pyspark.ml.
UnaryTransformer
Abstract class for transformers that take one input column, apply transformation, and output the result as a new column.
New in version 2.3.0.
Methods
clear(param)
clear
Clears a param from the param map if it has been explicitly set.
copy([extra])
copy
Creates a copy of this instance with the same uid and some extra params.
createTransformFunc()
createTransformFunc
Creates the transform function using the given param map.
explainParam(param)
explainParam
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
explainParams()
explainParams
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap([extra])
extractParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
getInputCol()
getInputCol
Gets the value of inputCol or its default value.
getOrDefault(param)
getOrDefault
Gets the value of a param in the user-supplied param map or its default value.
getOutputCol()
getOutputCol
Gets the value of outputCol or its default value.
getParam(paramName)
getParam
Gets a param by its name.
hasDefault(param)
hasDefault
Checks whether a param has a default value.
hasParam(paramName)
hasParam
Tests whether this instance contains a param with a given (string) name.
isDefined(param)
isDefined
Checks whether a param is explicitly set by user or has a default value.
isSet(param)
isSet
Checks whether a param is explicitly set by user.
outputDataType()
outputDataType
Returns the data type of the output column.
set(param, value)
set
Sets a parameter in the embedded param map.
setInputCol(value)
setInputCol
Sets the value of inputCol.
inputCol
setOutputCol(value)
setOutputCol
Sets the value of outputCol.
outputCol
transform(dataset[, params])
transform
Transforms the input dataset with optional parameters.
transformSchema(schema)
transformSchema
validateInputType(inputType)
validateInputType
Validates the input type.
Attributes
params
Returns all params ordered by name.
Methods Documentation
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
copy.copy()
Extra parameters to copy to the new instance
Params
Copy of this instance
Creates the transform function using the given param map. The input param map already takes account of the embedded param map. So the param values should be determined solely by the input param map.
extra param values
merged param map
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.3.0.
pyspark.sql.DataFrame
input dataset
an optional param map that overrides embedded params.
transformed dataset
Validates the input type. Throw an exception if it is invalid.
Attributes Documentation
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
dir()
Param