DataFrame.
nlargest
Return the first n rows ordered by columns in descending order.
Return the first n rows with the largest values in columns, in descending order. The columns that are not specified are returned as well, but not used for ordering.
This method is equivalent to df.sort_values(columns, ascending=False).head(n), but more performant in pandas. In pandas-on-Spark, thanks to Spark’s lazy execution and query optimizer, the two would have same performance.
df.sort_values(columns, ascending=False).head(n)
Number of rows to return.
Column label(s) to order by.
Determines which duplicates (if any) to keep. - first : Keep the first occurrence. - last : Keep the last occurrence.
first
last
The first n rows ordered by the given columns in descending order.
See also
DataFrame.nsmallest
Return the first n rows ordered by columns in ascending order.
DataFrame.sort_values
Sort DataFrame by the values.
DataFrame.head
Return the first n rows without re-ordering.
Notes
This function cannot be used with all column types. For example, when specifying columns with object or category dtypes, TypeError is raised.
TypeError
Examples
>>> df = ps.DataFrame({'X': [1, 2, 3, 5, 6, 7, np.nan], ... 'Y': [6, 7, 8, 9, 10, 11, 12]}) >>> df X Y 0 1.0 6 1 2.0 7 2 3.0 8 3 5.0 9 4 6.0 10 5 7.0 11 6 NaN 12
In the following example, we will use nlargest to select the three rows having the largest values in column “X”.
>>> df.nlargest(n=3, columns='X') X Y 5 7.0 11 4 6.0 10 3 5.0 9
To order by the largest values in column “Y” and then “X”, we can specify multiple columns like in the next example.
>>> df.nlargest(n=3, columns=['Y', 'X']) X Y 6 NaN 12 5 7.0 11 4 6.0 10
The examples below show how ties are resolved, which is decided by keep.
>>> tied_df = ps.DataFrame({'X': [1, 2, 2, 3, 3]}, index=['a', 'b', 'c', 'd', 'e']) >>> tied_df X a 1 b 2 c 2 d 3 e 3
When using keep=’first’ (default), ties are resolved in order:
>>> tied_df.nlargest(3, 'X') X d 3 e 3 b 2
>>> tied_df.nlargest(3, 'X', keep='first') X d 3 e 3 b 2
When using keep=’last’, ties are resolved in reverse order:
>>> tied_df.nlargest(3, 'X', keep='last') X e 3 d 3 c 2