union {SparkR} | R Documentation |
Return a new SparkDataFrame containing the union of rows in this SparkDataFrame
and another SparkDataFrame. This is equivalent to UNION ALL
in SQL.
unionAll is deprecated - use union instead
union(x, y) unionAll(x, y) ## S4 method for signature 'SparkDataFrame,SparkDataFrame' union(x, y) ## S4 method for signature 'SparkDataFrame,SparkDataFrame' unionAll(x, y)
x |
A SparkDataFrame |
y |
A SparkDataFrame |
Note: This does not remove duplicate rows across the two SparkDataFrames.
A SparkDataFrame containing the result of the union.
union since 2.0.0
unionAll since 1.4.0
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, arrange
,
as.data.frame
, attach
,
cache
, coalesce
,
collect
, colnames
,
coltypes
,
createOrReplaceTempView
,
crossJoin
, dapplyCollect
,
dapply
, describe
,
dim
, distinct
,
dropDuplicates
, dropna
,
drop
, dtypes
,
except
, explain
,
filter
, first
,
gapplyCollect
, gapply
,
getNumPartitions
, group_by
,
head
, histogram
,
insertInto
, intersect
,
isLocal
, join
,
limit
, merge
,
mutate
, ncol
,
nrow
, persist
,
printSchema
, randomSplit
,
rbind
, registerTempTable
,
rename
, repartition
,
sample
, saveAsTable
,
schema
, selectExpr
,
select
, showDF
,
show
, storageLevel
,
str
, subset
,
take
, unpersist
,
withColumn
, with
,
write.df
, write.jdbc
,
write.json
, write.orc
,
write.parquet
, write.text
## Not run:
##D sparkR.session()
##D df1 <- read.json(path)
##D df2 <- read.json(path2)
##D unioned <- union(df, df2)
##D unions <- rbind(df, df2, df3, df4)
## End(Not run)