write.df {SparkR} | R Documentation |
The data source is specified by the 'source' and a set of options (...). If 'source' is not specified, the default data source configured by spark.sql.sources.default will be used.
## S4 method for signature 'DataFrame,character' write.df(df, path, source = NULL, mode = "error", ...) ## S4 method for signature 'DataFrame,character' saveDF(df, path, source = NULL, mode = "error", ...) write.df(df, path, ...) saveDF(df, path, source = NULL, mode = "error", ...) write.df(df, path, ...)
df |
A SparkSQL DataFrame |
path |
A name for the table |
source |
A name for external data source |
mode |
One of 'append', 'overwrite', 'error', 'ignore' save mode (it is 'error' by default) |
Additionally, mode is used to specify the behavior of the save operation when
data already exists in the data source. There are four modes:
append: Contents of this DataFrame are expected to be appended to existing data.
overwrite: Existing data is expected to be overwritten by the contents of this DataFrame.
error: An exception is expected to be thrown.
ignore: The save operation is expected to not save the contents of the DataFrame
and to not change the existing data.
Other DataFrame functions: $
,
$<-
, select
,
select
,
select,DataFrame,Column-method
,
select,DataFrame,list-method
,
selectExpr
; DataFrame-class
,
dataFrame
, groupedData
;
[
, [
, [[
,
subset
; agg
,
agg
,
count,GroupedData-method
,
summarize
, summarize
;
arrange
, arrange
,
arrange
, orderBy
,
orderBy
; as.data.frame
,
as.data.frame,DataFrame-method
;
attach
,
attach,DataFrame-method
;
cache
; collect
;
colnames
, colnames
,
colnames<-
, colnames<-
,
columns
, names
,
names<-
; coltypes
,
coltypes
, coltypes<-
,
coltypes<-
; columns
,
dtypes
, printSchema
,
schema
, schema
;
count
, nrow
;
describe
, describe
,
describe
, summary
,
summary
,
summary,PipelineModel-method
;
dim
; distinct
,
unique
; dropna
,
dropna
, fillna
,
fillna
, na.omit
,
na.omit
; dtypes
;
except
, except
;
explain
, explain
;
filter
, filter
,
where
, where
;
first
, first
;
groupBy
, groupBy
,
group_by
, group_by
;
head
; insertInto
,
insertInto
; intersect
,
intersect
; isLocal
,
isLocal
; join
;
limit
, limit
;
merge
, merge
;
mutate
, mutate
,
transform
, transform
;
ncol
; persist
;
printSchema
; rbind
,
rbind
, unionAll
,
unionAll
; registerTempTable
,
registerTempTable
; rename
,
rename
, withColumnRenamed
,
withColumnRenamed
;
repartition
; sample
,
sample
, sample_frac
,
sample_frac
;
saveAsParquetFile
,
saveAsParquetFile
,
write.parquet
, write.parquet
;
saveAsTable
, saveAsTable
;
selectExpr
; showDF
,
showDF
; show
,
show
,
show,GroupedData-method
; str
;
take
; unpersist
;
withColumn
, withColumn
;
write.json
, write.json
;
write.text
, write.text
## Not run:
##D sc <- sparkR.init()
##D sqlContext <- sparkRSQL.init(sc)
##D path <- "path/to/file.json"
##D df <- read.json(sqlContext, path)
##D write.df(df, "myfile", "parquet", "overwrite")
##D saveDF(df, parquetPath2, "parquet", mode = saveMode, mergeSchema = mergeSchema)
## End(Not run)