pyspark.pandas.CategoricalIndex.map¶
-
CategoricalIndex.
map
(mapper: Union[dict, Callable[[Any], Any], pandas.core.series.Series]) → pyspark.pandas.indexes.base.Index[source]¶ Map values using input correspondence (a dict, Series, or function).
Maps the values (their categories, not the codes) of the index to new categories. If the mapping correspondence is one-to-one the result is a CategoricalIndex which has the same order property as the original, otherwise an Index is returned.
If a dict or Series is used any unmapped category is mapped to missing values. Note that if this happens an Index will be returned.
- Parameters
- mapperfunction, dict, or Series
Mapping correspondence.
- Returns
- CategoricalIndex or Index
Mapped index.
See also
Index.map
Apply a mapping correspondence on an Index.
Series.map
Apply a mapping correspondence on a Series
Series.apply
Apply more complex functions on a Series
Examples
>>> idx = ps.CategoricalIndex(['a', 'b', 'c']) >>> idx CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category')
>>> idx.map(lambda x: x.upper()) CategoricalIndex(['A', 'B', 'C'], categories=['A', 'B', 'C'], ordered=False, dtype='category')
>>> pser = pd.Series([1, 2, 3], index=pd.CategoricalIndex(['a', 'b', 'c'], ordered=True)) >>> idx.map(pser) CategoricalIndex([1, 2, 3], categories=[1, 2, 3], ordered=False, dtype='category')
>>> idx.map({'a': 'first', 'b': 'second', 'c': 'third'}) CategoricalIndex(['first', 'second', 'third'], categories=['first', 'second', 'third'], ordered=False, dtype='category')
If the mapping is one-to-one the ordering of the categories is preserved:
>>> idx = ps.CategoricalIndex(['a', 'b', 'c'], ordered=True) >>> idx CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=True, dtype='category')
>>> idx.map({'a': 3, 'b': 2, 'c': 1}) CategoricalIndex([3, 2, 1], categories=[3, 2, 1], ordered=True, dtype='category')
If the mapping is not one-to-one an Index is returned:
>>> idx.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object')
If a dict is used, all unmapped categories are mapped to None and the result is an Index:
>>> idx.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', None], dtype='object')