gapply {SparkR} | R Documentation |
gapply
Groups the SparkDataFrame using the specified columns and applies the R function to each group.
gapply(x, ...) ## S4 method for signature 'GroupedData' gapply(x, func, schema) ## S4 method for signature 'SparkDataFrame' gapply(x, cols, func, schema)
x |
a SparkDataFrame or GroupedData. |
... |
additional argument(s) passed to the method. |
func |
a function to be applied to each group partition specified by grouping
column of the SparkDataFrame. The function |
schema |
the schema of the resulting SparkDataFrame after the function is applied.
The schema must match to output of |
cols |
grouping columns. |
A SparkDataFrame.
gapply(GroupedData) since 2.0.0
gapply(SparkDataFrame) since 2.0.0
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, alias
,
arrange
, as.data.frame
,
attach,SparkDataFrame-method
,
broadcast
, cache
,
checkpoint
, coalesce
,
collect
, colnames
,
coltypes
,
createOrReplaceTempView
,
crossJoin
, cube
,
dapplyCollect
, dapply
,
describe
, dim
,
distinct
, dropDuplicates
,
dropna
, drop
,
dtypes
, except
,
explain
, filter
,
first
, gapplyCollect
,
getNumPartitions
, group_by
,
head
, hint
,
histogram
, insertInto
,
intersect
, isLocal
,
isStreaming
, join
,
limit
, localCheckpoint
,
merge
, mutate
,
ncol
, nrow
,
persist
, printSchema
,
randomSplit
, rbind
,
registerTempTable
, rename
,
repartition
, rollup
,
sample
, saveAsTable
,
schema
, selectExpr
,
select
, showDF
,
show
, storageLevel
,
str
, subset
,
summary
, take
,
toJSON
, unionByName
,
union
, unpersist
,
withColumn
, withWatermark
,
with
, write.df
,
write.jdbc
, write.json
,
write.orc
, write.parquet
,
write.stream
, write.text
## Not run:
##D Computes the arithmetic mean of the second column by grouping
##D on the first and third columns. Output the grouping values and the average.
##D
##D df <- createDataFrame (
##D list(list(1L, 1, "1", 0.1), list(1L, 2, "1", 0.2), list(3L, 3, "3", 0.3)),
##D c("a", "b", "c", "d"))
##D
##D Here our output contains three columns, the key which is a combination of two
##D columns with data types integer and string and the mean which is a double.
##D schema <- structType(structField("a", "integer"), structField("c", "string"),
##D structField("avg", "double"))
##D result <- gapply(
##D df,
##D c("a", "c"),
##D function(key, x) {
##D y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
##D }, schema)
##D
##D The schema also can be specified in a DDL-formatted string.
##D schema <- "a INT, c STRING, avg DOUBLE"
##D result <- gapply(
##D df,
##D c("a", "c"),
##D function(key, x) {
##D y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
##D }, schema)
##D
##D We can also group the data and afterwards call gapply on GroupedData.
##D For Example:
##D gdf <- group_by(df, "a", "c")
##D result <- gapply(
##D gdf,
##D function(key, x) {
##D y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
##D }, schema)
##D collect(result)
##D
##D Result
##D ------
##D a c avg
##D 3 3 3.0
##D 1 1 1.5
##D
##D Fits linear models on iris dataset by grouping on the 'Species' column and
##D using 'Sepal_Length' as a target variable, 'Sepal_Width', 'Petal_Length'
##D and 'Petal_Width' as training features.
##D
##D df <- createDataFrame (iris)
##D schema <- structType(structField("(Intercept)", "double"),
##D structField("Sepal_Width", "double"),structField("Petal_Length", "double"),
##D structField("Petal_Width", "double"))
##D df1 <- gapply(
##D df,
##D df$"Species",
##D function(key, x) {
##D m <- suppressWarnings(lm(Sepal_Length ~
##D Sepal_Width + Petal_Length + Petal_Width, x))
##D data.frame(t(coef(m)))
##D }, schema)
##D collect(df1)
##D
##D Result
##D ---------
##D Model (Intercept) Sepal_Width Petal_Length Petal_Width
##D 1 0.699883 0.3303370 0.9455356 -0.1697527
##D 2 1.895540 0.3868576 0.9083370 -0.6792238
##D 3 2.351890 0.6548350 0.2375602 0.2521257
##D
## End(Not run)