pyspark.ml.classification.
GBTClassifier
Gradient-Boosted Trees (GBTs) learning algorithm for classification. It supports binary labels, as well as both continuous and categorical features.
New in version 1.4.0.
Notes
Multiclass labels are not currently supported.
The implementation is based upon: J.H. Friedman. “Stochastic Gradient Boosting.” 1999.
Gradient Boosting vs. TreeBoost:
This implementation is for Stochastic Gradient Boosting, not for TreeBoost.
Both algorithms learn tree ensembles by minimizing loss functions.
TreeBoost (Friedman, 1999) additionally modifies the outputs at tree leaf nodes based on the loss function, whereas the original gradient boosting method does not.
We expect to implement TreeBoost in the future: SPARK-4240
Examples
>>> from numpy import allclose >>> from pyspark.ml.linalg import Vectors >>> from pyspark.ml.feature import StringIndexer >>> df = spark.createDataFrame([ ... (1.0, Vectors.dense(1.0)), ... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) >>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed") >>> si_model = stringIndexer.fit(df) >>> td = si_model.transform(df) >>> gbt = GBTClassifier(maxIter=5, maxDepth=2, labelCol="indexed", seed=42, ... leafCol="leafId") >>> gbt.setMaxIter(5) GBTClassifier... >>> gbt.setMinWeightFractionPerNode(0.049) GBTClassifier... >>> gbt.getMaxIter() 5 >>> gbt.getFeatureSubsetStrategy() 'all' >>> model = gbt.fit(td) >>> model.getLabelCol() 'indexed' >>> model.setFeaturesCol("features") GBTClassificationModel... >>> model.setThresholds([0.3, 0.7]) GBTClassificationModel... >>> model.getThresholds() [0.3, 0.7] >>> model.featureImportances SparseVector(1, {0: 1.0}) >>> allclose(model.treeWeights, [1.0, 0.1, 0.1, 0.1, 0.1]) True >>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) >>> model.predict(test0.head().features) 0.0 >>> model.predictRaw(test0.head().features) DenseVector([1.1697, -1.1697]) >>> model.predictProbability(test0.head().features) DenseVector([0.9121, 0.0879]) >>> result = model.transform(test0).head() >>> result.prediction 0.0 >>> result.leafId DenseVector([0.0, 0.0, 0.0, 0.0, 0.0]) >>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"]) >>> model.transform(test1).head().prediction 1.0 >>> model.totalNumNodes 15 >>> print(model.toDebugString) GBTClassificationModel...numTrees=5... >>> gbtc_path = temp_path + "gbtc" >>> gbt.save(gbtc_path) >>> gbt2 = GBTClassifier.load(gbtc_path) >>> gbt2.getMaxDepth() 2 >>> model_path = temp_path + "gbtc_model" >>> model.save(model_path) >>> model2 = GBTClassificationModel.load(model_path) >>> model.featureImportances == model2.featureImportances True >>> model.treeWeights == model2.treeWeights True >>> model.transform(test0).take(1) == model2.transform(test0).take(1) True >>> model.trees [DecisionTreeRegressionModel...depth=..., DecisionTreeRegressionModel...] >>> validation = spark.createDataFrame([(0.0, Vectors.dense(-1.0),)], ... ["indexed", "features"]) >>> model.evaluateEachIteration(validation) [0.25..., 0.23..., 0.21..., 0.19..., 0.18...] >>> model.numClasses 2 >>> gbt = gbt.setValidationIndicatorCol("validationIndicator") >>> gbt.getValidationIndicatorCol() 'validationIndicator' >>> gbt.getValidationTol() 0.01
Methods
clear(param)
clear
Clears a param from the param map if it has been explicitly set.
copy([extra])
copy
Creates a copy of this instance with the same uid and some extra params.
explainParam(param)
explainParam
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
explainParams()
explainParams
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap([extra])
extractParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
fit(dataset[, params])
fit
Fits a model to the input dataset with optional parameters.
fitMultiple(dataset, paramMaps)
fitMultiple
Fits a model to the input dataset for each param map in paramMaps.
getCacheNodeIds()
getCacheNodeIds
Gets the value of cacheNodeIds or its default value.
getCheckpointInterval()
getCheckpointInterval
Gets the value of checkpointInterval or its default value.
getFeatureSubsetStrategy()
getFeatureSubsetStrategy
Gets the value of featureSubsetStrategy or its default value.
getFeaturesCol()
getFeaturesCol
Gets the value of featuresCol or its default value.
getImpurity()
getImpurity
Gets the value of impurity or its default value.
getLabelCol()
getLabelCol
Gets the value of labelCol or its default value.
getLeafCol()
getLeafCol
Gets the value of leafCol or its default value.
getLossType()
getLossType
Gets the value of lossType or its default value.
getMaxBins()
getMaxBins
Gets the value of maxBins or its default value.
getMaxDepth()
getMaxDepth
Gets the value of maxDepth or its default value.
getMaxIter()
getMaxIter
Gets the value of maxIter or its default value.
getMaxMemoryInMB()
getMaxMemoryInMB
Gets the value of maxMemoryInMB or its default value.
getMinInfoGain()
getMinInfoGain
Gets the value of minInfoGain or its default value.
getMinInstancesPerNode()
getMinInstancesPerNode
Gets the value of minInstancesPerNode or its default value.
getMinWeightFractionPerNode()
getMinWeightFractionPerNode
Gets the value of minWeightFractionPerNode or its default value.
getOrDefault(param)
getOrDefault
Gets the value of a param in the user-supplied param map or its default value.
getParam(paramName)
getParam
Gets a param by its name.
getPredictionCol()
getPredictionCol
Gets the value of predictionCol or its default value.
getProbabilityCol()
getProbabilityCol
Gets the value of probabilityCol or its default value.
getRawPredictionCol()
getRawPredictionCol
Gets the value of rawPredictionCol or its default value.
getSeed()
getSeed
Gets the value of seed or its default value.
getStepSize()
getStepSize
Gets the value of stepSize or its default value.
getSubsamplingRate()
getSubsamplingRate
Gets the value of subsamplingRate or its default value.
getThresholds()
getThresholds
Gets the value of thresholds or its default value.
getValidationIndicatorCol()
getValidationIndicatorCol
Gets the value of validationIndicatorCol or its default value.
getValidationTol()
getValidationTol
Gets the value of validationTol or its default value.
getWeightCol()
getWeightCol
Gets the value of weightCol or its default value.
hasDefault(param)
hasDefault
Checks whether a param has a default value.
hasParam(paramName)
hasParam
Tests whether this instance contains a param with a given (string) name.
isDefined(param)
isDefined
Checks whether a param is explicitly set by user or has a default value.
isSet(param)
isSet
Checks whether a param is explicitly set by user.
load(path)
load
Reads an ML instance from the input path, a shortcut of read().load(path).
read()
read
Returns an MLReader instance for this class.
save(path)
save
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
set(param, value)
set
Sets a parameter in the embedded param map.
setCacheNodeIds(value)
setCacheNodeIds
Sets the value of cacheNodeIds.
cacheNodeIds
setCheckpointInterval(value)
setCheckpointInterval
Sets the value of checkpointInterval.
checkpointInterval
setFeatureSubsetStrategy(value)
setFeatureSubsetStrategy
Sets the value of featureSubsetStrategy.
featureSubsetStrategy
setFeaturesCol(value)
setFeaturesCol
Sets the value of featuresCol.
featuresCol
setImpurity(value)
setImpurity
Sets the value of impurity.
impurity
setLabelCol(value)
setLabelCol
Sets the value of labelCol.
labelCol
setLeafCol(value)
setLeafCol
Sets the value of leafCol.
leafCol
setLossType(value)
setLossType
Sets the value of lossType.
lossType
setMaxBins(value)
setMaxBins
Sets the value of maxBins.
maxBins
setMaxDepth(value)
setMaxDepth
Sets the value of maxDepth.
maxDepth
setMaxIter(value)
setMaxIter
Sets the value of maxIter.
maxIter
setMaxMemoryInMB(value)
setMaxMemoryInMB
Sets the value of maxMemoryInMB.
maxMemoryInMB
setMinInfoGain(value)
setMinInfoGain
Sets the value of minInfoGain.
minInfoGain
setMinInstancesPerNode(value)
setMinInstancesPerNode
Sets the value of minInstancesPerNode.
minInstancesPerNode
setMinWeightFractionPerNode(value)
setMinWeightFractionPerNode
Sets the value of minWeightFractionPerNode.
minWeightFractionPerNode
setParams(self, \*[, featuresCol, labelCol, …])
setParams
Sets params for Gradient Boosted Tree Classification.
setPredictionCol(value)
setPredictionCol
Sets the value of predictionCol.
predictionCol
setProbabilityCol(value)
setProbabilityCol
Sets the value of probabilityCol.
probabilityCol
setRawPredictionCol(value)
setRawPredictionCol
Sets the value of rawPredictionCol.
rawPredictionCol
setSeed(value)
setSeed
Sets the value of seed.
seed
setStepSize(value)
setStepSize
Sets the value of stepSize.
stepSize
setSubsamplingRate(value)
setSubsamplingRate
Sets the value of subsamplingRate.
subsamplingRate
setThresholds(value)
setThresholds
Sets the value of thresholds.
thresholds
setValidationIndicatorCol(value)
setValidationIndicatorCol
Sets the value of validationIndicatorCol.
validationIndicatorCol
setWeightCol(value)
setWeightCol
Sets the value of weightCol.
weightCol
write()
write
Returns an MLWriter instance for this ML instance.
Attributes
params
Returns all params ordered by name.
supportedFeatureSubsetStrategies
supportedImpurities
supportedLossTypes
validationTol
Methods Documentation
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Extra parameters to copy to the new instance
JavaParams
Copy of this instance
extra param values
merged param map
New in version 1.3.0.
pyspark.sql.DataFrame
input dataset.
an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Transformer
fitted model(s)
New in version 2.3.0.
collections.abc.Sequence
A Sequence of param maps.
_FitMultipleIterator
A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 3.0.0.
New in version 2.4.0.
Attributes Documentation
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
dir()
Param