randomSplit {SparkR} | R Documentation |
Return a list of randomly split dataframes with the provided weights.
randomSplit(x, weights, seed) ## S4 method for signature 'SparkDataFrame,numeric' randomSplit(x, weights, seed)
x |
A SparkDataFrame |
weights |
A vector of weights for splits, will be normalized if they don't sum to 1 |
seed |
A seed to use for random split |
randomSplit since 2.0.0
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, alias
,
arrange
, as.data.frame
,
attach,SparkDataFrame-method
,
broadcast
, cache
,
checkpoint
, coalesce
,
collect
, colnames
,
coltypes
,
createOrReplaceTempView
,
crossJoin
, cube
,
dapplyCollect
, dapply
,
describe
, dim
,
distinct
, dropDuplicates
,
dropna
, drop
,
dtypes
, except
,
explain
, filter
,
first
, gapplyCollect
,
gapply
, getNumPartitions
,
group_by
, head
,
hint
, histogram
,
insertInto
, intersect
,
isLocal
, isStreaming
,
join
, limit
,
localCheckpoint
, merge
,
mutate
, ncol
,
nrow
, persist
,
printSchema
, rbind
,
registerTempTable
, rename
,
repartition
, rollup
,
sample
, saveAsTable
,
schema
, selectExpr
,
select
, showDF
,
show
, storageLevel
,
str
, subset
,
summary
, take
,
toJSON
, unionByName
,
union
, unpersist
,
withColumn
, withWatermark
,
with
, write.df
,
write.jdbc
, write.json
,
write.orc
, write.parquet
,
write.stream
, write.text
## Not run:
##D sparkR.session()
##D df <- createDataFrame(data.frame(id = 1:1000))
##D df_list <- randomSplit(df, c(2, 3, 5), 0)
##D # df_list contains 3 SparkDataFrames with each having about 200, 300 and 500 rows respectively
##D sapply(df_list, count)
## End(Not run)