dapplyCollect {SparkR} | R Documentation |
Apply a function to each partition of a SparkDataFrame and collect the result back to R as a data.frame.
dapplyCollect(x, func) ## S4 method for signature 'SparkDataFrame,'function'' dapplyCollect(x, func)
x |
A SparkDataFrame |
func |
A function to be applied to each partition of the SparkDataFrame. func should have only one parameter, to which a R data.frame corresponds to each partition will be passed. The output of func should be a R data.frame. |
dapplyCollect since 2.0.0
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, arrange
,
as.data.frame
,
attach,SparkDataFrame-method
,
cache
, checkpoint
,
coalesce
, collect
,
colnames
, coltypes
,
createOrReplaceTempView
,
crossJoin
, dapply
,
describe
, dim
,
distinct
, dropDuplicates
,
dropna
, drop
,
dtypes
, except
,
explain
, filter
,
first
, gapplyCollect
,
gapply
, getNumPartitions
,
group_by
, head
,
hint
, histogram
,
insertInto
, intersect
,
isLocal
, isStreaming
,
join
, limit
,
merge
, mutate
,
ncol
, nrow
,
persist
, printSchema
,
randomSplit
, rbind
,
registerTempTable
, rename
,
repartition
, sample
,
saveAsTable
, schema
,
selectExpr
, select
,
showDF
, show
,
storageLevel
, str
,
subset
, take
,
toJSON
, union
,
unpersist
, withColumn
,
with
, write.df
,
write.jdbc
, write.json
,
write.orc
, write.parquet
,
write.stream
, write.text
## Not run:
##D df <- createDataFrame(iris)
##D ldf <- dapplyCollect(df, function(x) { x })
##D
##D # filter and add a column
##D df <- createDataFrame(
##D list(list(1L, 1, "1"), list(2L, 2, "2"), list(3L, 3, "3")),
##D c("a", "b", "c"))
##D ldf <- dapplyCollect(
##D df,
##D function(x) {
##D y <- x[x[1] > 1, ]
##D y <- cbind(y, y[1] + 1L)
##D })
##D # the result
##D # a b c d
##D # 2 2 2 3
##D # 3 3 3 4
## End(Not run)