pyspark.sql.UDFRegistration.register

UDFRegistration.register(name: str, f: Union[Callable[[…], Any], UserDefinedFunctionLike], returnType: Optional[DataTypeOrString] = None) → UserDefinedFunctionLike[source]

Register a Python function (including lambda function) or a user-defined function as a SQL function.

New in version 1.3.1.

Changed in version 3.4.0: Supports Spark Connect.

Parameters
namestr,

name of the user-defined function in SQL statements.

ffunction, pyspark.sql.functions.udf() or pyspark.sql.functions.pandas_udf()

a Python function, or a user-defined function. The user-defined function can be either row-at-a-time or vectorized. See pyspark.sql.functions.udf() and pyspark.sql.functions.pandas_udf().

returnTypepyspark.sql.types.DataType or str, optional

the return type of the registered user-defined function. The value can be either a pyspark.sql.types.DataType object or a DDL-formatted type string. returnType can be optionally specified when f is a Python function but not when f is a user-defined function. Please see the examples below.

Returns
function

a user-defined function

Notes

To register a nondeterministic Python function, users need to first build a nondeterministic user-defined function for the Python function and then register it as a SQL function.

Examples

  1. When f is a Python function:

    returnType defaults to string type and can be optionally specified. The produced object must match the specified type. In this case, this API works as if register(name, f, returnType=StringType()).

    >>> strlen = spark.udf.register("stringLengthString", lambda x: len(x))
    >>> spark.sql("SELECT stringLengthString('test')").collect()
    [Row(stringLengthString(test)='4')]
    
    >>> spark.sql("SELECT 'foo' AS text").select(strlen("text")).collect()
    [Row(stringLengthString(text)='3')]
    
    >>> from pyspark.sql.types import IntegerType
    >>> _ = spark.udf.register("stringLengthInt", lambda x: len(x), IntegerType())
    >>> spark.sql("SELECT stringLengthInt('test')").collect()
    [Row(stringLengthInt(test)=4)]
    
    >>> from pyspark.sql.types import IntegerType
    >>> _ = spark.udf.register("stringLengthInt", lambda x: len(x), IntegerType())
    >>> spark.sql("SELECT stringLengthInt('test')").collect()
    [Row(stringLengthInt(test)=4)]
    
  2. When f is a user-defined function (from Spark 2.3.0):

    Spark uses the return type of the given user-defined function as the return type of the registered user-defined function. returnType should not be specified. In this case, this API works as if register(name, f).

    >>> from pyspark.sql.types import IntegerType
    >>> from pyspark.sql.functions import udf
    >>> slen = udf(lambda s: len(s), IntegerType())
    >>> _ = spark.udf.register("slen", slen)
    >>> spark.sql("SELECT slen('test')").collect()
    [Row(slen(test)=4)]
    
    >>> import random
    >>> from pyspark.sql.functions import udf
    >>> from pyspark.sql.types import IntegerType
    >>> random_udf = udf(lambda: random.randint(0, 100), IntegerType()).asNondeterministic()
    >>> new_random_udf = spark.udf.register("random_udf", random_udf)
    >>> spark.sql("SELECT random_udf()").collect()  
    [Row(random_udf()=82)]
    
    >>> import pandas as pd  
    >>> from pyspark.sql.functions import pandas_udf
    >>> @pandas_udf("integer")  
    ... def add_one(s: pd.Series) -> pd.Series:
    ...     return s + 1
    ...
    >>> _ = spark.udf.register("add_one", add_one)  
    >>> spark.sql("SELECT add_one(id) FROM range(3)").collect()  
    [Row(add_one(id)=1), Row(add_one(id)=2), Row(add_one(id)=3)]
    
    >>> @pandas_udf("integer")  
    ... def sum_udf(v: pd.Series) -> int:
    ...     return v.sum()
    ...
    >>> _ = spark.udf.register("sum_udf", sum_udf)  
    >>> q = "SELECT sum_udf(v1) FROM VALUES (3, 0), (2, 0), (1, 1) tbl(v1, v2) GROUP BY v2"
    >>> spark.sql(q).collect()  
    [Row(sum_udf(v1)=1), Row(sum_udf(v1)=5)]