Director

The Executable interface, shown in figure 3.10, is implemented by the Director class, a
extended by the Actor interface. Anactor is an executable entity. There are two types of actors, Ato
icActor, which extends ComponentEntity, and CompositeActor, which extends CompositeEntit
the names imply, an AtomicActor is a single entity, while a CompositeActor is an aggregatio
actors.

A director governs the execution of a composite entity. An example of the use of these clas
shown in figure 3.11. In that example, a top-level entity, E0, has an instance of Director, D0
serves the role of its executive director. Anexecutive directoris responsible for the overall control o
an application. It will start and stop an execution, and may have a control panel GUI associated w
The top-level entity E0 also has a local director. Alocal director is responsible for execution of the
components within the composite. It will perform any scheduling that might be necessary, dis
threads that need to be started, generate code that needs to be generated, etc.

A composite actor that is not at the top level may or may not have its own local director. If it h
local director, then it defined to be opaque (isOpaque() returnstrue). In figure 3.11, E2 has a local
director and E3 does not. The contents of E3 are directly under the control of D1, as if the hier
were flattened. By contrast, the contents of E2 are under the control of D2, which in turn is und
control of D1. In the terminology of the previous generation, Ptolemy 0.x, E2 was called awormhole.

FIGURE 3.10. Classes in the actors package that support execution.

ComponentEntity CompositeEntity

AtomicActor

Director

+addMutationListener(m : MutationListener)
+iterate() : boolean
+newReceiver() : Receiver
+run()
+run(iterations : int)
+queueMutation(mutation : Mutation)
+removeMutationListener(m : MutationListener)
+transferInputs(port : IOPort)
+transferOutputs(port : IOPort)
#_makeDirectorOf(cast : CompositeActor)
#_makeExecDirectorOf(cast : CompositeActor)
#_performMutations() : boolean

-_actorListener : ActorListener
-_container : CompositeActor
-_executivedirector : boolean
-_mutationListeners : LinkedList
-_pendingMutations : LinkedList

«Interface»
Executable

+fire()
+initialize()
+postfire() : boolean
+prefire() : boolean
+wrapup()

NamedObj

CompositeActor

+getExecutiveDirector() : Director
+newInsideReceiver() : Receiver
+setDirector(d : Director)
+setExecutiveDirector(execdir : Director)

-_director : Director
-_execdirector : Director

0..n
0..1

0..1

0..n container

containee

«Interface»
Actor

+getDirector() : Director
+inputPorts() : Enumeration
+newReceiver() : Receiver
+outputPorts() : Enumeration

«Interface»
MutationListener

ActorListener

+initializeNewActors()

-_director : Director
-_newActors : LinkedList

1

0..1

0..2

1

3-10 Ptolemy II

Actors

in

cal
top

irector,
gure

ecific
hould
run()
n can

ed
ked
was
r is an
rre-

posite
they
re cre-

od in
ata
anno-
duce

simply

ption

it is
). The
f

her the
In Ptolemy II, we simply call it a composite opaque actor. It will be explained in more detail below
section 3.3.4.

We define thedirector (vs. local director or executive director) of an actor to be either its lo
director (if it has one) or its executive director (if it does not). A composite actor that is not at the
level has as its executive director the director of the container. Every executable actor has a d
and that director is what is returned by the getDirector() method of the Actor interface (see fi
3.10).

The Director class provides a default implementation of an execution sequence. Although sp
domains may override this implementation, in order to ensure interoperability of domains, they s
stick fairly closely to the sequence. A complete execution can be obtained by invoking the
method, which optionally takes an argument specifying the number of iterations. An executio
alternatively be terminated by returningfalse to the postfire() method.

The implementation of the run() method is shown in figure 3.12. It invokes initialize(), follow
by some number of invocations of iterate(), followed by wrapup(). The iterate() method is invo
until either it returnsfalseor the specified number of iterations have been completed, if a number
specified. The behavior of the initialize() and wrapup() methods depends on whether the directo
executive director or a local director. If it is an executive director, then they simply invoke the co
sponding methods of the composite actor under the control of the executive director. This com
actor in turn invokes the corresponding methods of its local director. If it is a local director, the
invoke the corresponding methods of the contained actors, in the order in which these actors we
ated.

The initialize() method of each actor gets invoked exactly once, much like the begin() meth
Ptolemy 0.x. Typical actions of the initialize() method include creating and initializing private d
members and producing initial outputs. Note that while delays in dataflow were implemented as
tations on the arcs in Ptolemy 0.x, they become actors in Ptolemy II. Their initialize methods pro
the initial tokens that they represent, and their fire() methods are never invoked (the scheduler
does not schedule them).

The wrapup() method is also invoked exactly once by the run() method, unless an exce
occurs. Typical actions include displaying final results of a run.

The iterate() method is a bit more complicated than initialize() or wrapup(), and hence
expanded in figure 3.12. It controls the sequence of invocations of prefire(), fire(), and postfire(
prefire() method returns a boolean, and if it isfalse, then the application is not ready for invocation o
the fire() or postfire() methods, so they are skipped. If it returnstrue, then the fire() and postfire()
methods are invoked. The behavior of the fire() and postfire() methods again depends on whet

FIGURE 3.11. Example application, showing a typical arrangement of actors and directors.

P6 P3P2 P5P1

E1

E2

E4

E0

D0: executive director

D1: local director

D2: local director

P4 P7

E3

E5
Heterogeneous Concurrent Modeling and Design 3-11

Actors

ding
nstit-

This
ppli-
en the
utive
director is a local or executive director. If it is an executive director, they invoke the correspon
methods of the actor. If it is a local director, then they invoke the corresponding methods of the co
uent actors.

The prefire() method again is a bit more complicated, so it too is expanded in figure 3.12.
method supportsmutations, where the topology of the graph changes during the execution of an a
cation. Mutations are explained in the next section. If there are no mutations to be performed, th
prefire() method simply invokes the prefire() method of the actor under control (if it is an exec
director) or of the component actors (if it is a local director).

FIGURE 3.12. Execution sequence implemented by run() method of the Director class.

complete?

Yes

No

return

run method

iterate

wrapup

initialize

fire

prefire

iterate method

ready?

return

postfire

No

Yes

Perform
Mutations

Type resolution

Initialize actors

Prefire actors or
(if atomic) actor

Pending
Mutations?

No

Yes

prefire method

return
3-12 Ptolemy II

Actors

ta-
-run to
of an

rfaces,
forms

it of

s that
hod,
have

muta-

tener,
ctors.

e been
Ac-

, if
figure

f the
ng in
s true,

rate()

s that
g reg-
ctors.

lock.

being
ethod
3.3.2 Mutations

A mutationis a run-time modification of an application. In most domains, it is not safe for mu
tions to occur at arbitrary times during an execution. For example, a scheduler may need to be re
take into account the mutation. Or a domain may wish to have tight control over when parameters
application change.

The Director class leverages the mutation subpackage of the kernel, which provides two inte
Mutation and MutationListener. A class that implements Mutation has a method that actually per
the mutation. A class that implements MutationListener has methods that are called to inform
mutations that have been performed.

The general strategy in Director is simple. Any code that wishes to perform mutation queue
mutation with the director rather than performing it directly (using the queueMutation() met
shown in figure 3.10). When it is safe, that mutation is performed, and all mutation listeners that
been registered with the director (using the addMutationListener() method) are informed of the
tion. In the Director class, the mutations are performed in the prefire() method.

When mutations are used, the Director class automatically registers a particular mutation lis
an instance of class ActorListener (see figure 3.10). This listener listens for the addition of new a
When a new actor is added, this listener makes a record of it. When all pending mutations hav
performed, the director asks the listener to initialize each new actor by invoking its initializeNew
tors() method.

It is possible that initialization of the new actors will result in further mutations (for example
they are higher-order functions). Thus, the prefire() method of Director iterates, as shown in
3.12, until there are no further pending mutations.

3.3.3 Excecution Sequence for Process Networks MOC

FIXME: This needs to be updated when PN has been updated.

PNDirector is derived from Director in the actors package. It uses the default run() method o
Director class. The run method calls the initialize() method, which currently does not do anythi
the PN domain. The iterate() method is called repeatedly until it returns true. When iterate return
the run() method calls wrapup() and returns.

PNDirector uses the default implementation of the iterate() method in the director. The ite
method calls prefire(), and if prefire() returns true, then it calls fire() and postfire().

In case of PN, the prefire() calls the getNewActors(), which returns an enumeration of actor
have been added (by mutation of the graph). Note that all the actors are added to this list by callin
isterNewActor() in their constructors. The prefire() method starts a thread for each of these a
Then it clears the list by calling the clearNewActors().

After prefire returns true, the fire() method takes over. The fire() method in PN handles dead
The postfire() method does not do anything in case of PN domain.

The iterate() method returns false if mutations have occurred, resulting in the iterate method
called again. The iterate() method returns true to indicate a real deadlock, causing the wrapup() m
to be called and the simulation to be terminated. The wrapup method terminates all threads.

FIXME: Need to show here how this execution sequence maps into a few of the MoCs.
Heterogeneous Concurrent Modeling and Design 3-13

Actors

in a
) and
ue

local
ave a
,
exec-
.
rs and
in fig-
orts of
hen a

as an
, and
is by
re()

or
y as far
dele-

of its
irector
It can

s well
eiver is
nly
3.3.4 Composite Opaque Actors

One of the key features of Ptolemy II is its ability to hierarchically mix models of computation
disciplined way. The way that it does this is to have actors that are composite (non-atomic
opaque. Such an actor was called awormholein the earlier generation of Ptolemy. Its ports are opaq
and its contents are not visible via methods like deepGetEntities().

Recall that an instance of CompositeActor that is at the top level of the hierarchy must have a
director in order to be executable. A CompositeActor at a lower level of the hierarchy may also h
local director, in which case, it is opaque (isOpaque() returntrue). It also has an executive director
which is simply the director of its container. For a composite opaque actor, the local director and
utive director need not follow the same model of computation. Hence hierarchical heterogeneity

The ports of a composite opaque actor are opaque, but it is a composite (it can contain acto
relations). This has a number of implications on execution. Consider the simple example shown
ure 3.13. Assume that both E0 and E2 have local directors (D1 and D2), so E2 is opaque. The p
E2 therefore are opaque, as indicated in the figure by their solid fill. Since its ports are opaque, w
token is sent from the output port P1, it is deposited in P2, not P5.

In the execution sequence of figure 3.12, E2 is treated as an atomic actor by D1; i.e. D1 acts
executive director to E2. Thus, the prefire() method of D1 invokes the prefire() methods of E1, E2
E3. The prefire() method of E2 is responsible for transferring the token from P2 to P5. It does th
delegating to its local director, invoking its transferInputs() method. It then invokes the prefi
method of D2, which in turn invokes the prefire() method of E4.

During its fire() method, E2 will invoke the fire() method of D2, which typically will fire the act
E4, which may send a token via P6. Again, since the ports of E2 are opaque, that token goes onl
as P3. The postfire() method of E2 is responsible for transferring that token to P4. It does this by
gating to itsexecutive director, invoking its transferOutputs() method.

The CompositeActor class delegates transfer of its inputs to its local director, and transfer
outputs to its executive director. This is the correct organization, because in each case, the d
appropriate to the model of computation of the destination port is the one handling the transfer.
therefore handle it in a manner appropriate to the model of computation.

Note that the port P3 is an output, but it has to be capable of receiving data from the inside, a
as sending data to the outside. Thus, despite being an output, it contains a receiver. Such a rec
called aninside receiver. The methods of IOPort offer only limited access to the inside receivers (o
via the getInsideReceivers() method and getReceivers(relation), where relation is an inside linked

FIGURE 3.13. An example of a composite opaque actor. E0 and E2 both have local directors, not necessarily
implementing the same model of computation.

P6 P3P2 P5P1

E1

E2

E4

E0

D0: executive director

D1: local director

D2: local director

P4
E3
3-14 Ptolemy II

Actors

actor,
odel of

puta-
en() or
ialized,
relation).
In general, a port may be both an input and an output. An opaque port of a composite opaque

thus, must be capable of storing two distinct types of receivers, a set appropriate to the inside m
computation, obtained from the local director, and a set appropriate to the outside model of com
tion, obtained from its executive director. Most methods that access receivers, such as hasTok
hasRoom(), refer only to the outside receivers. The use of the inside receivers is rather spec
only for handling composite opaque actors, so a more basic interface is sufficient.

3.4 Utilities
FIXME: discussion of the util package.

3.5 Librar y
FIXME: discussion of the lib package.
Heterogeneous Concurrent Modeling and Design 3-15

Actors
3-16 Ptolemy II

Heterogeneous Concurrent Modeling and Desi
4

Data
s a par-
oken

r). The
sed to
Figure 4.1 shows the classes that carry data between actors. The class hierarchy here define
tial order that is used in type resolution. The bottom element of the partial order is the class T
(thus, the inheritance diagram is upside down compared to a representation of the partial orde
partial order is converted to a lattice by adding a top element called NotAType. This element is u
flag type conflicts found during type resolution.
gn 4-1

Data
DoubleToken

_value: double

FIGURE 4.1. Token classes are used to convey data between actors.

Token

clone()
fromString(string)
toString()

ScalarToken

byteValue()
complexValue()
doubleValue()
fixValue()
intValue()
longValue()

ObjectToken

_value: Object

getValue()
setValue(object)

StringToken

CompositeToken

_contents: Hashtable

clear()
contains(token)
containsKey(key)
elements()
get(key)
keys()
put(key, token)
remove(key)
size()

FixToken

_value: Fix

VectorToken

0..*
MatrixToken

ComplexToken

_value: Complex

ByteToken

_value: byte

IntToken

_value: int

LongToken

_value: long

DoubleMatrixToken

_value: double

FixMatrixToken

ComplexMatrixTokenByteMatrixToken

IntMatrixToken LongMatrixToken
4-2 Ptolemy II

Heterogeneous Concurrent Modeling and Desi
5

Graph
is is
my II.
after
s it
Many Ptolemy II applications apply graph algorithms to representations of a topology. Th
done for instance to support scheduling or synthesis. Two graph packages are included in Ptole
Thestaticgraphpackage is the simpler of the two, and supports only graphs that are not changed
they are constructed. Thedynamicgraphpackage uses the Ptolemy II abstract syntax, but specialize
to mathematical graphs, and then provides graph algorithms that operate on it.

figure 5.1.
Typical usage:Use CompositeEntity::deepGetEntities()to get an enumerationof objects that

implement the GraphNode interface. Then pass that enumeration a graph algorithm.
Requirements:

• Need to be able to decorate nodes and edges.
• Need to be able to return a subset of the given graph (some edges, some nodes).
gn 5-1

Graph
FIGURE 5.1. Interfaces for graph algorithms.

DigraphNode

getDownstreamNodes()
getUpstreamNodes()

GraphNode

getAdjacentNodes()
getDecoration()
setDecoration(decoration)

Graph

_edges
_nodes

allPairsShortestPath()
bellmanFordAlgorithm()
breadthFirstSearch()
connectedComponents()
depthFirstSearch()
dijkstrasAlgorithm()
maxFlow()
minCut()
minFlow()
mixMaxFlow()
minimumSpanningTree()
stronglyConnectedComponents()
topologicalSort()
transitiveClosure()

Node

level: int
shadowed: Entity
visited: boolean

Edge

weight: int
visited: boolean

matching algorithms?
planar graph algorithms?
graph drawing algorithms?
5-2 Ptolemy II

Heterogeneous Concurrent Modeling and Desi
6

ifications
Higher-Order
Functions

Higher order functions like those in the HOF domain of Ptolemy 0.x [13] are supported by thehof
package. These can be used to construct scalable visual representations and data parallel spec
[9].
gn 6-1

Higher-Order Functions
6-2 Ptolemy II

Heterogeneous Concurrent Modeling and Desi
7

y II
transi-
Automata
Actors have entities that perform computations. A rather different kind of topology in Ptolem

uses entities to represent states of computation rather than the computations themselves. The
tions package supports this style of topology.
gn 7-1

Automata
7-2 Ptolemy II

Heterogeneous Concurrent Modeling and Desi
8

Synthesis

8.1 Separating Interface fr om Implementation

8.1.1 Syntactic Pr oper ties of the Interface

Core/Corona model.

8.1.2 Semantic Pr oper ties of the Interface

Agha[2] arguesthatthatnomodelof concurrency canor shouldallow all communicationabstrac-
tions to be directly expressed.Simplemessagepassingis akin to “gotos” in their lack of structure.
Instead,actorsshouldbecomposedusinganinteractionpolicy or “interactionpattern.” Aghasuggests
that therearetwo useful interactionpolicies,called“atomicity” and“precedenceconstraints.” These
aresimilar to our rendezvousanddataflow, but in fact thereareseveralotherinteractionpatternsthat
prove useful.

FIXME: SR, AN, DE.
FIXME: How the corona/coreconcepttranscendsdomainsfor functional actors.Point out that

non-functionalactorsmayhavemoredependenceontheinteractionpatterns,e.g.aqueuein DE with a
demand input (actually, is this a good example? The same queue could work in DDF).
gn 8-1

Synthesis
8-2 Ptolemy II

Heterogeneous Concurrent Modeling and Desi
9

Conc lusions
gn 9-1

Conclusions
9-2 Ptolemy II

References
ted

ting

ber-

Sys-
/

t-

IFIP
[1] G. A. Agha, Actors: A Model of Concurrent Computation in Distributed Systems, MIT Press,
Cambridge, MA, 1986.

[2] G. A. Agha, “Abstracting Interaction Patterns: A Programming Paradigm for Open Distribu
Systems,” inFormal Methods for Open Object-based Distributed Systems, IFIP Transactions, E.
Najm and J.-B. Stefani, Eds., Chapman & Hall, 1997.

[3] G. R. Andrews,Concurrent Programming — Principles and Practice, Addison-Wesley, 1991.

[4] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A Framework for Simula
and Prototyping Heterogeneous Systems,”Int. Journal of Computer Simulation, special issue on
“Simulation Software Development,” vol. 4, pp. 155-182, April, 1994. (http://ptolemy.eecs.
keley.edu/papers/JEurSim).

[5] S. A. Edwards, “The Specification and Execution of Heterogeneous Synchronous Reactive
tems,”Ph.D. thesis, University of California, Berkeley, May 1997. Available as UCB/ERL M97
31. (http://ptolemy.eecs.berkeley.edu/papers/97/sedwardsThesis/)

[6] M. Fowler and K. Scott,UML Distilled, Addison-Wesley, 1997.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns: Elements of Reusable Objec
Oriented Software, Addison-Wesley, Reading MA, 1995.

[8] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,”Sci. Comput. Program.,vol
8, pp. 231-274, 1987.

[9] P. G. Harrison, “A Higher-Order Approach to Parallel Algorithms,”The Computer Journal, Vol.
35, No. 6, 1992.

[10] C. A. R. Hoare, “Communicating Sequential Processes,”Communications of the ACM, Vol. 21,
No. 8, August 1978.

[11] G. Kahn, “The Semantics of a Simple Language for Parallel Programming,” Proc. of the
Congress 74, North-Holland Publishing Co., 1974.

[12] D. Lea,Concurrent Programming in JavaTM, Addison-Wesley, Reading, MA, 1997.

[13] E. A. Lee and T. M. Parks, “Dataflow Process Networks,”,Proceedings of the IEEE, vol. 83, no.
5, pp. 773-801, May, 1995. (http://ptolemy.eecs.berkeley.edu/papers/processNets)

[14] S. McConnell,Code Complete : A Practical Handbook of Software Construction, Microsoft
Press, 1993.

[15] B. Meyer,Object Oriented Software Construction, 2nd ed., Prentice Hall, 1997.

[16] R. Milner,Communication and Concurrency, Prentice-Hall, Englewood Cliffs, NJ, 1989.
Heterogeneous Concurrent Modeling and Design

References

ber

//
[17] NASA Office of Safety and Mission Assurance,Software Formal Inspections Guidebook, August
1993 (http://satc.gsfc.nasa.gov/fi/gdb/fitext.txt).

[18] J. K. Ousterhout,Tcl and the Tk Toolkit, Addison-Wesley, Reading, MA, 1994.

[19] T. M. Parks,Bounded Scheduling of Process Networks, Technical Report UCB/ERL-95-105.
Ph.D. Dissertation. EECS Department, University of California. Berkeley, CA 94720, Decem
1995. (http://ptolemy.eecs.berkeley.edu/papers/parksThesis).

[20] Rational Software Corporation,UML Notation Guide, Version 1.1, September 1997, http:
www.rational.com/uml/html/notation/.

[21] A. J. Riel,Object Oriented Design Heuristics, Addison Wesley, 1996.

[22] J. Rowson and A. Sangiovanni-Vincentelli, “Interface Based Design,”Proc. of DAC ‘97.
FIXME- check reference

[23] J. Rumbaugh,et al. Object-Oriented Modeling and Design Prentice Hall, 1991.

[24] J. Rumbaugh,OMT Insights, SIGS Books, 1996.
Ptolemy II

Index

Symbols
_newReceiver() method

IOPort class 3-8
A
abstract class 2-3
abstract syntax 1-1, 2-1
abstraction 2-7
acquaintances 3-1
action methods 3-9
actor 3-10
Actor interface 3-10
actor package 3-1, 3-2
ActorListener class 2-17, 3-13
actors 3-1, 3-2
addedEntity() method

MutationListener 2-17
addMutationListener() method

Director class 3-13
aggregation association 2-5
aggregation UML notation 2-3
allowLevelCrossingConnect() method

CompositeEntity class 2-10
anytype particle 1-2
application framework 3-1
arc 2-1
associations 2-3
asynchronous communication 3-8
AtomicActor class 3-10
Attribute class 2-6
attributes 2-2
B
base class 2-2
begin() method

Ptolemy 0 3-11
bidirectional ports 3-9
broadcast() method 3-4
buffer 3-8

bus 3-4
bus widths and transparent ports 3-7
busses, unspecified width 3-7
C
channel 3-3
class diagrams 2-2
clone of a token 3-4
clone() method

NamedObj class 2-12
cloning 2-12
clustered graphs 1-1, 2-1
communication protocol 3-3, 3-8
ComponentEntity class 2-7, 2-8
ComponentPort class 2-7, 2-8
ComponentRelation class 2-7, 2-8
components 1-1
Composite design pattern 2-7
composite opaque actor 3-11
composite opaque entities 2-17
CompositeActor class 3-10
CompositeEntity class 2-7, 2-8
composition 2-3
concrete class 2-3
concrete syntax 2-1
concurrent computation 3-1
concurrent design 1-1
connect() method

CompositeEntity class 2-10
connection 2-1
consistency 2-5
container 2-6
containment 2-3
CORBA 1-1
CrossRefList class 2-7
D
dangling relation 3-4
dataflow 3-8
Heterogeneous Concurrent Modeling and Design

Index
deadlock 2-18
deep traversals 2-9
deepContains() methodNamedObj class 2-10
deepGetEntities() method

CompositeEntity class 2-9, 3-14
demultiplexor actor 3-4
derived class 2-2
description() method 2-11, 2-12
design patterns 1-2
design refinement 1-2
determinacy 3-8
directed graph 2-1
director 3-8, 3-10, 3-11
Director class 2-16, 3-8, 3-10
disconnected port 3-4
discrete-event model of computation 3-9
distributor actor 3-4
domain 3-1
domains 1-1
doneReading() method

Workspace class 2-20
doneWriting() method

Workspace class 2-20
dynamic networks 3-9
E
EDIF 2-1
entities 2-1
Entity class 2-3, 2-5
EventReceiver class 3-9
executable entities 3-1
Executable interface 3-9
execution 3-9
executive director 3-10, 3-14
F
FIFOQueue class 3-8
finally keyword 2-20
finite buffer 3-8
fire() method

CompositeActor class 3-14
Director class 3-11, 3-14
Executable interface 3-9

fixed-point simulations 1-2
floating-point simulations 1-2

full name 2-6
G
galaxy 2-11
generalize 2-2
get() method

IOPort class 3-3
Receiver interface 3-3

getAttribute() method
NamedObj class 2-7

getAttributes() method
NamedObj class 2-7

getContainer() method
Nameable interface 2-6

getDirector() method
Actor interface 3-11

getInsideReceivers() method
IOPort class 3-14

getReceivers() method
IOPort class 3-14

getRemoteReceivers() method 3-9
IOPort class 3-7

getWidth() method
IORelation class 3-7

graphical syntaxes 2-11
guarded communication 3-9
H
hasRoom() method

IOPort class 3-15
hasToken() method

IOPort class 3-15
heterogeneity 1-1, 2-17, 3-14
hiding 2-7
hierarchical heterogeneity 2-17, 3-14
hierarchy 2-7
history 3-8
I
Immutable 2-19
immutable 2-6
implementing an interface 2-3
information-hiding 2-17
inheritance 2-2
initialize() method

Director class 3-11
Ptolemy II

Index
Executable interface 3-9
initializeNewActors() method

ActorListener class 3-13
input port 3-3
inputs

transparent ports 3-5
inside links 2-7
inside receiver 3-14
interface 2-3
interoperability 1-1
IOPort class 3-2
IORelation class 3-3, 3-4
isAtomic() method

CompositetEntity class 2-7
isInput() metho 3-9
isOpaque() method

ComponentPort 2-17
CompositeActor class 3-10, 3-14
CompositeEntity class 2-7, 3-5

isOutput() method 3-9
iterate() method

Director class 3-11
iteration 3-9
K
Kahn process networks 3-8
L
level-crossing links 2-8, 2-10
liberalLink() method

ComponentPort class 2-10
link 2-1, 2-5
link() method

Port class 2-10
listener 2-17
local director 3-10, 3-14
lock 2-18
M
mailbox 3-8
Mailbox class 3-8
makeMultiport() method

IOPort class 3-3
managed ownership 2-6
mathematical graphs 2-1
Mediator design pattern 2-2

message passing 3-2
model of computation 3-1, 3-3
models of computation

mixing 3-14
monitor 2-18
monitors 1-2
monotonic functions 3-8
multiport 3-3
mutation 1-2, 3-13
Mutation interface 2-17, 3-13
mutation package 2-16
mutation subpackage 3-13
MutationListener interface 3-13
mutual exclusion 2-18
N
name 2-6
name server 3-9
Nameable interface 2-3, 2-6
NamedList class 2-7
NamedObj class 2-3, 2-6
newReceiver() method

Director class 3-8
nondeterminism with rendezvous 3-9
O
object model 2-2
object modeling 1-2
object-oriented concurrency 3-1
opaque actors 3-10, 3-14
opaque composite actor 3-11
opaque composite entities 2-17
opaque port 2-8
override 2-2
P
package structure 1-2
packages 1-1
partial order 1-2
perform() method

Mutation interface 2-17
polymorphism 1-2
Port class 2-3, 2-5
ports 2-1
postfire() method

CompositeActor class 3-14
Heterogeneous Concurrent Modeling and Design

Index
Director class 3-11
Executable interface 3-9

prefire() method
CompositeActor class 3-14
Director class 3-11, 3-14
Executable interface 3-9

prefix order 3-8
private members and methods 2-2
private methods 2-2
process algebras 2-7
process networks 3-8
protected members and methods 2-2
protocol 3-3
public members and methods 2-2
put() method

Receiver interface 3-3
Q
queue 3-8
queueMutation() method

Director class 2-17, 3-13
QueueReceiver class 3-8
R
race conditions 2-18
read() method

Workspace class 2-20
read/write semaphores 1-2
readers and writers 2-20
receiver

wormhole ports 3-14
Receiver interface 3-3
reduced-order modeling 1-1
Relation class 2-3, 2-5
relations 2-1
rendezvous 3-8
RendezvousReceiver class 3-8
Rumbaugh 2-6
run() method

Director class 3-11
S
semantics 1-1
send() method

IOPort class 3-3
setContainer() method

kernel classes 2-5
setWidth() method

IORelation class 3-4, 3-7
software components 1-1
software engineering 1-2
SortedQueue class 3-9
specialize 2-2
star 2-11
static structure diagrams 2-2
stream 3-4
subclass 2-2
subclass UML notation 2-2
superclass 2-2
synchronized keyword 2-18
synchronous communication 3-8
T
thread safety 2-6, 2-17, 2-18
threads 3-8
thread-safety 1-2
time stamp 3-9
tokens 3-2
topology 2-1
transferInputs() method

Director class 3-14
transferOutputs() method

Director class 3-14
transparent entities 2-7
transparent ports 2-8, 3-5
tunneling entity 2-11
type resolution 1-2
U
UML 2-2
uniqueness of names 2-6
update() method

Mutation interface 2-17
V
vertex 2-1
W
width of a port 3-4
width of a relation 3-4
width of a transparent 3-7
widthFixed() method

IORelation class 3-7
Ptolemy II

Index
wireless communication systems 3-9
workspace 2-19
Workspace class 2-3, 2-6, 2-20
wormhole 1-1, 2-17, 3-10, 3-14
wrapup() method

Director class 3-11
Executable interface 3-9

write() method
Workspace class 2-20
Heterogeneous Concurrent Modeling and Design

	— DRAFT — NOT FOR DISTRIBUTION —
	Contents
	1. Introduction 1-1
	1.1. Objectives 1-1
	1.2. Package Structure 1-2

	2. The Kernel 2-1
	2.1. Abstract Syntax 2-1
	2.2. UML Notation 2-2
	2.3. Ptolemy II Conventions 2-4
	2.4. Non-Hierarchical Topologies 2-5
	2.4.1. Links 2-5
	2.4.2. Consistency 2-5

	2.5. Support Classes 2-5
	2.5.1. Containers 2-5
	2.5.2. Name and Full Name 2-6
	2.5.3. Workspace 2-6
	2.5.4. Attributes 2-6
	2.5.5. List Classes 2-7

	2.6. Clustered Graphs 2-7
	2.6.1. Abstraction 2-7
	2.6.2. Level-Crossing Connections 2-10
	2.6.3. Tunneling Entities 2-11
	2.6.4. Description 2-11
	2.6.5. Cloning 2-12
	2.6.6. An Elaborate Example 2-13
	2.6.7. Mutations 2-13

	2.7. Composite Opaque Entities 2-17
	2.8. Concurrency 2-17
	2.8.1. Limitations of Monitors 2-18
	2.8.2. Workspace 2-19

	2.9. Exceptions 2-20
	2.9.1. Base Class 2-20
	2.9.2. Less Severe Exceptions 2-20
	2.9.3. Very Severe Exceptions 2-21

	3. Actors 3-1
	3.1. Concurrent Computation 3-1
	3.2. Message Passing 3-2
	3.2.1. Data Transport 3-3
	3.2.2. Example 3-5
	3.2.3. Transparent Ports 3-5
	3.2.4. Data Transfer in Various Models of Computation 3-8
	3.2.5. Discussion of the Data Transfer Mechanism 3-9

	3.3. Execution 3-9
	3.3.1. Director 3-10
	3.3.2. Mutations 3-13
	3.3.3. Excecution Sequence for Process Networks MOC 3-13
	3.3.4. Composite Opaque Actors 3-14

	3.4. Utilities 3-15
	3.5. Library 3-15

	4. Data 4-1
	5. Graph 5-1
	6. Higher-Order Functions 6-1
	7. Automata 7-1
	8. Synthesis 8-1
	8.1. Separating Interface from Implementation 8-1
	8.1.1. Syntactic Properties of the Interface 8-1
	8.1.2. Semantic Properties of the Interface 8-1

	9. Conclusions 9-1

	1 Introduction
	1.1 Objectives
	FIGURE 1.1. The package structure of Ptolemy II.

	1.2 Package Structure

	2 The Kernel
	2.1 Abstract Syntax
	FIGURE 2.1. Visual notation and terminology.

	2.2 UML Notation
	FIGURE 2.2. Key classes in the kernel package and their methods supporting basic (non-hierarchica...
	FIGURE 2.3. Support classes in the kernel.util package.

	2.3 Ptolemy II Conventions
	2.4 Non-Hierarchical Topologies
	2.4.1 Links
	2.4.2 Consistency

	2.5 Support Classes
	2.5.1 Containers
	2.5.2 Name and Full Name
	2.5.3 Workspace
	2.5.4 Attributes
	2.5.5 List Classes

	2.6 Clustered Graphs
	FIGURE 2.4. Key classes supporting clustered graphs.
	2.6.1 Abstraction
	FIGURE 2.5. Transparent ports (P3 and P4) are linked to relations (R1 and R2) below their contain...

	2.6.2 Level-Crossing Connections
	FIGURE 2.6. An example with level-crossing transitions.

	2.6.3 Tunneling Entities
	FIGURE 2.7. A tunneling entity contains a relation with inside links to more than one port.

	2.6.4 Description
	FIGURE 2.8. An example of the syntax returned by the description() method.

	2.6.5 Cloning
	2.6.6 An Elaborate Example
	FIGURE 2.9. An example of a clustered graph.
	FIGURE 2.10. The same topology as in figure 2.9 implemented as a Java class.
	FIGURE 2.11. The same topology as in figure 2.9 described by the TclBlend commands to create it.
	FIGURE 2.12. Key methods applied to figure 2.9.

	2.6.7 Mutations
	FIGURE 2.13. Interfaces in the kernel.mutation package.

	2.7 Composite Opaque Entities
	2.8 Concurrency
	2.8.1 Limitations of Monitors
	FIGURE 2.14. Using monitors for thread safety. The method used in Ptolemy II is in (d) and (e).

	2.8.2 Workspace

	2.9 Exceptions
	FIGURE 2.15. Summary of exceptions defined in the kernel.util package. These are used primarily t...
	2.9.1 Base Class
	KernelException

	2.9.2 Less Severe Exceptions
	IllegalActionException
	NameDuplicationException
	NoSuchItemException

	2.9.3 Very Severe Exceptions
	InvalidStateException
	InternalErrorException

	3 3 Actors
	3.1 Concurrent Computation
	3.2 Message Passing
	FIGURE 3.1. Port classes that support message passing under various communication protocols.
	3.2.1 Data Transport
	FIGURE 3.2. Message passing is mediated by the IOPort class. Its send() method obtains a referenc...
	FIGURE 3.3. A port can support more than one channel, permitting an entity to send distinct data ...
	FIGURE 3.4. A bus is an IORelation that represents multiple channels. It is indicated by a relati...
	FIGURE 3.5. Channels may reach multiple destinations. This is represented by relations linking mu...

	3.2.2 Example
	FIGURE 3.6. An elaborate example showing several features of the data transport mechanism.

	3.2.3 Transparent Ports
	FIGURE 3.7. An example showing busses combined with input, output, and transparent ports.
	FIGURE 3.8. TclBlend code to construct the example in figure 3.7.
	FIGURE 3.9. Bus widths inside and outside a transparent port need not agree..

	3.2.4 Data Transfer in Various Models of Computation
	Mailbox Communication
	Asynchronous Message Passing
	Rendezvous Communications
	Discrete-Event Communication

	3.2.5 Discussion of the Data Transfer Mechanism

	3.3 Execution
	FIGURE 3.10. Classes in the actors package that support execution.
	3.3.1 Director
	FIGURE 3.11. Example application, showing a typical arrangement of actors and directors.
	FIGURE 3.12. Execution sequence implemented by run() method of the Director class.

	3.3.2 Mutations
	3.3.3 Excecution Sequence for Process Networks MOC
	3.3.4 Composite Opaque Actors
	FIGURE 3.13. An example of a composite opaque actor. E0 and E2 both have local directors, not nec...

	3.4 Utilities
	3.5 Library

	4 4 Data
	FIGURE 4.1. Token classes are used to convey data between actors.

	5 Graph
	FIGURE 5.1. Interfaces for graph algorithms.

	6 Higher-Order Functions
	7 Automata
	8 Synthesis
	8.1 Separating Interface from Implementation
	8.1.1 Syntactic Properties of the Interface
	8.1.2 Semantic Properties of the Interface

	9 Conclusions
	References
	[1] G. A. Agha, Actors: A Model of Concurrent Computation in Distributed Systems, MIT Press, Camb...
	[2] G. A. Agha, “Abstracting Interaction Patterns: A Programming Paradigm for Open Distributed Sy...
	[3] G. R. Andrews, Concurrent Programming — Principles and Practice, Addison-Wesley, 1991.
	[4] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A Framework for Simulating a...
	[5] S. A. Edwards, “The Specification and Execution of Heterogeneous Synchronous Reactive Systems...
	[6] M. Fowler and K. Scott, UML Distilled, Addison-Wesley, 1997.
	[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object...
	[8] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,” Sci. Comput. Program., vol 8...
	[9] P. G. Harrison, “A Higher-Order Approach to Parallel Algorithms,” The Computer Journal, Vol. ...
	[10] C. A. R. Hoare, “Communicating Sequential Processes,” Communications of the ACM, Vol. 21, No...
	[11] G. Kahn, “The Semantics of a Simple Language for Parallel Programming,” Proc. of the IFIP Co...
	[12] D. Lea, Concurrent Programming in JavaTM, Addison-Wesley, Reading, MA, 1997.
	[13] E. A. Lee and T. M. Parks, “Dataflow Process Networks,”, Proceedings of the IEEE, vol. 83, n...
	[14] S. McConnell, Code Complete : A Practical Handbook of Software Construction, Microsoft Press...
	[15] B. Meyer, Object Oriented Software Construction, 2nd ed., Prentice Hall, 1997.
	[16] R. Milner, Communication and Concurrency, Prentice-Hall, Englewood Cliffs, NJ, 1989.
	[17] NASA Office of Safety and Mission Assurance, Software Formal Inspections Guidebook, August 1...
	[18] J. K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, Reading, MA, 1994.
	[19] T. M. Parks, Bounded Scheduling of Process Networks, Technical Report UCB/ERL-95-105. Ph.D. ...
	[20] Rational Software Corporation, UML Notation Guide, Version 1.1, September 1997, http:// www....
	[21] A. J. Riel, Object Oriented Design Heuristics, Addison Wesley, 1996.
	[22] J. Rowson and A. Sangiovanni-Vincentelli, “Interface Based Design,” Proc. of DAC ‘97. FIXME-...
	[23] J. Rumbaugh, et al. Object-Oriented Modeling and Design Prentice Hall, 1991.
	[24] J. Rumbaugh, OMT Insights, SIGS Books, 1996.

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

