coalesce {SparkR} | R Documentation |
Returns a new SparkDataFrame that has exactly numPartitions
partitions.
This operation results in a narrow dependency, e.g. if you go from 1000 partitions to 100
partitions, there will not be a shuffle, instead each of the 100 new partitions will claim 10 of
the current partitions. If a larger number of partitions is requested, it will stay at the
current number of partitions.
coalesce(x, ...) ## S4 method for signature 'SparkDataFrame' coalesce(x, numPartitions)
x |
a SparkDataFrame. |
... |
additional argument(s). |
numPartitions |
the number of partitions to use. |
However, if you're doing a drastic coalesce on a SparkDataFrame, e.g. to numPartitions = 1,
this may result in your computation taking place on fewer nodes than
you like (e.g. one node in the case of numPartitions = 1). To avoid this,
call repartition
. This will add a shuffle step, but means the
current upstream partitions will be executed in parallel (per whatever
the current partitioning is).
coalesce(SparkDataFrame) since 2.1.1
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, alias
,
arrange
, as.data.frame
,
attach,SparkDataFrame-method
,
broadcast
, cache
,
checkpoint
, collect
,
colnames
, coltypes
,
createOrReplaceTempView
,
crossJoin
, cube
,
dapplyCollect
, dapply
,
describe
, dim
,
distinct
, dropDuplicates
,
dropna
, drop
,
dtypes
, except
,
explain
, filter
,
first
, gapplyCollect
,
gapply
, getNumPartitions
,
group_by
, head
,
hint
, histogram
,
insertInto
, intersect
,
isLocal
, isStreaming
,
join
, limit
,
localCheckpoint
, merge
,
mutate
, ncol
,
nrow
, persist
,
printSchema
, randomSplit
,
rbind
, registerTempTable
,
rename
, repartition
,
rollup
, sample
,
saveAsTable
, schema
,
selectExpr
, select
,
showDF
, show
,
storageLevel
, str
,
subset
, summary
,
take
, toJSON
,
unionByName
, union
,
unpersist
, withColumn
,
withWatermark
, with
,
write.df
, write.jdbc
,
write.json
, write.orc
,
write.parquet
, write.stream
,
write.text
## Not run:
##D sparkR.session()
##D path <- "path/to/file.json"
##D df <- read.json(path)
##D newDF <- coalesce(df, 1L)
## End(Not run)