pyspark.mllib.regression.
LinearRegressionWithSGD
Train a linear regression model with no regularization using Stochastic Gradient Descent.
New in version 0.9.0.
Deprecated since version 2.0.0: Use pyspark.ml.regression.LinearRegression.
pyspark.ml.regression.LinearRegression
Methods
train(data[, iterations, step, …])
train
Train a linear regression model using Stochastic Gradient Descent (SGD).
Methods Documentation
Train a linear regression model using Stochastic Gradient Descent (SGD). This solves the least squares regression formulation
f(weights) = 1/(2n) ||A weights - y||^2
which is the mean squared error. Here the data matrix has n rows, and the input RDD holds the set of rows of A, each with its corresponding right hand side label y. See also the documentation for the precise formulation.
pyspark.RDD
The training data, an RDD of LabeledPoint.
The number of iterations. (default: 100)
The step parameter used in SGD. (default: 1.0)
Fraction of data to be used for each SGD iteration. (default: 1.0)
pyspark.mllib.linalg.Vector
The initial weights. (default: None)
The regularizer parameter. (default: 0.0)
The type of regularizer used for training our model. Supported values:
“l1” for using L1 regularization
“l2” for using L2 regularization
None for no regularization (default)
Boolean parameter which indicates the use or not of the augmented representation for training data (i.e., whether bias features are activated or not). (default: False)
Boolean parameter which indicates if the algorithm should validate data before training. (default: True)
A condition which decides iteration termination. (default: 0.001)