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1.  Project Overview

The focus of this project was on design methodology for complex real-time, reactive systems
where a variety of design methodologies and implementation technologies must be combined. Design
methodologies are encapsulated in one or more models of computation, while implementation technol-
ogies are implemented as synthesis tools. Applications that use more than one model of computation
and/or more than one synthesis tool are said to be heterogeneous. Hardware/software codesign is one
example of heterogeneous design.

The project developed formal models for such heterogeneous systems, a software environment for
the design of such systems, and synthesis technologies for implementation of such systems. In the lat-
ter category, it concentrated on problems not already addressed well elsewhere, such as the synthesis
of embedded software (code generation, sometimes called auto-coding) and the partitioning and
scheduling of heterogeneous parallel systems. 

2.  Heterogeneous Design Principles

2.1  REACTIVE SYSTEMS

Many traditional computational systems are transformational, in that they transform a body of
input data into a body of output data. Operating systems and network-aware applications, such as those
with a client-server architecture, are interactive, in that they interact with the environment, but they
interact at their own speed. This project was concerned with systems that are reactive, in that they react
continuously at the speed of the environment. It focused primarily on a subset of such systems, those
with a large component of signal processing. Such systems are computationally intensive, hard-real-
time, and typically embedded and concurrent.

2.2  SYSTEM-LEVEL DESIGN

By “system-level design” we mean design at the problem level that is relatively unencumbe
implementation issues. For signal processing applications, a block-diagram style of specificati
design is popular, primarily because it matches the applications well. A typical model of a sy
implemented in Ptolemy, is shown in figure 1.

Such specifications are modular, in that large designs are composed of smaller designs, and 
smaller designs encapsulate specialized expertise. They are hierarchical, in that composite designs
themselves become modules, and modules may be very complicated. They are concurrent, in that
modules logically operate simultaneously. Implementations may be sequential, parallel, or distr
They are abstract, in that the interaction of modules occurs within a model of computation. They
domain specific, tuned in this case to the needs of signal processing applications. Often they wil
to combine multiple domain-specific subsystems.

To be successful, system-level design must be coupled with high quality synthesis tools tha
late system-level specifications into implementations. For signal processing, dataflow models o
putation provide a convenient and popular means for specification. Thus, much of our work focu
the syntax and semantics of such specifications and the synthesis of implementations from them

2.3  HETEROGENEOUS IMPLEMENTATIONS

Embedded reactive systems today are typically implemented using a combination of implem
tion technologies, as suggested in figure 2. Custom digital hardware, for example, may be co
Principal Investigator: Edward A. Lee 5 of 48
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with analog, microwave, or microelectromechanical systems (MEMS) designs. Hard real-time soft-
ware, written in assembly code for a specialized processor like a programmable DSP, may be com-
bined with higher-level software, typically written in C, that implements the control logic of the
application. And of course, hardware and software are combined within the same design.

Two competing approaches to the design of such systems are the grand unified approach and the
heterogeneous approach. The grand unified approach seeks to find a common representation language
for all components, and to develop techniques to synthesize diverse implementations from this repre-
sentation. The heterogeneous approach uses domain-specific models of computation hierarchically
mixed and matched to define a system and seeks to find retargettable synthesis techniques from speci-
fications to diverse implementation technologies. This project pursued the latter approach, and we
believe that the results demonstrate the validity of the approach.

The heterogeneous approach has a number of advantages. First and foremost, it is clearly possible,
while there is no clearly usable grand unified approach. In addition, it emphasizes domain specific
techniques, which match the applications better. Furthermore, because they are more specialized,
domain-specific techniques are more amenable to high-level synthesis.

Any particular (known) candidate for a grand unified approach has a number of serious disadvan-

FIGURE 1.  A Ptolemy application, developed by an outside Ptolemy user (Uwe Trautwein of the 
Technical University of Ilmenau, Germany), depicts a beamformer that adaptively nulls interferers. It 
is an interactive, animated simulation, where on-screen controls modify the direction of arrival of the 

signal, and uses the higher-order functions and Tcl/Tk scripting capabilities in Ptolemy.
6 of 48 Principal Investigator: Edward A. Lee
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tages. First, it must, of necessity, impose a model of computation. For example, choosing to use an
imperative language will impose a sequential model of computation. But any particular model of com-
putation can greatly affect the chosen system architecture. Using an imperative language, for instance,
will strongly bias implementations towards software over hardware. On the other hand, using a dis-
crete-event model of computation, as with structural VHDL, will strongly bias the implementation
towards hardware over software. If a grand unified approach fails to impose a model of computation,
then it will have all of the disadvantages of the heterogeneous approach and none of the advantages.

In the heterogeneous approach, multiple models of computation may be used at the problem level
(figure 1) and the implementation level (figure 2). The core of the project, therefore, was on the rela-
tionship between heterogeneous models at these two levels, as suggested in figure 3. This relationship
consists of a modeling relationship (where a problem-level description is a model of an implementa-
tion), synthesis (where a problem-level description is translated into an implementation-level descrip-
tion), and mapping (where modules at one level are related to modules at the other).

2.4  MODELS OF COMPUTATION

There are a rich variety of models of computation that deal with concurrency in different ways. In
this section, we outline some of the most promising models that we uncovered during the course of this
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FIGURE 2.  Typical hardware architecture for an embedded reactive system with a significant signal 
processing component. The architecture is highly heterogeneous, and its hardware-software combina-

tion is only one manifestation of this.
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project. All of these will lend an interpretation, or semantics, to the same bubble-and-arc, or block-
and-arrow diagram shown in figure 4.

2.4.1  Differential equations

One possible semantics for the syntax in figure 4 is that of differential equations. The arcs repre-
sent continuous functions of a continuum that is interpreted as time. The bubbles represent relations
between these functions. The job of a simulator is to find a fixed-point, i.e., a set of functions that sat-

problem level (heterogeneous models of computation)

implementation level (heterogeneous implementation technologies)

mapping, synthesis, &
modeling

FIGURE 3.  The focus of this project was on heterogeneous problem-level modeling, heterogenous 
implementation-level modeling, and the relationship between these levels.

A

C

B

FIGURE 4.  A single syntax (bubble-and-arc or block-and-arrow diagram) 
can have a number of possible semantics (interpretations).
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Differential equations are excellent for modeling analog circuits and many physical systems. This

is the model of computation used in Spice circuit simulators. However, they have disadvantages. Since
they directly describe a physical system, they are tightly bound to an implementation, leaving few
implementation options. In addition, they can be expensive to simulate (and hence, expensive to imple-
ment in software). Thus, differential equations are best used for implementation-level modeling.

Although at Berkeley we have not created the ability to use differential equations in Ptolemy,
Hewlett-Packard has recently announced an integration of Ptolemy with their well regarded analog and
microwave circuit simulators. For more details, see Section 3 “Technology Transfer” on page 13.

2.4.2  Difference equations

Differential equations can be discretized to get difference equations, a commonly used m
computation in digital signal processing. This model of computation can be further generalized 
port multirate difference equations. In either case, a global clock defines the discrete points at whic
signals have values (at the ticks).

Difference equations are considerably easier to implement in software, and hence leave mo
dom of implementation. Thus, they can be used at the problem level. Their key weaknesses are
bal synchronization implied by the clock, and the awkwardness of specifying irregularly timed e
and control logic.

The synchronous dataflow domain in Ptolemy is used to model difference equations, although
slightly more general, and avoids the global synchronization implied by a pure interpretation of 
ence equations.

2.4.3  Process networks and dataflow

In a Process Network (PN) model of computation, the arcs represent sequences of data
(tokens), and the bubbles represent functions that map input sequences into output sequences
technical restrictions on these functions are necessary to ensure determinacy, meaning that the
sequences are fully specified. Dataflow models, popular in signal processing, are a special case
cess networks [14].

PN models are excellent for signal processing. They are loosely coupled, and hence relativ
ily to parallelize or distribute. They can be implemented efficiently in both software and hard
(something demonstrated by this project), and hence leave many implementation options open
they are best used for problem-level specification.

A key weakness of PN models is that they are awkward for specifying control logic.
PN models are implemented in Ptolemy using a hierarchy of four nested domains. These ar

smallest (least general) to largest (most general): synchronous dataflow (SDF), boolean dataflow
(BDF), dynamic dataflow (DDF), and process networks (PN). Many improvements in this technolog
were completed under this project, and many of the results have been successfully transferred t
try.

2.4.4  Synchronous/reactive models

In the Synchronous/Reactive (SR) model of computation, the arcs represent data values 
aligned with global clock ticks. Thus, they are discrete signals, as with difference equations, but
difference equations, a signal need not have a value at every clock tick. The bubbles represent 
between input and output values at each tick, and are usually partial functions with certain te
Principal Investigator: Edward A. Lee 9 of 48
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SR models are excellent for applications with concurrent and complex control logic. They can be

realized in the popular Esterel language and certain variants of the Statecharts language. Because of
the tight synchronization, however, some applications are overspecified in the SR model, limiting the
implementation alternatives. Moreover, in most realizations, modularity is compromised by the need
to seek a global fixed point at each clock tick.

A key result of this project was to develop a modular SR model of computation and an implemen-
tation in Ptolemy [74]. This is the first realization of the SR model of computation that mixes cleanly
with other models of computation, thus allowing the use of SR for control logic in combination with,
for example, dataflow for signal processing.

2.4.5  Discrete-event models

In discrete-event (DE) models of computation, the arcs represent sets of events placed in time. An
event consists of a value and time stamp. This model of computation is popular for specifying hard-
ware and simulating telecommunications systems, and has been realized in a large number of simula-
tion environments, simulation languages, and hardware description languages, including VHDL and
Verilog. Unlike the SR model, there is no global clock tick, but like the SR, differential equations, and
difference equations, there is globally consistent notion of time.

DE models are excellent descriptions of concurrent hardware, although increasingly the globally
consistent notion of time is problematic. In particular, it over-specifies (or over-models) systems where
maintaining such a globally consistent notion is difficult, including large VLSI chips with high clock
rates. A key weakness is that it is relatively expensive to implement in software, as evidenced by the
relatively slow simulators.

2.4.6  Rendezvous models

In a rendezvous model, the arcs represent sequences of atomic exchanges of data between sequen-
tial processes, where the bubbles represent the processes. “Atomic” means that the two proce
simultaneously involved in the exchange. Examples of rendezvous models include Hoare’s communi-
cating sequential processes (CSP) and Milner’s calculus of communicating systems (CCS). This model
of computation has been realized in a number of concurrent programming languages, including
and Occam.

Rendezvous models are particular well-matched to applications where resource sharing i
element, for example, client-server database models. A key weakness of rendezvous-based m
that maintaining determinacy can be difficult. Proponents of the approach, of course, cite the ab
model nondeterminacy as a key strength. We have not (yet) implemented a domain in Ptolem
porting the rendezvous style of concurrency because it did not seem to match the needs of 
well.

2.4.7  Finite-state machines

In FSMs, bubbles represent system state and arcs represent state transitions. This model of compu-
tation is radically different from all the previous ones in that it is not concurrent. Execution is a s
ordered sequence of state transitions.

FSM models are excellent for control logic in embedded systems, particular safety-critica
tems. FSM models are amenable to in-depth formal analysis, and thus can be used to avoid su
behavior. Moreover, FSMs are easily mapped to either hardware or software implementation
thus are suitable for use at the problem level.
10 of 48 Principal Investigator: Edward A. Lee
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FSM models have a number of key weaknesses. First, at a very fundamental level, they are not as
expressive as the other models of computation described here. They are not sufficiently rich to
describe all partially recursive functions. However, this weakness is acceptable in light of the formal
analysis that becomes possible. Many questions about designs are decidable for FSMs and undecidable
for other models of computation. A second key weakness is that the number of states can get very large
even in the face of only modest complexity. This makes the models unwieldy.

The latter problem, however, can be solved by using FSMs in combination with concurrent models
of computation. This was first noted by David Harel, who introduced that Statecharts formalism,
which combines a loose version of SR with FSMs. FSMs have also been combined differential equa-
tions, yielding the so-called hybrid systems model of computation.

A major result of the Ptolemy project has been to show that FSMs can be hierarchically combined
with all of the concurrent models of computation described above. We call the resulting formalism
“*charts” (pronounced “starcharts”) where the star represents a wild card. This result came fair
in the program, and thus has not been completely implemented in Ptolemy. However, combina
FSM with synchronous dataflow and discrete-event were implemented and released. Part of th
was done with additional funding from Lockheed-Martin.

2.5  CHOOSING MODELS OF COMPUTATION

The rich variety of available concurrent models of computation outlined in the previous se
can be daunting to a designer faced with having to select them. Most designers today do not f
choice because they get exposed to only one or two. This is changing, however, as the level of 
tion and domain-specificity of design software both rise.

An essential difference between concurrent models of computation is their modeling of
Some are very explicit by taking time to be a real number that advances, and placing events on
line or evolving continuous signals along the time line. Others are more abstract and take tim
discrete. Others are still more abstract and take time to be merely a constraint imposed by ca
This latter interpretation results in time that is partially ordered, and explains much of the expre
ness in process networks and rendezvous models of computation. Partially ordered time pro
mathematical framework for formally analyzing and comparing models of computation. This obs
tion has led to some key theoretical results under this project [66]. These results have prof
affected our view of Ptolemy domains and their interrelationships.

A grand unified approach would seek a concurrent model of computation that serves all pu
This could be accomplished by creating a melange, a mixture of all of the above, but such a mixtu
would be extremely difficult to use, and synthesis and simulation tools would be difficult to de
Another alternative would be to choose one concurrent model of computation, say the rend
model, and show that all the others are subsumed as special cases. This is easy to do. Most
models of computation are sufficiently expressive to be able to subsume most of the others. Ho
this fails to acknowledge the strengths and weaknesses of each model of computation.

We believe that a key result of this project is to show that the heterogeneous approach is via
much more promising than the grand unified approach, at least in the near term. This result 
from considering the problem of validating designs. Validating designs consists of verifying tha
tain desirable properties are held and that certain undesirable properties are not held.

Perhaps the most important consideration in choosing a model of computation is the impa
the choice has on the quality of the end design. Two key aspects of this quality are its correctness and
its cost. Let us focus on correctness. The choice of model of computation can strongly affect the
to validate the correctness of a design.
Principal Investigator: Edward A. Lee 11 of 48
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A number of methods can be used to validate designs. The simplest to use is validation by con-
struction, where the property to be verified is true of all designs specified within the model of compu-
tation, so a particular design does not need to be explicitly validated. An example of a property that is
often verified this way is determinacy, which loosely means that the specification completely describes
the behavior of a system. A model of computation that yields to this style of validation is intrinsically
limited in expressiveness, since it cannot describe designs that violate certain properties.

In practice, few properties can be practically validated by construction. A second choice would be
formal verification, where a property is verified by either formal manipulation of the syntax of the
specification or by algorithmic search over possible behaviors. Formal verification, however, has
proven practical only with models of computation with rather limited expressiveness, such as finite
state machines.

A third choice is to validate designs by simulation, in which a property is shown to hold over a set
of example inputs. In practice, it is difficult (or often impossible) for the set of example inputs to be
comprehensive, representing all possible inputs. Thus, this validation method is less reliable than the
prior methods.

An alternative to simulation is validation by prototyping, where a representative implementation of
the system to be validated is built and deployed in a representative environment. This method often
permits more exhaustive testing, although in practice, the representative environment may fail to rep-
resent a realizable environment that will cause the system to fail.

The last resort is validation by intuition. In practice, some combination of intuition, simulation,
and prototyping is the most common form of validation today. The role of intuition is critical, and
indeed exploits the considerable strengths of the human abilities of the designers. However, as system
complexity increases, intuition breaks down.

The validation methods described are not all equally desirable. In the order given here (by con-
struction, formal verification, simulation, prototyping, and intuition), we would argue that if a property
can be verified by a technique earlier in the list, then a designer should always choose to use that
method over a method later in the list. Thus, the choice of model of computation should influenced by
the desire to move validation up the list.

Validation methods early in the list, however, are more effective if the model of computation is
more limited in expressiveness. Thus, the desire to work with an expressive and general model of com-
putation is at odds with the effectiveness of validation.

A similar argument can be made for synthesis. Effective synthesis requires more restricted models
of computation. A familiar form of evidence for this argument is that VHDL has been written using a
particular style in order for hardware synthesis tools to generate cost-effective designs. The expres-
siveness of VHDL is excessive from this perspective. While it is possible that this reflects limitations
in the state of knowledge, we believe that instead it reflects fundamental limitations. Effective synthe-
sis from high-level descriptions requires that the high-level descriptions exist within a model of com-
putation that has limited expressiveness.

This intrinsic tension, between expressiveness and validation/synthesis, can only be resolved
through heterogeneity. Systems must be broken into modules, and these modules must be designed
within specialized models of computation that match their functionality. This is the key principle
underlying the Ptolemy project.
12 of 48 Principal Investigator: Edward A. Lee
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3.  Technology Transfer

One of the notable successes of this project was its demonstrable transfer of technology to industry
leaders in the computer-aided design and defense industries. This was accomplished via a careful culti-
vation of industry contacts and a strategy of wide open, very liberal distribution of software and publi-
cations. All software was made available on the Web with the most liberal copyright notice permitted
by the University of California. This notice retains ownership of the copyright, but expressly grants
permission to use the software for any purpose, including development of commercial products. It is
distinctly more liberal than the GNU public license, and thus better represents “free software.” 

Two leaders in the CAD industry, Cadence (The Alta Group) and Hewlett-Packard (EEsof
sion) made use of this policy to incorporate technology from this project into their CAD framew
as discussed below. Several smaller companies made use of Ptolemy software, extending it 
own purposes, and numerous companies used Ptolemy as an experimental design environmen

Efforts to further promote technology transfer included the development of a new graduate c
Berkeley, the organization of two miniconferences, and the hosting of a visiting scholar from o
the leading government labs working in system level design, the group at the Naval Research L
has developed the processing graph method (PGM), which is closely related to the dataflow techno
ogy advanced in the Ptolemy project.

3.1  CADENCE USES PTOLEMY IN SPW3.5

On October 23, 1995, The Alta Group of Cadence Design Systems announced SPW 3.5
contains three key technologies from Ptolemy: mixing of discrete-event and dataflow models o
putation, and synchronous and dynamic dataflow scheduling technology. The subtitle of Alta's
release is:

“New SPW* Simulation Technology for Convergence Applications Leverages Berkeley's
Ptolemy Project Research”

In the body of the press release:

“The new simulation architecture is based on research from the renowned Ptolemy resea
project at the University of California at Berkeley. ... [It] utilized the Ptolemy team's results to
uniquely implement Ptolemy's advanced simulation algorithms in Alta Group's leading SPW
solution.”

We believe that this interaction with Cadence and others has ensured that the best results of th
make their way into self-sustaining commercial products. The full press release is available 
Ptolemy Web site.

3.2  HEWLETT-PACKARD INTEGRATES PTOLEMY WITH ANALOG SIMULATION

On June 2, 1997, Hewlett-Packard’s EEsof Division announced plans to deliver a compreh
digital signal processing (DSP) design system as part of its effort to broaden its solutions for th
tronic design automation (EDA) industry. In their June 2, 1997, press release, HP EEsof states:

“Built into the HP DSP Designer software is a new simulation technology developed by merg
ing HP research and technology with the University of California at Berkeley Ptolemy projec
This new simulation engine facilitates cosimulation of time, frequency and data flow techno
ogies and significantly expands the DSP development capability for mixed RF/analog/DS
communications projects.”
Principal Investigator: Edward A. Lee 13 of 48
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The software is comprised of two new DSP tools - DSP Designer and DSP Synthesis. It is part 
newly introduced HP Advanced Design System, which includes the latest versions of its 
regarded RF and analog circuit simulation technology. The complete press release and a relate
from EE Times are available on the Ptolemy Web site.

3.3  LOCKHEED-MARTIN DEVELOPS ARCHITECTURAL TRADE-OFF ANALYSIS TOOL

Sanders, a Lockheed-Martin company, has been using Ptolemy to develop tools for archit
evaluation and trade-off analysis. Their work leverages the SDF and DE domains in Pto
enhanced with their own user interface and visualization tools.

3.4  BNED EXTENDS PTOLEMY FOR MODELING TELECOMMUNICATION NETWORKS

We have recently learned about the establishment of a new company in Germany that de
products base upon Ptolemy. BNeD, Broadband Network Design, develops and sells product
upon Ptolemy for analysis, planning, optimization and testing of next generation telecommuni
core (optical) and local exchange networks. Their Web page is:

    http://www.bned.com

3.5  DQDT USES PTOLEMY VHDL GENERATION FOR ASIC DESIGN

DQDT, Dimensions in Quick Design Turnaround, derived a new VHDL domain in Ptolem
serve as a front end specification and VHDL code generation environment for behavior modelin
synthesis of ASICs.

3.6  BDTI USES THE PTOLEMY KERNEL TO INTEGRATE OTHER TOOLS

Berkeley Design Technology Inc. (BDTI) wrote a layer on top of the Ptolemy kernel c
Ptolemy HSIM (Heterogeneous Simulation) to serve as a simulation backplane that allowed Ca
Signal Processing Workstation (SPW), Cadence's Bones and Precedence's SimMatrix tools to
ate during a simulation. (Precedence has since been acquired by Mentor Graphics.) SimMa
synchronization mechanism for connecting 30 different VHDL and Verilog simulators together.

3.7  TECHNOLOGIES LYRE DEVELOPS DSP RAPID PROTOTYPING UNDER PTOLEMY

Technologies Lyre, in Québec City, Canada has recently developed a rapid-prototyping
development platform that works under Ptolemy and MatLab. Contact Jean-Francois Ouellet, Te
ogies Lyre, aad902@agora.ulaval.ca.

3.8  PTOLEMY MINICONFERENCES

We held two miniconferences at Berkeley that reviewed major accomplishments of the Pt
project. The objectives of the conference were primarily to report to and solicit advice from the 
trial sponsors and friends of the project. Both miniconferences were held in conjunction with B
ley’s annual Industrial Liaison Program (ILP) conferences, which included two afternoon
laboratory demonstrations of Ptolemy software prior to the miniconferences.

3.8.1  First Ptolemy Miniconference — March 10, 1995

The First Ptolemy Miniconference drew 50 sponsors and friends of the Ptolemy project from the
following organizations:
• ARPA/ESTO
• Berkeley Design Technology
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• Cadence (the Alta Group)
• Dataflow Systems
• Ericsson
• Hewlett-Packard
• Hitachi
• Hughes Aircraft Company
• Lockheed Sanders
• Mercury Computer Systems
• Mitsubishi
• Motorola (three separate groups)
• NASA
• Rockwell
• Semiconductor Research Corporation (SRC)
• Sony
• Synopsys
• Thomson CSF
• United States Air Force
• UniView Systems
• Westinghouse
• White Eagle Systems Technology
• Wind River Systems

Presentations at the conference included:

• An Overview of the Ptolemy Kernel Architecture.
• Design Methodology Management for System-level Design.
• Symbolic Computation in System Simulation and Design.
• VHDL Code Generation for Simulation and Synthesis.
• Optimization Issues in Embedded Software Synthesis.
• Combined Code and Data Memory Minimization.
• Parallel Implementation.
• Real-Time Prototyping.
• Mixing Dataflow with Control.
• An Introduction to a Mathematical Model of Dataflow.
• The Process Network Domain.

3.8.2  Second Ptolemy Miniconference — March 14, 1997

This miniconference reviewed both this DARPA effort, which was at the stage of wrapping up, and
future plans and preliminary results under a new DARPA effort entitled “Design of Distributed A
tive Signal Processing Systems.” The conference included several outside speakers reporting 
of Ptolemy software and techniques plus ongoing interactions. We had 58 attendees from the fo
organizations:
• Adaptec
Principal Investigator: Edward A. Lee 15 of 48
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• Advanced Fibre Communications
• Advantest
• Alta Group of Cadence Design Systems
• Angeles Design Systems
• Berkeley Design Technology
• Data Flow Systems
• Ericsson Radio Systems AB
• Hewlett Packard
• Hughes Aircraft
• Hughes Space and Communications
• LG Electronics
• Lockheed-Martin
• Motorola
• National Semiconductor
• NEC
• Nortel
• Rockwell International
• Sanders, a Lockheed Martin Company 
• Seiko Epson Corp.
• Semiconductor Research Corporation
• Seoul National University
• Sony
• Structured Software Systems
• Sun Microsystems
• Synopsys
• Tektronix
• Thomson-CSF
• University of Pittsburg
• University of Texas, Austin
• University of Washington
• White Eagle Systems

The highlights of the conference included:

• The first public demonstration of hierarchical finite-state machines combined with dataflow a
discrete-event concurrency models. 

• The first public demonstration of a synchronous/reactive modeling environment that support
archical heterogeneity.

• The first public demonstration of Tycho, our user-interface development environment, intera
with Java and with Ptolemy.

• The first public demonstration of Web-based simulators for programmable DSPs, from UT A
• The first public description of an investment analysis tool from Structured Software Systems
16 of 48 Principal Investigator: Edward A. Lee
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The miniconference also included descriptions of the use of Ptolemy in modeling free-space optoelec-
tronic systems (from the University of Pittsburg), a description of Myrnet network simulations in
Ptolemy (from Sanders), the use of Ptolemy for VHDL-based circuit design, research on multidimen-
sional signal processing models, and theory that we have developed to help us understand interacting
models of computation. In addition, we outlined plans for future work including a strategy for support-
ing fixed-point design and our plans for Java-based design. The proceedings of the conference are at:

http://ptolemy.eecs.berkeley.edu/papers/viewgraphs/miniconf97/

3.9  PTOLEMY TUTORIAL

In conjunction with Dave Wilson of Berkeley Design Technology, Mike Williamson, Brian Evans,
and Edward Lee led a full-day tutorial on Ptolemy at the RASSP conference in Arlington Virginia in
1995. Approximately 25 people attended.

3.10  OTHER DISTRIBUTION MECHANISMS

SAL (Scientific Applications on Linux) includes Ptolemy version 0.6 on a CD ROM and Web site.
The URL is:

http://SAL.KachinaTech.COM/

Ptolemy is located at the following URL:

http://SAL.KachinaTech.COM/E/1/PTOLEMY.html

Also, Ptolemy is now listed under Yahoo. The link is:

http://www.yahoo.com/Science/Computer_Science/Electronic_Computer_Aided_Design__ECAD_/Tools/

3.11  NEW BOOK: SOFTWARE SYNTHESIS FROM DATAFLOW GRAPHS

A new book [1] studies the problem of synthesizing software for embedded signal processing sys-
tems starting from applications expressed as synchronous dataflow (SDF) graphs. After a comprehen-
sive review of the theory behind SDF, techniques are given to optimize primarily the program memory
size and secondarily the data memory size. To accomplish this, SDF graphs describing multirate signal
processing applications are scheduled into nested loops. A formal theory for constructing and manipu-
lating these loops is developed, and a class of looping structures, called single appearance schedules, is
shown to be the most efficient with respect to code size. The existence of such structures is studied,
and algorithms for optimally constructing them are given. Extensive experimental data is presented,
demonstrating the efficacy of the techniques.

3.12  POLIS — A CODESIGN SYSTEM BASED ON PTOLEMY 

The group of Prof. Alberto Sangiovanni-Vincentelli at Berkeley has released a Ptolemy-bas
design environment for control-dominated embedded systems, called POLIS. POLIS offers a
grated interactive environment for specification, cosimulation, formal verification, and synthe
embedded systems implemented as a mix of hardware and software components. It uses and
cantly extends the discrete-event (DE) domain in Ptolemy. See:

   http://www-cad.eecs.berkeley.edu/Respep/Research/hsc/abstract.html
Principal Investigator: Edward A. Lee 17 of 48
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Cadence is known to be heavily influenced by Polis and may be commercializing it.

3.13  A NEW GRADUATE CLASS ON MODELING OF SYSTEMS

We organized a new graduate class, EE290N, “Specification and Modeling of Reactive Rea
Systems.” This class incorporated recent results obtained under this project, and is likely to b
(after further evolution) a regular graduate class. The description of the class follows:

“This research seminar studies models of computation and programming language seman
used for the specification and modeling of real-time and reactive electronic systems. It beg
with a review of the theory of partially ordered sets, particularly as applied to prefix orders an
Scott orders. It develops a framework for models of computation for concurrent systems th
uses partially ordered tags associated with events. Discrete-event models, synchronous/re
tive languages, and dataflow models are studied in this context. Basic issues of Turing co
pleteness and lambda computability, boundedness, determinacy, reachability, and liveness
studied, with emphasis on decidability and efficiency of verification and synthesis algorithms
Classes of functions over partial orders, including continuous, monotonic, stable, and sequ
tial functions are considered. A hierarchy of increasingly specialized asynchronous mode
including process networks, Kahn process networks, dataflow process networks, the Boole
dataflow model, and the synchronous dataflow are covered. Timed models, including discre
event systems (as embodied for example in the VHDL and Verilog languages) and the sy
chronous/reactive languages Signal, Lustre, Esterel, and Statecharts are studied. Through
applications to signal processing, real-time, and reactive systems are emphasized, as are 
thesis and compilation techniques amenable to such modern approaches as embedded sy
design, hardware/software codesign and formal verification."

An early version of this class was reported in [43]. More information about the most recent vers
the class can be found at its Web site:

http://www.eecs.berkeley.edu/~eal/ee290n/

3.14  EMBEDDED SOFTWARE SYSTEMS COURSE AT UT AUSTIN

Professor Brian Evans, formerly a postdoc under this project at Berkeley, introduced a new 
at UT Austin entitled “Embedded Software Systems” that is based on the system-level design
tackled under this project. The course uses Ptolemy for demonstrations, homework exercises, 
dent projects, leverages material from the graduate class described in the previous subsection,
the book that summarizes many of the results of this project [1]. It its most recent offering, the 
featured two guest speakers from the Ptolemy project (Praveen Murthy and Stephen Edward
notes, handounts, demonstrations, etc., from the class are online at

http://www.ece.utexas.edu/~bevans/courses/ee382c/

4.  Summary of Accomplishments

The major accomplishments of the project are summarized in this section. Concrete delive
included monthly and annual reports, Ptolemy software, major demonstrable technology transf
86 publications, the vast majority of which have been posted on the World Wide Web. The public
consist of one book, one chapter, 14 journal articles, 41 conference papers, six Ph.D. theses, 
ters reports, and three newsletter articles. For greater detail than in this report, refer to the publ
and software at the Ptolemy Web site, 
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4.1  SYSTEM-LEVEL DESIGN

System-level design in Ptolemy is concerned with issues of mapping problem-level specifications
into implementations. This includes hardware/software partitioning, cosimulation, and more generally,
heterogeneous simulation. It is also concerned with coupling problem-level specifications with hard-
ware synthesis tools, including VHDL-based tools and more experimental high-level synthesis tools. It
is also concerned with the manipulation of design specifications for optimization and the semantics of
the problem-level specification languages.

4.1.1  Hardware/Software partitioning

We developed and implemented a sophisticated hardware/software partitioning algorithm. This
algorithm supports selection from among multiple implementations within the hardware or software
categories. The area of a node implemented in hardware depends on the time allocated to run it. In our
early partitioning work we assumed the hardware to be executed in the critical time (i.e., best case, cor-
responding to the largest area) and made a binary choice for each node, choosing either hardware or
software. More recent techniques select the appropriate implementation for a node, given its area-time
curve, rather than just deciding whether it is in hardware or software. Thus, instead of only solving the
binary hardware/software partitioning problem, we solve the m-ary problem of partitioning into m
implementation styles.

The m-ary algorithm used the binary algorithm as the core. Experiments yielded impressive
results. The algorithm has complexity O(n^3), where n is the number of nodes. For an eight-node
example, the optimal solution using integer linear programming required 3.5 hours. Our algorithm got
close to this optimal solution and completed in 3 minutes. This work is reported in the Ph.D. thesis of
Asawaree Kalavade [75].

4.1.2  Synthesis of VHDL from dataflow graphs

We designed a mechanism for the synthesis of VHDL from dataflow graphs. This mechanism can
generate any of several different styles of VHDL code, customizing the code to optimize for synthesis
by various back-end tools, or to optimize for simulation. For simulation, sequential VHDL is usually
fastest. For synthesis, structural VHDL is usually most effective. We have demonstrated the translation
of dataflow graphs into VHDL suitable for synthesis by the Design Compiler from Synopsys as well as
rapid simulation using simulators from Synopsys and Model Technology. We completed a demonstra-
tion of a scalable beamforming application in the retargettable VHDL domain. This uses higher-order
functions (see below) to control the number of sensors. The application also has multiple sample rates.
When the code generator is set to generate sequential VHDL, simulations run reasonably quickly. This
work will be reported in the forthcoming Ph.D. thesis of Michael Williamson.

4.1.3  Partitioning SDF applications into multiple VHDL hardware modules

 We developed a method for the partitioning of a single application specified in synchronous data-
flow (SDF) into multiple independently-synthesizable, communicating VHDL hardware modules.
Either self-timed (asynchronous) or fully-static (synchronous) hardware implementations are allowed,
and the clock timing and control are automatically generated. We showed that this method guarantees
the preservation of correct functional behavior as specified in the original SDF graph, and that many
choices of partitioning into multiple hardware modules are possible. The ability to break up a larger
application into smaller synthesizable hardware modules can lead to efficiencies in hardware synthe-
Principal Investigator: Edward A. Lee 19 of 48
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sis, which is faster when performed on smaller VHDL specifications. At the same time, the communi-
cation between the multiple modules is sufficiently specified by the method so as to ensure that the
correct functional behavior is preserved when the separate modules are executed concurrently. This
work will be reported in the forthcoming Ph.D. thesis of Michael Williamson.

4.1.4  VHDL-based hardware design mixed with software and environment modeling

Typical systems today mix custom hardware with embedded software. Effective system-level sim-
ulation mandates inclusion of both, and in addition, a model of the environment. The principle in the
Ptolemy project is to use specification, modeling, and simulation techniques that are best suited for
each aspect of the design, and to mix them into a coherent whole. Thus, hardware is modeled in
VHDL, embedded software in C or assembly code, and the environment at a higher, functional level.

Using our hierarchical scheduling framework (see below), we were able to get VHDL simulations
to interact with Ptolemy simulations in the SDF domain (synchronous dataflow) and, more interest-
ingly, to interact with synthesized embedded software running in C on the host processor or in assem-
bly code on a Motorola DSP. The first demonstration system is an analysis/synthesis filterbank in
which the signal stimulus and analysis of the results are done in the CGC (code generation in C)
domain, the analysis half of the filterbank is done on a Motorola DSP56002, and the synthesis half of
the filterbank is done in the Synopsys VHDL simulator. Both the DSP and the VHDL simulator are
running code generated by Ptolemy from dataflow graphs. We believe that this is a major milestone in
heterogeneous system-level design. This work is reported in [55].

4.1.5  Structural VHDL

We created two VHDL code-generation domains, called VHDLF and VHDLB. The first of these
uses homogeneous synchronous dataflow semantics to describe signal processing systems at a func-
tional level. The second uses event-driven semantics to describe arbitrary systems at the behavioral
level. These domains were used successfully already in industry, by a startup company called DQDT
(Dimensions in Quick Design Turnaround). VHDLF has been supplanted, however, by the more
sophisticated VHDL domain described above.

4.1.6  Silage interface to Hyper high-level synthesis tool

We created a Silage domain that couples to Prof. Rabaey’s high-level synthesis tool called Hyper.
This domain was used for the hardware side of the hardware/software partitioning experiments con-
ducted by Asawaree Kalavade [75]. We did not keep up this domain since Silage showed no promise
of catching on as a design language.

4.1.7  Heterogeneous simulation

With help from Prof. Soonhoi Ha of Seoul National University, Korea, we developed a clean inter-
action semantics for combined synchronous dataflow and discrete-event modeling. This semantics
allows us to build arbitrarily deeply nested mixed systems while maintaining a consistent and intuitive
notion of global time. This is challenging because the synchronous dataflow (SDF) domain has no
notion of time in the conventional sense, using instead has a partially ordered notion of causality. The
model we are following is that the dataflow domains appear to any timed domain to fire “ins
neously”. That is, they produce outputs with the same time stamps as the inputs. If they are m
systems, then they may optionally also produce additional events with time stamps in the future
the control of a target parameter. The changes that were required in the software included m
tions to the DE schedulers to prevent them from advancing their notion of time beyond their req
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stopping time. In addition, the SDF wormhole object had to explicitly handle time stamps in order to
define its multirate behavior. We have built a number of demonstration systems that illustrate this
interaction. This work is reported in [9].

4.1.8  Automated rearrangement of signal processing systems

 We developed and released a set of heuristic search techniques written in the Mathematica pro-
gramming language. They implement breadth-first search, depth-first search, hill climbing, and simu-
lated annealing techniques for applying a set of equivalence relationships to an algebraic expression to
minimize implementation cost. One goal was to use the heuristic searches to apply the equivalence
relationships in the Signal Processing Packages for Mathematica to optimize the implementations of
Ptolemy systems. Both the Heuristic Search Packages and the Signal Processing Packages are avail-
able on the Ptolemy Web site.

4.1.9  Signal reprocessing

We collaborated with the Boston University/MIT RASSP team on signal reprocessing in Ptolemy.
Signal reprocessing is where, based on the output of a signal processing operation, you adjust the
parameters in the operation and process the same data again to obtain a “better” result. Adapti
ing is an example. A more complicated example concerns estimating two sinusoids of unknow
ing. One way is to use the FFT and adjust the FFT length until the sinusoids are resolved (sepa

There are a number of ways to provide a general framework for reprocessing signals using 
erogeneity supported in Ptolemy. In Ptolemy, we can define an outer reprocessing system (gala
decides how to change the processing parameters in the inner dataflow subsystems (galaxies
firing the inner dataflow galaxies, the reprocessing galaxy would reset the parameters of the inn
axies. The reprocessing galaxy would act as a controller of the inner galaxies. In the current re
Ptolemy, we could define the outer-level controller using the (1) dynamic dataflow domain, and (
synchronous dataflow domain with a higher-order function mechanism that recompiles inner ga
before invoking them. Two new computational models are being developed and investigated t
as outer controller systems: (1) a finite-state machine domain, at U.C. Berkeley, and (2) an int
processing and understanding of signals domain, at Boston University and U.C. Berkeley.

At the 1994 RASSP Conference, Joseph Winograd and Hamid Nawab from Boston Univ
demonstrated a standalone radar clutter analysis testbed using the Integrated Processing an
standing of Signals (IPUS) architecture to process radar data using expert knowledge encapsu
computer. This was integrated into the Ptolemy environment as an IPUS domain. The IPUS d
has a dynamic scheduler that reacts to events (knowledge) registered in global data structur
blackboards) by local actors (e.g., knowledge sources). The IPUS domain reasons about know
different levels of abstraction arranged in a hierarchy. Various local actors (e.g. knowledge so
have been developed that can be reused in any IPUS application. 

4.2  ALGORITHM REPRESENTATION

The representation problem in Ptolemy is mainly to raise the level of abstraction to the pr
level and to exploit visual syntaxes to manage complexity. Our contributions have included tech
for improving the efficacy of visual syntaxes (higher-order functions), leveraging external tools 
lab and Mathematica, for example), and new models of computation.

4.2.1  Higher-order functions

We designed and implemented a higher-order functions (HOF) domain in Ptolemy that fun
Principal Investigator: Edward A. Lee 21 of 48
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as a subdomain of all other domains. This has had a major impact on the usability of visual (graphical)
system representations for large systems. The theory and major concepts are given in [14].

We have developed (with help from Thomson CSF) a variety of radar applications using these
HOF capabilities. We believe that the resulting system representations are much more intuitive and
maintainable than the traditional techniques based on multidimensional arrays (using up to seven
dimensions).

4.2.2  Leveraging external tools

We created a link between Matlab and Ptolemy so that stars can have their functionality expressed
as Matlab functions and parameter values can be given as Matlab expressions. One major impact of
this is that the full suite of graphical signal display facilities in Matlab are now available under
Ptolemy. Moreover, quick algorithmic prototyping can now be done with an arbitrary mixture of Mat-
lab (imperative, matrix-oriented) code, and block-diagram (declarative, signal-oriented) code.

A similar link was created to Mathematica, which provided the ability to include symbolic manip-
ulations in parameter specifications. SDF demonstrations of both interface haves been released with
Ptolemy since version 0.6.

4.2.3  Communicating processes domain

We developed a “communicating processes” (CP) domain in Ptolemy. This domain has bee
extensively for high-level modeling of a wireless multimedia network. Unfortunately, we had to a
don this domain because it was built on top of the Sun Lightweight Process library, a fairly idi
cratic thread library, and porting to more modern thread libraries proved difficult.

4.2.4  Message queue domain

We completed a “message queue” (MQ) domain, which is an experimental domain that m
systems with highly dynamic topologies, such as telecommunications switch software.

4.3  SCHEDULING AND CODE GENERATION FOR SYNCHRONOUS DATAFLOW

Consistent with the RASSP focus on real-time signal processing in embedded system
Ptolemy project made several key contributions in the translation of synchronous dataflow grap
embedded software (a technique sometimes called auto-coding). There are two key elements to th
problem: scheduling and code generation. We made major contributions in both.

4.3.1  Scheduling of dataflow graphs for efficient synthesis

A major result of this project is a sophisticated set of scheduling algorithms that jointly min
the size of a program and the size of data memory in embedded software generated from sync
dataflow graphs. These algorithms and their various ramifications have been reported in a num
papers, two Ph.D. theses [73][76], and the results have been collected and published in a book

4.3.2  Hierarchical scheduling and code generation

We introduced a hierarchical scheduling framework that effectively mixes synthesized sof
and VHDL models with simulations built in other Ptolemy domains. This permits, for example
environment to be modeled at a high level using one of the dataflow domains, while the system
design is modeled using domains that synthesize to hardware and/or software, like the VHD
CG56 domain (the latter generates assembly code for Motorola DSPs).

We demonstrated this hierarchical scheduling on a heterogeneous platform consisting of
22 of 48 Principal Investigator: Edward A. Lee
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workstation running Solaris 2.4 and a programmable DSP on an S-bus card. These demonstrations
incrementally compile real-time subsystems for the DSP and embed them within a non-real-time pro-
cess running on the Unix workstation. Communication between them was asynchronous, using a
“peek/poke” mechanism to asynchronously read and write into the DSP memory. The demons
systems were acoustic modems (modems that transmit from an audio loudspeaker to an audio
phone through air). Animated, interactive signal displays were produced on the workstation, en
better evaluation and understanding of the algorithms and their performance.

The hierarchical scheduler uses common semantic properties across domains to decou
designer-defined hierarchy (which is motivated by convenience and functional modularity) from
tioning. That is, entirely disconnected subsystems can be implemented by the same hardware
(a processor or an ASIC). This scheduling framework makes extensive use of earlier work in P
with heterogeneous multiprocessor targets.

The hierarchical scheduling mechanism permits the use of highly optimized loop scheduling
niques developed in our group. Without hierarchical scheduling, it was not possible to use
because they had not been designed for use in parallel systems. Because the applications are 
unless hierarchical scheduling is used, the generated code required considerably more mem
was available on the DSP card. Moreover, without hiearchical scheduling, scheduling time wa
stantial (because a rather large precedence graph was constructed). Thus, we demonstrated th
chical scheduling enables modular use of scheduling optimizations, and we have shown 
practical examples, considerable savings in embedded system memory are achieved. This 
reported in [52][53].

One of the fundamental issues encountered in this work is that dataflow models are not fund
tally compositional. Two results are reported. First, a pragmatic approach that preserves all
advantages of current algorithms is to identify designs that happen to be compositional, and tre
as such. A sufficient condition has been reported [51][54][72]. At a more fundamental level, we
identified how dataflow models of computation can be modified to make them compositional.
work is reported in [67], but this result remains theoretical.

4.3.3  Mixing code generation with simulation

We have implemented in Ptolemy an elegant and simple architecture for compiling subsyst
code generation domains and invoking them within simulation domains. There are a number of
tial applications for this underlying infrastructure:

Incremental compilation.  A compute-intensive subsystem in, say, the synchronous dataflow (S
domain can be retargeted to CGC (code generation in C) and compiled to become a single mo
block in SDF. A similar capability is used to encapsulate a CG56 subsystem (which runs on the 
ola DSP56000) into an SDF block.

Interfacing to foreign simulators. A VHDL subsystem can be analyzed to synthesize a fast custom
C interface to a commercial VHDL simulator.

Combining more than one code generation domain. For example, CGC can be mixed with CG56 
produce programs that execute concurrently on a host workstation and a DSP card.

A fundamental problem is that dataflow systems cannot always be incrementally compiled, f
same reason cited above: dataflow is not compositional. Collections of dataflow actors in a dom
not necessarily have the same semantics as an individual actor. This problem is shared by ma
ern languages, including all synchronous languages, such as Esterel, Statecharts, and Signal.
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fundamental results in [67], discussed further below.

4.3.4  Guided migration: a retargeting tool

We developed a “retargeting tool” to be used to guide migration of Ptolemy-based design
one implementation technology to another. We demonstrated an interface for studying differen
block libraries, and showed how it could be used to make the code generators for the M
DSP56000 family processors and the Texas Instruments C50 family processors more compati
example, Ptolemy contains demonstrations of different dual-tone multiple-frequency (DTMF) d
tors that have been retargeted from the SDF simulation domain to the CGC, CG56, and C50 co
eration domains. We have also developed a program that recursively changes the dom
hierarchical designs. 

4.4  DATAFLOW AND KAHN PROCESS NETWORKS

Given the emphasis on dataflow modeling in signal processing circles, a natural part 
Ptolemy project was to investigate the limits on expressiveness. Dynamic dataflow and Kahn p
networks are highly expressive models of computation, but pose some interesting impleme
challenges. We have developed solutions.

4.4.1  Dynamic dataflow scheduling

A dynamic dataflow scheduler should satisfy two requirements: 
• R1: If the dataflow graph does not contain a deadlock condition, the scheduler should not h
• R2: If the dataflow graph can be executed forever in bounded memory, then the scheduler s

be able to execute it forever in bounded memory.

The latter is particularly important for embedded systems.

In general, given a dataflow graph, it is undecidable whether the graph will deadlock (the h
problem). It is also undecidable whether the graph can be executed in bounded memory (Jo
showed in his 1993 Ph.D. thesis how to convert this problem to the halting problem). It is e
define a scheduling algorithm that satisfies R1 or R2, but no scheduling algorithm can always, in
time, guarantee both R1 and R2. This problem has appeared in various forms in much of the d
architecture work.

In addition, the notion of an iteration in dataflow and process networks domains has risen
fore as a critical (and difficult) theoretical issue. An unambiguous definition of an iteration is n
sary for control of a simulation, but even more importantly, for interaction between heteroge
models of computation. The so-called “synchronous” methods, for example, (like statechar
Esterel) cannot be mixed (in a determinate way) with dataflow without an unambiguous definit
an iteration. An iteration is easy to define for the synchronous dataflow (SDF) model of compu
but for dynamic dataflow and process network models, the equivalent definition fails in some ca
particular, an iteration in SDF is a sequence of firings that returns the buffers in a dataflow gr
their original state. It is undecidable whether such an iteration exists in a dynamic dataflow or p
network model.

Thus, our third condition is:
• R3: The scheduler should execute a graph in a sequence of well-defined and determinate “

where a step is set of actor firings.

We defined and implemented a robust and simple scheduler for the dynamic dataflow (DDF) d
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in Ptolemy. It provably satisfies all three conditions.

Often, the notion of a step as defined by the scheduler is not always the notion that the user wants
to see. We define an “iteration” to be one or more steps, where the number of steps is controlle
user. To permit a user to annotate a dataflow graph with the number of firings of a block that con
an “iteration,” we implemented an extension to the GUI and the Target object to support “pra
attached to blocks. A given Target (such as the DDFTarget) understands only certain pragmas
DDF domain, the DDFTarget understands a pragma called “firingsPerIteration”. Thus, when 
specifies a value of this pragma for a particular block, an “iteration” has been defined. if no such
is specified, then a “iteration” equals a “step,” the scheduler default.

4.4.2  Process networks domain

We implemented a Process Networks (PN) domain, using first the Awesim threads packag
the gthreads package, a POSIX thread implementation from Florida State University that is dist
under the GNU General Library License. Process networks are a generalization of dynamic da
and raise a number of interesting theoretical and practical issues. These issues are resolved in 
thesis of Tom Parks [77], where it is shown that runtime scheduling algorithms exist that solve
cidable problems. In particular, there are simple algorithms that will schedule a process netw
bounded memory if this is possible, without having to know a-priori whether it is possible (this 
question is undecidable).

4.5  MULTIDIMENSIONAL SIGNAL PROCESSING

Dataflow models match one-dimensional signal processing extremely well. Communic
between blocks (actors) is by sequences of data objects (tokens). These sequences easily repre
dimensional discrete-time signals. However, they do not so easily represent multidimensional s
We developed a generalization to dataflow that better matches multidimensional signal process

4.5.1  Multidimensional dataflow

We have completed an experimental “multidimensional synchronous dataflow” do
(MDSDF), where arcs that connect blocks represent not simple sequences of tokens, but rath
dimensional orderings of tokens. This domain is well matched to multidimensional signal proc
and is capable of representing a broader range of algorithms with static flow of control than th
chronous dataflow model. The real potential, however, is in parallel computation, because the m
computation exposes much more parallelism at a much finer granularity than the SDF mode
domain has a rich enough set of stars to be usable for experimentation. This work is repo
[27][79].

4.5.2  Sampling lattices

 We developed a dataflow model for expressing multidimensional multirate signal processin
tems sampled on arbitrary lattices. A multidimensional signal can be sampled in many different
A straightforward extension of one-dimensional sampling results in the so-called rectangular sa
structure, where the samples lie on a rectangular grid. However, a more general sampling struc
geometrical lattice; sampling lattices that are not rectangular can have many advantages in
applications. For example, a signal sampled on a non-rectangular lattice can have a lower s
density than one sampled on an equivalent rectangular lattice. For real-time processing of multi
sional signals, a lower sampling density means fewer samples to process in a given time interv
standard MDSDF model suffers from the inability to model multidimensional systems sampl
Principal Investigator: Edward A. Lee 25 of 48
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arbitrary sampling lattices; hence, we give an extension of MDSDF that is capable of modeling such
systems. The model we give preserves the property of static, compile-time schedulability. However,
constructing such schedules requires the solution to some challenging problems. In particular, we show
that an augmented set of balance equations have to be solved simultaneously in the extended model.
The additional equations are quite different from the usual balance equations in SDF and MDSDF;
they involve computing so-called “integer volumes” of parallelepipeds. This computation turns 
be an interesting number-theoretic problem, and we present several approaches for solving it. 
we present a practical example of a video sampling structure conversion system to show the us
of the generalized MDSDF model. This work is reported in the Ph.D. thesis of Praveen Murthy [

4.5.3  Filter design issues

The design of multidimensional multirate signal processing systems. e.g. systems that 
video formats in non-separable ways, often require application-specific design tools. For exam
computing system parameters in multidimensional multirate systems can be simplified with a c
nation of computational geometry, integer matrix algebra, and state-space formulations. In m
dimensions, rate-changing operations are defined by a change in sampling grids. Sampling g
be represented as a set of basis vectors, which can be considered as the column vectors that m
sampling matrix. Mapping one sampling matrix onto another is a linear mapping represente
rational matrix, called a resampling matrix. We have shown how to design two-dimensiona
changing systems (upsampler, filter, and downsampler in cascade) based on a geometric sket
passband to retain. From the sketched region, we use computational geometric techniques to
minimal enclosing parallelogram using a linear time and linear space algorithm we have deve
We then use the minimal enclosing parallelogram to compute the resampling matrix to perfo
sampling conversion using Chen and Vaidyanathan's approach. Then, we factor the resampling
into the upsampling and downsampling matrices for the rate changer. The procedure will find th
compression rate based on a parallelogram-shaped passband. The only other admissible geom
hexagonal-shaped passband, which will always do at least as well as the parallelogram-shap
band. Generalizing this approach to multiple channels will enable the graphical design of two-d
sional filter banks and wavelets. This work is reported in [35][36].

4.6  MULTIPROCESSOR TARGETS

Embedded signal processing systems often require more than one processor to meet real-t
straints. We have made some contributions in the area of automatic generation and optimiza
multiprocessor implementations.

4.6.1  Resynchronization

We developed a set of algorithms for minimizing the number of synchronized communica
between multiple processors in a multiprocessor system [25][61][62]. Synchronized communic
are considerably more expensive than unsynchronized communication, requiring testing and
semaphores. The algorithms are based on the observations that some synchronizations are re
since it can be algorithmically demonstrated that the semaphores will always be in the desire
regardless of timing. These synchronizations can be removed. A second (complementary) 
selectively adds synchronization operations that will then cause other synchronization operat
become redundant. We have proven that the problem is NP-hard, but have established a co
dence with the well-studied set-covering problem, which provides a wealth of heuristic solutio
third method converts a feedforward dataflow graph into a strongly connected graph in such a 
to reduce synchronization overhead without slowing down the execution. All three methods c
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applied as post processing optimizations to the output of any static parallel scheduling algorithm. A
more recent extension of these algorithms considers latency constraints as well, giving provably opti-
mal algorithms. Results are described in [23][24][25][61][62][63].

4.6.2  Targeting a network of workstations (NOW) cluster

We implemented a target in the CGC (code generation in C) domain that produces code for a
NOW (Network of Workstations) cluster. The generated code is built on top of the active message
abstraction, and hence is portable and potentially quite efficient. We have shown that the same set of
parallel executables can be run on an ordinary cluster of networked workstations as well as on the spe-
cially configured NOW. Surprisingly, initial tests resulted in faster runs on the ordinary cluster, but fur-
ther tuning has now achieved better performance on NOW. Currently, in the Berkeley NOW cluster,
active messages are implemented on top of TCP/IP, so there is considerable communication overhead.
However, as that facility matures, and this overhead is removed, we will be able to track it and improve
performance.

4.6.3  Mercury Raceway architecture

 We outlined the design of a tool for mapping a control and dataflow representation of a hard real-
time signal processing application onto a Mercury RACEway multicomputing system, and are con-
tinuing development with other funding. Low-level programming details would be hidden from the
programmer thereby shifting the design focus to performance issues. Graphical visualization and
manipulation capabilities will enable study of architectural trade-offs and optimizations. Tasks can be
scheduled and partitioned among the processors either manually or automatically. The tool will handle
most of the details involved in generating multiprocessor code, downloading the code to the target sys-
tem, and initializing the system for execution. Additional capabilities of the tool will allow extension
of the default routine library by the programmer and will allow interfacing with other hardware synthe-
sis and codesign tools. The tool will be implemented as a code generation target in Ptolemy.

4.7  CONTROL AND SIGNAL PROCESSING

In the early part of the project it concentrated on the computational aspects of signal processing
systems, and thus focused on models of computation such as dataflow that are particularly well suited.
Toward the end, the attention broadened to include control and sequential decision-making aspects of
system design. We pursued three approaches for combining control-oriented computation with data-
oriented computation: hierarchical concurrent finite-state machines, the synchronous/reactive model of
computation, and dynamically evaluated higher-order functions. This work is ongoing, with the parts
completed under this project being seminal. The following specific accomplishments are reported:

4.7.1  The FSM domain

 Signal processing systems perform intensive numeric computation, but they typically also have
sophisticated control logic for sequencing the computation tasks, switching among operation modes,
coordination, and configuration. Dataflow models are suitable for describing numeric computations.
The finite-state machine (FSM) is an intuitive model for describing control logic with a formal, well-
studied mathematical theory. But the basic FSM model, which is flat and sequential, is not suitable for
describing complex concurrent control. A common solution to this problem is hierarchical FSMs,
which extend the basic FSM model with hierarchy and concurrency. The Statecharts visual formalism
is an example of this approach. 

We observe that FSM semantics, hierarchy, and concurrency are orthogonal semantic properties of
Principal Investigator: Edward A. Lee 27 of 48
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Statecharts. If we take away from Statecharts the transitions that cross hierarchy boundaries, we get a
simpler model in which FSM semantics can be cleanly separated from concurrency semantics. This
means that the basic FSM model can be mixed with the various concurrency models to get many mod-
els that are only slightly weaker than Statecharts. We call this new computational model “*ch
where the “*” is a wildcard representing various possible concurrency models. 

We have created a preliminary implementation of this model in Ptolemy. Systems can be b
hierarchically nesting FSMs and concurrency models. The synchronous dataflow model is parti
attractive because when it is combined hierarchically with FSMs in certain ways, the combina
far more expressive than either SDF or FSMs alone, even though the resulting system remain
state. Verification, synthesis, and optimization questions all remain decidable. We have devel
preliminary visual editor for state transition diagrams, which is integrated into the Ptolemy GUI s
a user can seamlessly traverse a hierarchical design that combines FSMs with dataflow blo
grams. At present we can simulate such a mixed-model system description. We plan to add the 
ity to generate code from such systems. Preliminary results are reported in [2].

4.7.2  Synchronous/Reactive Modeling

The synchronous/reactive model of computation is popular (mostly in Europe) for the des
real-time embedded systems. Examples of languages that use this model are Esterel, Lustre
and Argos. A key property of the model is that events in concurrent modules are totally ordere
respect to one another. This means that any two events are either simultaneous, or one unamb
precedes the other. This contrasts the dataflow approach, where events are partially ordered. A
key property of SR languages is that simultaneous events are defined by a fixed-point equation
point theory guarantees the existence of a least fixed point under certain technical conditions. 

Stephen Edwards completed his Ph.D. thesis [74], which describes a coordination langua
combines the synchronous/reactive model with the ability to assemble systems from heterog
pieces (i.e., described in a variety of languages). It presents a mathematical framework for deali
zero-delay-induced paradoxes and presents a way to schedule systems with feedback. The ab
the thesis effectively summarizes the results:

“The need for new languages and paradigms for designing software for embedded comput
systems continues to grow as general-purpose microcontrollers become faster and chea
Many of these system need precise control over when things happen, yet few languages p
vide this facility. Another major challenge is handling the growing complexity of these sys
tems. 
In this dissertation, I present a new model of computation for embedded system software t
is the first to fuse precise control over timing with the ability to build systems from heteroge
neous pieces. It combines the synchronous model of time (used in languages such as Est
with the hierarchical heterogeneity of the Ptolemy system. Heterogeneity addresses the co
plexity problem by allowing each subsystem to be designed using the best language.
My two major contributions are the formal semantics of this model and an efficient, predic
able execution scheme for it. Dealing with zero-delay feedback loops, a side-effect of the ze
delay assumption needed for synchrony, is the semantic challenge, and I solve it with a fixe
point scheme that guarantees all systems are deterministic by construction. The execut
scheme I present is provably correct and eliminates run-time scheduling overhead by mak
all decisions before the system is run.
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present,
I present results that show my model of computation is both efficient and can be used to imple-
ment practical systems. It is my hope that these ideas will be used in the future to make design-
ing complex time-critical embedded software easier and less error-prone.”

SR languages have been used in control-intensive, safety-critical embedded system design suc
craft and nuclear power-plant control. Their formal properties ensure determinacy and bounded
ory, and enable extensive verification. They appear to be an attractive model for certain kinds o
processing systems. 

 Stephen constructed an SR domain in Ptolemy that differs from standard SR languages by
ing modules to be designed in some foreign model of computation. This is consistent with the “
chical heterogeneity” principle of Ptolemy. This domain has a number of practical and theo
challenges that result from this heterogeneity. In particular, the information-hiding principle us
Ptolemy occludes certain important information about modules that is normally exploited in com
these languages. We have had to adapt the theory and compilation techniques to avoid viola
information hiding.

 Stephen developed a dynamic execution policy for the SR domain in Ptolemy and proved
always converges to the minimal fixed point. We have a theoretical bound on the number o
required to reach this fixed point (order N 2, where N is the number of actors in the graph) and ha
been developing heuristics that fall well below this bound.

The first nontrivial application of the synchronous/reactive (SR) domain involved the interp
tion of MIDI control signals to control sound synthesis. This application provided a suitable rep
tative of systems that combine intensive signal processing with intensive control logic. A 
keyboard interfaced to the serial port of a Sparc 10 provided the control sequence. The Midi ke
was capable of providing highly complex and time-sensitive control signals, thus represen
demanding system environment. The Synchronous Reactive domain and SDF (synchronous d
domains were used to create a synthesizer using the Sparc 10 to generate sound, and the ke
trigger events.

4.7.3  Dynamically evaluated higher-order functions

 We prototyped C++ and Tcl interfaces to the dynamic higher-order functions mechanis
which we dynamically switch in a replacement block. This can be used to implement hierarchica
machines (with no cross-hierarchy state transitions), and dynamically evaluated higher-orde
tions. For example, we can implement conditionals (like if-then-else) within a dataflow actor as a
by using the C++ interface.

4.7.4  Open problems

Demonstration systems have been constructed where modules written in the synchronous/
domain are embedded within both discrete event (DE) and synchronous dataflow (SDF) syste
have observed that while the use of SDF in this context may be adequate for hardware desig
serious inefficiencies for embedded software design. Moreover, the problems are fundamenta
embedding of any technique where events are totally ordered (as in SR) within dataflow graphs
events are only partially ordered. 

The nature of the problem is as follows: to preserve determinacy, the dataflow model does n
mit actors to test their input ports for the presence of a token, nor to take a branch depend
whether a token is present. However, a controller often wants to monitor a signal, say an except
nal, and branch in response to that signal. In the SDF embedding, that signal must always be 
Principal Investigator: Edward A. Lee 29 of 48
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using for example a Boolean FALSE to indicate that an exception has not occurred, and a Boolean
TRUE to indicate that an exception has occurred. For circuit design, where this signal may represent a
voltage on a wire, there is no inefficiency implied here. For software, however, the production and
consumption of a large number of FALSE tokens that indicate that nothing interesting is happening can
be quite costly. It is an ongoing effort in our group to attach reasonable semantics to this sort of combi-
nation.

4.8  FORMAL METHODS

The focus of the work on formal methods was to understand models of computation that can be
applied to system-level design of embedded signal processing systems. The major focus, therefore,
was on concurrent models and models that coexist well with huge computational loads and real-time
constraints.

4.8.1  A semantic framework for comparing models of computation

In collaboration with Professor Alberto Sangiovanni-Vincentelli, we developed a denotational
framework (a “meta model”) within which certain properties of models of computation can be u
stood and compared. It describes concurrent processes in general terms as sets of possible b
Compositions of processes are given as intersections of their behaviors. The interaction betwe
cesses is through signals, which are collections of events. A system is determinate if given th
straints imposed by the inputs there are exactly one or exactly zero behaviors. Each event is a v
pair, where the tags can come from a partially ordered or totally ordered set. Timed models are
the set of tags is totally ordered. Synchronous events share the same tag, and synchronous sig
tain events with the same set of tags. Synchronous systems contain synchronous signals. Stric
ity (in timed systems) and continuity (in untimed systems) ensure determinacy under certain te
conditions. The framework is used to compare certain essential features of various models of co
tion, including Kahn process networks, dataflow, sequential processes, concurrent sequential pr
with rendezvous, Petri nets, concrete data structures, and discrete-event systems. Details are
in [44][66].

4.8.2  Semantics of discrete-event systems

In what could be a significant breakthrough, we followed up on a suggestion by Gerard Be
INRIA to develop a semantic model of discrete-event systems (such as that used in VHDL, V
and the discrete-event domain in Ptolemy). This model provides a complete metric space for sig
such systems, thereby enabling the use of standard, well-established mathematical method
notably the Banach fixed point theorem) to study issues such as determinacy. This work is inclu
[66].

4.8.3  Semantics of dataflow

We formally characterized the previously informal relationship between dataflow and Kahn
cess networks. In KPNs, a “process” is a functional mapping from input sequences to 
sequences, where the function is constrained to be continuous in a complete partial order (CP
CPO is based on the so-called “prefix order.” Dataflow is a special case where the process 
structed as a sequence of “firings” where a firing is an atomic quantum of computation. The dif
in the past has been in formally defining the constraints on the firing function and the firing
(which indicate when a firing can occur) such that the resulting process is continuous. Contin
desirable because it ensures determinacy.
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The firing rules can be characterized as a set of signals (tuples of sequences of tokens). When one
of the firing rules is a prefix of the input to the process, then the firing function “fires”, consumin
prefix and producing output tokens. The process is then recursively applied to the remaining
tokens. If no two members of the firing rule set are “joinable” (meaning that they have an upper 
in the CPO), and the firing function is continuous, then the process will be continuous. A key p
the result is showing that the recursive definition of the process in terms of the firing functions i
sible and determinate. This can be done by defining a CPO on functions and showing that the 
can be given in terms of the firing function by a continuous functional (which maps functions
functions).

These results are reported in [67].

4.8.4  Dataflow and functional languages

In [14], we reviewed a mathematical theory of dataflow based on partial orders, and conne
theory to the functional languages and dataflow architectures communities. A central idea is
dataflow processes consists of repeated applications of dataflow firings, and that this can be de
by the higher-order function F = map(f), where f is a function describing a single actor firing. Th
“map” higher-order function applies f to a stream input. This notation formalizes a number of con
that have not been clear (at least not to us). We have determined, for example, that if “f” is “sequential”
(in a very technical sense), then “F” is sequential. Sequentiality implies determinacy of a network
such functions. The next broader class of functions that we know of beyond the sequential fun
called “stable functions,” also imply determinacy. However, we have found a counterexample wF
is not stable even though f is. For this counterexample, F is not determinate. Thus, we believe th
sequential functions characterize, in a very fundamental sense, those functions whose com
abstracts to a determinate function. The class of sequential functions, as it happens, is exactly 
implemented by the Ptolemy Dynamic Dataflow (DDF) domain.

5.  Software

The Ptolemy software serves as both a laboratory for experimentation and a mechanism 
seminating results. During the course of the project, we completed three major software relea
several minor ones. The major enhancements of each release are summarized below. Version 
begin with “0” to emphasize that this is research software, not a commercial product. 

5.1  INFORMATION DISSEMINATION POLICY

We set up a Web site, http://ptolemy.eecs.berkeley.edu, that was used to distribute all so
(including source code) and documentation (in PostScript, HTML and PDF, together with up
summary sheets, answers to frequently asked questions, a quick tour, and a tutorial). We s
Usenet news group called comp.soft-sys.ptolemy and a mailing list ptolemy-h
ers@ptolemy.eecs.berkeley.edu. Postings to the mailing list are cross-posted to the news grou
ings are archived and searchable from our World Wide Web site.

5.2  PTOLEMY 0.5 (FEBRUARY 1994)

5.2.1  Major new features

Major features introduced in the 0.5 version include:
• Greatly improved documentation (see below).
• Extensible, animated, interactive GUI based on Tcl/Tk.
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• The boolean dataflow domain.
• VHDL code generation.
• Silage code generation.
• Fast discrete-event scheduling.
• A communicating processes domain for event-driven simulation of hardware systems.
• Fixed-point simulation.
• Matrix data types and functional blocks.

5.2.2  Documentation

With the objective of making Ptolemy more usable both within Berkeley and outside, we 
pletely rewrote the documentation. The 0.4.1 version had been written using troff. The 0.5 versi
converted to use FrameMaker, and used a more tutorial, more narrative style with extensive
graphics. The complete manual, called “The Almagest”, is divided into four volumes:
• The User's Manual
• The Star Atlas
• The Programmer's Manual
• The Kernel Manual

The first two are intended for users who will not be writing code to extend the system. The third
users who will be writing new functional blocks (called stars), and the fourth is for users who w
extending the system in more fundamental ways, such as by adding new models of computation
synthesis tools. 

The User's manual and Kernel manual have both been converted to HTML for on-line, hyp
access. Also providing improved on-line documentation, two self-guided tours of Ptolemy are d
uted with the system:
• A “Quick Tour” takes the user through the features of the more mature Ptolemy domains.
• A “What's New” tour guides the user through an overview of what has been added in each n

version of Ptolemy.

5.3  PTINY 0.5 (APRIL 1994)

The “Ptiny” release is a demonstration subset that is easy to install and requires much le
space than the full system. A number of our regular users started with this version. Moreover, th
sion is designed to fully support our instructional uses of Ptolemy.

5.4  PTOLEMY 0.5.1 (SEPTEMBER 1994)

5.4.1  Major new features

Major features introduced in the 0.5.1 version include:
•  A Matlab interface.
•  Higher-order functions.
•  Multidimensional synchronous dataflow.
•  Initializable delays.
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5.5  PTOLEMY 0.5.2 (MAY 1995)

The Ptolemy 0.5.2 release, which consist of approximately 2000 files containing 300,000 lines and
8 Mb of source code, was distributed in May of 1995. 

5.5.1  Major new features

This was an incremental release containing three major features:
• Greatly enhanced simulation speed,
• A library of interactive graphical widgets, and
• Support for higher-order functions in all domains.

5.5.2  Platforms

Internally developed: Sun Sparc (SunOS and Solaris), HP (HP/UX), and SGI (Irix).
Contributed by outside users: Dec Alpha (Ultrix), PC (Linux), IBM RS/6000 (AIX), and Po

PC (AIX). 
Additional external ports: DecStation (Ultrix) and PC (NetBSD).

5.6  PTOLEMY 0.6 (APRIL 1996)

The Ptolemy 0.6 release consists of approximately 3000 files containing 400,000 lines and 9
source code (compressed). 

5.6.1  Domains

• Multidimensional synchronous dataflow, MDSDF.
• New functional VHDL domain.
• Process networks, PN.
• Extension of Boolean dataflow (BDF) to integer-controlled dataflow (IDF).

5.6.2  Schedulers

• Loop scheduler.
• Dynamic dataflow scheduler that maintains bounded memory.
• Partitioning SDF applications into multiple VHDL hardware modules.
• Buffer-optimal loop scheduler for acyclic SDF graphs.
• Latency constrained resynchronization (LCR) algorithm for 2 processor systems that is capa

handling delays.

5.6.3  Automatic code generation

• Synthesis of parallel code for network of workstations (NOW).
• Multi-lingual code generation (C-based wormholes).
• Tunable VHDL code generation (sequential or synthesizable).
• Incrementally compiled code generation subsystems.

5.6.4  Visualization

• Interfaces to a freely available graph visualization program: printDot - outputs a galaxy hiera
in dotty format, printClusterDot - outputs the galaxy in it's clustered form.
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• Tcl/Tk versions of Gantt chart and logic analyzer.
• Interface to Tycho (see below).

5.6.5  Ptolemy Infrastructure

• Tcl parameter expression parser.
• Ptolemy Makefile redesign.
• Matlab Tcl interface.
• Tcl/Mathematica interface.
• First-cut at design-methodology management.
• Code generation wormholes.
• Portable scheduler file format.
• Heterogeneous code generation (VHDL, 56K, C).
• C++ documentation generation system.
• HTML documentation of Ptolemy stars.
• File datatype.
• Automatic generation of Ptcl scripts from block diagrams.
• New iterator classes for various kernel classes.
• Itcl incorporation, an object-oriented extension to Tcl/Tk.
• Script for creating custom versions of Ptolemy.

5.6.6  Platforms

Platforms that we distribute binaries for: Solaris2.4, HPUX-10.01, SunOS4.1.3.
Platforms that Ptolemy 0.6 has been compiled for: IBM AIX3.2.5, DEC Alpha OSF/1 V

FreeBSD 2.1-Stable, Irix5.3, Irix6.x, HPUX9.x, Linux Slackware3.0, Solaris2.5, HPUX10.01, HP

5.7  PTOLEMY 0.7 (JUNE 1997)

Ptolemy 0.7 and Tycho 0.2 were released on June 13th, 1997. 

5.7.1  Domains

• FSM — finite state machines
• SR — synchronous/reactive.

5.7.2  Schedulers

• An optimized acyclic loop scheduler. This scheduler does joint code/data minimization; it ge
ates single appearance schedules optimized for buffer memory usage. It is useful in code g
tion, especially in assembly language code generation for embedded signal processors whic
limited program and data memory.

5.7.3  Code generation

• Code generation for the TI C50 DSP, CGC50.
• UltraSparc VIS (visual instruction set) code generation.
• Real-time CD-quality audio on Ultrasparc workstations.
• Synthesis of C code that is dynamically loaded into Tycho.
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• Improved user interfaces (based on Tycho) for synthesized C programs.
• Visualization of implementation costs.

5.7.4  Visualization

• Integrated HTML documentation of functional blocks.
• Tycho 0.2 (see below).

5.7.5  Ptolemy infrastructure

• A revamped type system.
• Retargeting tool.
• Scripted higher-order functions.

5.7.6  Platforms

We distribute binaries for Solaris2.5.1, Solaris 2.4, HPUX10.20, HPUX9.x, SunOS4.1.3, and
Alpha OSF1. Ptolemy has been compiled for a number of other platforms by users outside Berk

5.7.7  Documentation

The User's Manual is about 500 pages with about 440 figures, tables and equations. The
Manual is available in HTML, PDF and PostScript from the Ptolemy Web page. In addition, ther
e Programmer's Manual and Kernel Manual.

5.8  TYCHO

Tycho is an object-oriented syntax manager with an underlying heterogeneous technical ra
It provides a number of editors and graphical widgets in an extensible, reusable framework. T
tors for textual syntaxes are modeled after emacs in the sense the emacs key bindings are us
ever possible. However, they make more extensive use of menus, windows, and dialogs than
Also, the intent is that visual editors and visualization tools will be fully integrated, something
would be difficult to accomplish with emacs in its current form. Editors for visual syntaxes wi
more diverse. The system documentation is integrated, using a hypertext system compatible w
World Wide Web.

Tycho was originally conceived for use with Ptolemy system, but it has grown into a system 
useful on its own. Tycho has been used extensively in the development of the Tycho software it

Tycho is written primarily in Itcl, also called [incr Tcl], developed by Michael McLennan
AT&T. Itcl is an object-oriented extension of Tcl, a “tool command language” written by John Ou
hout of U.C. Berkeley, now under continued development at Sun Microsystems. The window 
Tk and its object-oriented extension Itk are also used extensively.

5.8.1  Objectives

• To build a genuinely object-oriented user interface, where multiple visual syntaxes can be c
bined, and application-specific visual syntaxes can be constructed.

• To provide an extensible framework for experimentation with visual syntaxes, where munda
tasks such as documentation, font management, color management, and dialogs with the u
are built using a shared, common infrastructure.

• To extend the non-dogmatic nature of the Ptolemy kernel (which supports multiple semantic
els) to the user interface (which will support multiple syntactic models).
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• To experiment with design visualization, broadening the perspective beyond a schematic or
diagram perspective of Ptolemy, and exploring new visual and mixed visual/textual syntaxes
design representation and understanding.

• To leverage off work in the Tcl/Tk community to get portable (Unix, Microsoft Windows PCs 
Apple Macintoshes) code.

• To design a sophisticated, extensible, interactive documentation system.
One of the key principles in Tycho is that anything can have a hyperlink to anything else. 

mentation will have links to source code, and vice versa. Visual editors will have links to textua
tors. And specialized displays can be created for any form of data. These displays, of course, 
connected by hyperlinks. 

An interim mechanism is provided where Tycho forms a subsystem within the much older 
editor for Ptolemy called “pigi” (which stands for Ptolemy interactive graphical interface).

5.8.2  Tycho 0.1 release (March 1996)

Tycho 0.1 was released with Ptolemy 0.6. It was still a very preliminary system. It included:
• Visual editors and displays for various types of graphs.
• Syntax-sensitive text editors for Itcl, HTML, C, C++, Ptlang (Ptolemy star) files, Java and Es
• Interactive shells communicating with Tcl, Matlab, Mathematica.
• Graphical editors
• Integrated, HTML-based documentation.
• Indexes and index browsers.
• A family of dialog windows.
• Context sensitive spell checker.
• Font and color management system.
• Error handling with a stack display.
• Auto-save.
• Some elementary data structures: Stack, CircularList, Graph, DirectedAcyclicGraph, Forest

5.8.3  Tycho 0.1.1 Release (December 1996)

Tycho 0.1.1 was released on December 17, 1996. This was an interim release that improv
formance and added many new features. Most notably:
• View/Displayer architecture.
• Slate object for managing composite graphical objects.
• Popup menus (to complement pre-existing pull-down menus)
• Menubar object.
• Glimpse Index Browser.
• Graphical Itcl Class browser
• Preferences manager
• Exec class which can be used to run remote programs like make.
• Print dialog.
• Java syntax sensitive editor.
• Windows NT port.
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• Hierarchical indexes.

5.8.4  Tycho 0.2 Release (June 1997)

Tycho 0.2 was released with Ptolemy 0.7. Significant new features:
• Java/Tycho interface
• Compilation and dynamic loading of C modules at runtime.
• Improved preferences manager.
• An interface to C,C++ and Java compilers.
• Interfaces to SCCS and RCS revision control systems.
• An interface to the Glimpse index browser, which can rapidly search large directory trees.
• A graphical Tcl profiler.
• A source code documentation system and browser.
• A Tycho Information Model (TIM) architecture.
• A time-slice scheduler for dynamically linked C modules.

5.9  TMATH

Ptolemy 0.7 comes with an interface to Matlab 4.2 and Mathematica 2.2, but Ptolemy m
recompiled for a user to access the interface. Since the 0.7 release, Brian Evans (UT Aus
upgraded the interface to be compatible with Matlab 4.2 and 5.0 as well as Mathematica 2.2 a
which will likely be released in the next version of Ptolemy and as a patch to the current version
meantime, Brian has spun off the interface to Matlab and Mathematica from C++ and Tcl as a s
tool called TMath (version 0.2). 

The TMath package is an extension to Tcl that allows Tcl 7.x to control MATLAB and Mathe
ica processes and to evaluate MATLAB and Mathematica commands, either through scripts or i
tive sessions. It works with MATLAB 4.2 and 5.0 as well as Mathematica 2.2 and 3.0. T
provides:
• two new Tcl commands matlab and mathematica,
• a framework for registering Tcl commands implemented as C++ methods,
• C++ interfaces for MATLAB and Mathematica, and

C++ objects to control multiple MATLAB and Mathematica processes. TMath will work on all of
architectures supported by the Ptolemy software environment. For more information about TMa

http://www.ece.utexas.edu/~bevans/projects/tmath.html
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