randomSplit {SparkR} | R Documentation |
Return a list of randomly split dataframes with the provided weights.
randomSplit(x, weights, seed) ## S4 method for signature 'SparkDataFrame,numeric' randomSplit(x, weights, seed)
x |
A SparkDataFrame |
weights |
A vector of weights for splits, will be normalized if they don't sum to 1 |
seed |
A seed to use for random split |
randomSplit since 2.0.0
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, arrange
,
as.data.frame
,
attach,SparkDataFrame-method
,
cache
, checkpoint
,
coalesce
, collect
,
colnames
, coltypes
,
createOrReplaceTempView
,
crossJoin
, dapplyCollect
,
dapply
, describe
,
dim
, distinct
,
dropDuplicates
, dropna
,
drop
, dtypes
,
except
, explain
,
filter
, first
,
gapplyCollect
, gapply
,
getNumPartitions
, group_by
,
head
, hint
,
histogram
, insertInto
,
intersect
, isLocal
,
isStreaming
, join
,
limit
, merge
,
mutate
, ncol
,
nrow
, persist
,
printSchema
, rbind
,
registerTempTable
, rename
,
repartition
, sample
,
saveAsTable
, schema
,
selectExpr
, select
,
showDF
, show
,
storageLevel
, str
,
subset
, take
,
toJSON
, union
,
unpersist
, withColumn
,
with
, write.df
,
write.jdbc
, write.json
,
write.orc
, write.parquet
,
write.stream
, write.text
## Not run:
##D sparkR.session()
##D df <- createDataFrame(data.frame(id = 1:1000))
##D df_list <- randomSplit(df, c(2, 3, 5), 0)
##D # df_list contains 3 SparkDataFrames with each having about 200, 300 and 500 rows respectively
##D sapply(df_list, count)
## End(Not run)