collect {SparkR} | R Documentation |
Collects all the elements of a SparkDataFrame and coerces them into an R data.frame.
collect(x, ...) ## S4 method for signature 'SparkDataFrame' collect(x, stringsAsFactors = FALSE)
x |
a SparkDataFrame. |
... |
further arguments to be passed to or from other methods. |
stringsAsFactors |
(Optional) a logical indicating whether or not string columns should be converted to factors. FALSE by default. |
collect since 1.4.0
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, alias
,
arrange
, as.data.frame
,
attach,SparkDataFrame-method
,
broadcast
, cache
,
checkpoint
, coalesce
,
colnames
, coltypes
,
createOrReplaceTempView
,
crossJoin
, cube
,
dapplyCollect
, dapply
,
describe
, dim
,
distinct
, dropDuplicates
,
dropna
, drop
,
dtypes
, except
,
explain
, filter
,
first
, gapplyCollect
,
gapply
, getNumPartitions
,
group_by
, head
,
hint
, histogram
,
insertInto
, intersect
,
isLocal
, isStreaming
,
join
, limit
,
localCheckpoint
, merge
,
mutate
, ncol
,
nrow
, persist
,
printSchema
, randomSplit
,
rbind
, registerTempTable
,
rename
, repartition
,
rollup
, sample
,
saveAsTable
, schema
,
selectExpr
, select
,
showDF
, show
,
storageLevel
, str
,
subset
, summary
,
take
, toJSON
,
unionByName
, union
,
unpersist
, withColumn
,
withWatermark
, with
,
write.df
, write.jdbc
,
write.json
, write.orc
,
write.parquet
, write.stream
,
write.text
## Not run:
##D sparkR.session()
##D path <- "path/to/file.json"
##D df <- read.json(path)
##D collected <- collect(df)
##D class(collected)
##D firstName <- names(collected)[1]
## End(Not run)