pyspark.ml.regression.
GBTRegressionModel
Model fitted by GBTRegressor.
GBTRegressor
New in version 1.4.0.
Methods
clear(param)
clear
Clears a param from the param map if it has been explicitly set.
copy([extra])
copy
Creates a copy of this instance with the same uid and some extra params.
evaluateEachIteration(dataset, loss)
evaluateEachIteration
Method to compute error or loss for every iteration of gradient boosting.
explainParam(param)
explainParam
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
explainParams()
explainParams
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap([extra])
extractParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
getCacheNodeIds()
getCacheNodeIds
Gets the value of cacheNodeIds or its default value.
getCheckpointInterval()
getCheckpointInterval
Gets the value of checkpointInterval or its default value.
getFeatureSubsetStrategy()
getFeatureSubsetStrategy
Gets the value of featureSubsetStrategy or its default value.
getFeaturesCol()
getFeaturesCol
Gets the value of featuresCol or its default value.
getImpurity()
getImpurity
Gets the value of impurity or its default value.
getLabelCol()
getLabelCol
Gets the value of labelCol or its default value.
getLeafCol()
getLeafCol
Gets the value of leafCol or its default value.
getLossType()
getLossType
Gets the value of lossType or its default value.
getMaxBins()
getMaxBins
Gets the value of maxBins or its default value.
getMaxDepth()
getMaxDepth
Gets the value of maxDepth or its default value.
getMaxIter()
getMaxIter
Gets the value of maxIter or its default value.
getMaxMemoryInMB()
getMaxMemoryInMB
Gets the value of maxMemoryInMB or its default value.
getMinInfoGain()
getMinInfoGain
Gets the value of minInfoGain or its default value.
getMinInstancesPerNode()
getMinInstancesPerNode
Gets the value of minInstancesPerNode or its default value.
getMinWeightFractionPerNode()
getMinWeightFractionPerNode
Gets the value of minWeightFractionPerNode or its default value.
getOrDefault(param)
getOrDefault
Gets the value of a param in the user-supplied param map or its default value.
getParam(paramName)
getParam
Gets a param by its name.
getPredictionCol()
getPredictionCol
Gets the value of predictionCol or its default value.
getSeed()
getSeed
Gets the value of seed or its default value.
getStepSize()
getStepSize
Gets the value of stepSize or its default value.
getSubsamplingRate()
getSubsamplingRate
Gets the value of subsamplingRate or its default value.
getValidationIndicatorCol()
getValidationIndicatorCol
Gets the value of validationIndicatorCol or its default value.
getValidationTol()
getValidationTol
Gets the value of validationTol or its default value.
getWeightCol()
getWeightCol
Gets the value of weightCol or its default value.
hasDefault(param)
hasDefault
Checks whether a param has a default value.
hasParam(paramName)
hasParam
Tests whether this instance contains a param with a given (string) name.
isDefined(param)
isDefined
Checks whether a param is explicitly set by user or has a default value.
isSet(param)
isSet
Checks whether a param is explicitly set by user.
load(path)
load
Reads an ML instance from the input path, a shortcut of read().load(path).
predict(value)
predict
Predict label for the given features.
predictLeaf(value)
predictLeaf
Predict the indices of the leaves corresponding to the feature vector.
read()
read
Returns an MLReader instance for this class.
save(path)
save
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
set(param, value)
set
Sets a parameter in the embedded param map.
setFeaturesCol(value)
setFeaturesCol
Sets the value of featuresCol.
featuresCol
setLeafCol(value)
setLeafCol
Sets the value of leafCol.
leafCol
setPredictionCol(value)
setPredictionCol
Sets the value of predictionCol.
predictionCol
transform(dataset[, params])
transform
Transforms the input dataset with optional parameters.
write()
write
Returns an MLWriter instance for this ML instance.
Attributes
cacheNodeIds
checkpointInterval
featureImportances
Estimate of the importance of each feature.
featureSubsetStrategy
getNumTrees
Number of trees in ensemble.
impurity
labelCol
lossType
maxBins
maxDepth
maxIter
maxMemoryInMB
minInfoGain
minInstancesPerNode
minWeightFractionPerNode
numFeatures
Returns the number of features the model was trained on.
params
Returns all params ordered by name.
seed
stepSize
subsamplingRate
supportedFeatureSubsetStrategies
supportedImpurities
supportedLossTypes
toDebugString
Full description of model.
totalNumNodes
Total number of nodes, summed over all trees in the ensemble.
treeWeights
Return the weights for each tree
trees
Trees in this ensemble.
validationIndicatorCol
validationTol
weightCol
Methods Documentation
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Extra parameters to copy to the new instance
JavaParams
Copy of this instance
New in version 2.4.0.
pyspark.sql.DataFrame
Test dataset to evaluate model on, where dataset is an instance of pyspark.sql.DataFrame
The loss function used to compute error. Supported options: squared, absolute
extra param values
merged param map
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 3.0.0.
New in version 1.3.0.
input dataset
an optional param map that overrides embedded params.
transformed dataset
Attributes Documentation
Each feature’s importance is the average of its importance across all trees in the ensemble The importance vector is normalized to sum to 1. This method is suggested by Hastie et al. (Hastie, Tibshirani, Friedman. “The Elements of Statistical Learning, 2nd Edition.” 2001.) and follows the implementation from scikit-learn.
New in version 2.0.0.
Examples
DecisionTreeRegressionModel.featureImportances
Returns the number of features the model was trained on. If unknown, returns -1
New in version 2.1.0.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
dir()
Param
New in version 1.5.0.
Trees in this ensemble. Warning: These have null parent Estimators.