[[ {SparkR} | R Documentation |
Return subsets of SparkDataFrame according to given conditions
## S4 method for signature 'SparkDataFrame,numericOrcharacter' x[[i]] ## S4 method for signature 'SparkDataFrame' x[i, j, ..., drop = F] ## S4 method for signature 'SparkDataFrame' subset(x, subset, select, drop = F, ...)
x |
A SparkDataFrame |
drop |
if TRUE, a Column will be returned if the resulting dataset has only one column. Otherwise, a SparkDataFrame will always be returned. |
subset |
(Optional) A logical expression to filter on rows |
select |
expression for the single Column or a list of columns to select from the SparkDataFrame |
A new SparkDataFrame containing only the rows that meet the condition with selected columns
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, arrange
,
as.data.frame
, attach
,
cache
, collect
,
colnames
, coltypes
,
columns
, count
,
dapply
, describe
,
dim
, distinct
,
dropDuplicates
, dropna
,
drop
, dtypes
,
except
, explain
,
filter
, first
,
group_by
, head
,
histogram
, insertInto
,
intersect
, isLocal
,
join
, limit
,
merge
, mutate
,
ncol
, persist
,
printSchema
,
registerTempTable
, rename
,
repartition
, sample
,
saveAsTable
, selectExpr
,
select
, showDF
,
show
, str
,
take
, unionAll
,
unpersist
, withColumn
,
write.df
, write.jdbc
,
write.json
, write.parquet
,
write.text
Other subsetting functions: filter
,
select
## Not run:
##D # Columns can be selected using `[[` and `[`
##D df[[2]] == df[["age"]]
##D df[,2] == df[,"age"]
##D df[,c("name", "age")]
##D # Or to filter rows
##D df[df$age > 20,]
##D # SparkDataFrame can be subset on both rows and Columns
##D df[df$name == "Smith", c(1,2)]
##D df[df$age %in% c(19, 30), 1:2]
##D subset(df, df$age %in% c(19, 30), 1:2)
##D subset(df, df$age %in% c(19), select = c(1,2))
##D subset(df, select = c(1,2))
## End(Not run)