
1

Determining the Order of Processor Transactions in Statically Scheduled
Multiprocessors

S. Sriram, Edward A. Lee
Department of Electrical Engineering and Computer Sciences

Cory Hall, University of California, Berkeley CA94720
Phone: (510)642-0395, (510)642-0455
Email: {sriram,eal}@eecs.Berkeley.EDU

ABSTRACT

This paper addresses embedded multiprocessor implementation of iterative, real-time applica-
tions, such as digital signal and image processing, that are specified as dataflow graphs. Schedul-
ing dataflow graphs on multiple processors involves assigning tasks to processors (processor
assignment), ordering the execution of tasks within each processor (task ordering), and determin-
ing when each task must commence execution. We consider three scheduling strategies: fully-
static, self-timed and ordered transactions, all of which perform the assignment and ordering steps
at compile time. Run time costs are small for the fully-static strategy; however it is not robust with
respect to changes or uncertainty in task execution times. The self-timed approach is tolerant of
variations in task execution times, but pays the penalty of high run time costs, because processors
need to explicitly synchronize whenever they communicate. The ordered transactions approach
lies between the fully-static and self-timed strategies; in this approach the order in which proces-
sors communicate is determined at compile time and enforced at run time. The ordered transac-
tions strategy retains some of the flexibility of self-timed schedules and at the same time has lower
run time costs than the self-timed approach.

In this paper we determine an order of processor transactions that is nearly optimal given informa-
tion about task execution times at compile time, and for a given processor assignment and task
ordering. The criterion for optimality is the average throughput achieved by the schedule. Our
main result is that it is possible to choose a transaction order such that the resulting ordered trans-
actions schedule incurs no performance penalty compared to the more flexible self-timed strategy,
even when the higher run time costs implied by the self-timed strategy are ignored.

— Journal of VLSI Signal Processing, Vol. 15, No. 3, pp. 207-220, March1997 —

2

1 Introduction

 In this paper we address embedded multiprocessor implementation of iterative, real-time

applications, such as digital signal and image processing (DSP and IP), that are specified as coarse

grained Synchronous Data Flow (SDF) graphs [1]. Such applications have been found to be par-

ticularly amenable to compile-time (static) scheduling techniques mainly because their control

flow is predictable at compile time. In addition, the excessive hardware and processing overhead

inherent in dynamic load balancing techniques limits the utility of dynamic strategies in embed-

ded DSP scenarios, especially given the essentially data-independent control flow of most DSP

algorithms.

Dataflow programming — apart from being an intuitive specification mechanism for sig-

nal processing algorithms — has the obvious advantage that it exposes parallelism in the program.

There is a significant body of work on techniques for compile-time scheduling of dataflow graphs

on multiple processors (a few examples are [2, 3, 5, 6, 7]). In this paper we assume that we are

already given a multiprocessor schedule (which could be determined using the aforementioned

techniques, or even manually) along with the SDF description of an application. The main contri-

bution of this paper is to determine the pattern of inter-processor communication (IPC) in a multi-

processor executing the given SDF application according to the specified static schedule with the

intent of using this information to reduce run time IPC costs. Specifically, we determine the rela-

tive order (in time) in which the inter-processor communications specified by the multiprocessor

schedule occur or, equivalently, the order in which access to shared communication resources (for

example a shared bus in shared memory machines, or a shared communication link in an intercon-

nection network) is required by the processors. The order that we determine has the property that

if we force processors to access communication resources according to this order (as opposed to a

more flexible access scheme that places no restriction on the accesses), no penalty in performance

is incurred under certain assumptions on timing that we state and make. Determining such an

order during compile time and enforcing it at run time eliminates run time arbitration and syn-

chronization costs. This concept has been demonstrated in [10, 11], where the authors discuss the

design and implementation of a shared memory multiprocessor system optimized for parallel

3

implementation of embedded DSP applications specified as dataflow graphs. We discuss this mul-

tiprocessor further in Section 6.

Our communication or transaction ordering scheme applies to reducing IPC costs in

embedded systems that make use of multiple programmable processors (e.g. programmable DSP

chips), or a mix of programmable processors and custom VLSI parts (e.g. a dedicated FFT chip).

We assume communication occurs through shared memory over a single shared bus, because the

simplicity and low hardware cost of this approach makes it attractive, especially in embedded sce-

narios; however, the ideas we present here can be extended to multiprocessors that employ more

elaborate interconnection networks for IPC. The applications we consider in this paper are real-

time, where the final implementation of the algorithm must meet hard real-time deadlines to be

functionally correct. Reducing IPC costs is particularly important in such applications, because

there is usually a premium on processor cycles — for example, if we process audio at a sample

rate of 44 KHz on a multiprocessor that consists of processors with a 60 nanosecond cycle time,

we have an average of about 380 instructions per processor to complete all operations on each

audio sample. IPC can potentially waste precious processor cycles, negating some of the benefits

of using multiple processors.

The paper is organized as follows: in Section 2 we review dataflow semantics and the SDF

model, we state precisely what we mean by scheduling, and we introduce three compile time

scheduling approaches: fully-static, self-timed, and ordered transactions. Section 3 presents some

background terminology and notation; Sections 4-6 describe the three compile time scheduling

approaches in detail. Section 6 also introduces a graph theoretic inter-processor communication

model (the IPC graph), which is then used in Section 7 where we develop an efficient algorithm to

determine the access order for communication resources. Finally, Section 8 presents the summary

and conclusions.

2 Scheduling Dataflow graphs

We recall that in a dataflow representation an algorithm is represented as a graph where

vertices (actors in dataflow terminology) are individual computation tasks and directed arcs

4

between them represent flow of data (tokens). An actorfires (begins execution) when it has suffi-

cient tokens on its input arcs, and it produces tokens on its output arcs when it completes execu-

tion. SDF refers to a subclass of dataflow graphs where the actors lack data dependency in their

firing patterns: the number of tokens produced and consumed in each of the output and input arcs

of each actor is constant and fixed at compile time. SDF and closely related models have been

widely used for representing a significant class of digital signal processing (DSP) algorithms in

CAD tools for system-level simulation, design, and prototyping [12, 13, 14, 15]. In this paper we

assume that the application is a homogeneous SDF graph, i.e. a graph in which actors always pro-

duce and consume exactly one token; henceforth whenever we refer to a dataflow graph (DFG) we

imply a homogeneous SDF graph. There is no loss of generality in the homogeneity assumption,

because an arbitrary SDF graph can be efficiently transformed into a homogeneous graph [16].

The DFG corresponding to an application may be extracted directly from a block diagram specifi-

cation (e.g. in Ptolemy [12]) or from an applicative language like Silage (as done for example in

Hyper [17]). The dataflow graphs of interest for the purpose of representing DSP algorithms are

run repetitively in a non-terminating fashion (i.e. are iterative in nature); tokens flow from source

actors to sink actors continually. Aniteration refers to one complete execution of all the actors in

the DFG. These graphs are coarse grain; an atomic actor in the DFG may implement a filtering

function for example.

Multiprocessor implementation of an algorithm specified as a DFG involves scheduling

computations in the algorithm. By “scheduling” we collectively refer to the task of assigning

actors in the DFG to processors (theprocessor assignment step), ordering execution of these

actors on each processor (theactor ordering step), and determining exactly when each actor fires

such that all data precedence constraints are met. Each of these three tasks may be performed

either at run time (a dynamic strategy) or at compile time (static strategy). In [18] and [10] the

authors propose a scheduling taxonomy based on which of these tasks are performed at compile

time and which at run time; in this paper we use the same terminology that was introduced there.

To reduce run time computation costs it is advantageous to perform as many of the three schedul-

ing tasks as possible at compile time, especially in the context of algorithms that have hard real-

time constraints. Which of these can be effectively performed at compile time depends on the

information available about the execution time of each actor in the DFG.

5

The performance metric of interest for evaluating schedules is the average iteration period

: the average time it takes for all the actors in the graph to be executed once. Equivalently, we

could use the throughput (i.e. the number of iterations of the graph executed per unit time) as

a performance metric. Thus an optimal schedule is one that minimizes .

In this paper we focus on scheduling strategies that perform processor assignment and

actor ordering, both at compile time, because these strategies appear to be most useful for a signif-

icant class of real time DSP algorithms. Although assignment and ordering performed at run time

would in general lead to a more flexible implementation (because a dynamic strategy can allow

for run time variations in computation load and for operations that display data dependencies) the

overhead involved in such a strategy is usually prohibitive and real-time performance guarantees

are difficult to achieve. We therefore concentrate on three scheduling strategies that do the assign-

ment and ordering steps at compile time: fully-static, self-timed, and ordered transactions. In the

fully-static (FS) strategy, the exact firing time of each actor is also determined at compile time.

Such a scheduling style is used in the design of systolic array architectures, for scheduling VLIW

processors, and in high-level VLSI synthesis of applications that consist only of operations with

guaranteed worst-case execution times. In the self-timed (ST) strategy we retain the processor

assignment and actor ordering specified by the FS schedule, but we discard the precise firing

times it specifies. Instead, processors determine when to fire an actor by synchronizing with other

processors at run time. Such a scheme is employed in wavefront arrays, for example. The ordered

transactions (OT) approach falls in between these two strategies; in this approach we determine,

based on compile time analysis, an order in which the processors should communicate, and we

enforce this pre-determined order at run time. We term this order thetransaction order.

The FS strategy works only if actor execution time estimates are accurate and data-inde-

pendent or if tight worst-case estimates are available, whereas the ST strategy is tolerant of varia-

tions in execution times of actors, and so is the ST schedule. The ST strategy is the least

constrained scheme among all schedules that have the same processor assignment and actor order-

ing, because in this scheme processors communicate and fire actors as soon as data is available,

and hence the only constraints on run time execution are due to data dependencies. Consequently,

if we ignore IPC costs in a self-timed schedule, we obtain a lower bound on the iteration period

T

T
1–

T

6

achievable by any schedule for the given processor assignment and actor ordering. We discuss this

issue further in Section 5.

The IPC costs are smallest for the FS strategy, comparable (but larger than FS) for the OT

strategy, and in general significantly larger for the ST strategy. The FS and the OT strategies

require the order of a few instruction cycles for IPC, whereas the ST strategy consumes tens of

instruction cycles in typical implementations. In the following sections, we discuss how the

higher run time overhead arises for the ST schedule when compared to the FS and OT approaches.

In the analysis that follows, however, we ignore the IPC costs in all the three strategies. Doing so

allows us to compare the FS and the OT strategies with the idealized self-timed strategy, and

hence their iteration periods with the lowest attainable iteration period (the lower bound).

We assume we have reasonably good estimates of actor execution times available to us at

compile time; however, these estimates need not be exact, and execution times of actors may even

be data-dependent. Thus we allow actors that have different execution times from one iteration of

the DFG to the next, as long as these variations are small or rare. This is typically the case when

estimates are available for the task execution times, and actual execution times are close to the

corresponding estimates with high frequency, but deviations from the estimates of (effectively)

arbitrary magnitude can occasionally occur due to phenomena such as cache misses, interrupts,

user inputs or error handling. Thus tight worst-case execution time bounds cannot generally be

determined for such operations; however, reasonably good execution time estimates can in fact be

obtained for these operations, so that static assignment and ordering techniques are viable. Empir-

ical evidence indicates that such a model for actor execution times applies to most DSP applica-

tions that are represented as SDF graphs and are implemented on programmable processors [12,

13, 15]. For such applications the performance penalty due to lack of dynamic load balancing is

overcome by the much smaller run time scheduling overhead involved when static assignment and

ordering is employed.

In the analysis that follows, we develop a model to determine the iteration period of the

three scheduling strategies: , , and ; however, since we only have estimates for actor

execution times, the values we obtain for , , and are only estimates. These estimates

will be close to their actual values if the estimates of execution times of actor available to us at

TFS TOT TST

TFS TOT TST

7

compile time are close to their respective run time values. Although the FS strategy, which

requires tight worst-case bounds on actor execution times, cannot be used if we allow actors that

display variability, we still determine an FS schedule utilizing the available time estimates as a

first step towards obtaining an ST or OT schedule: after computing the FS schedule, we simply

discard the timing information that is not required.

In Section 6 we show that the relation holds in general for a given pro-

cessor assignment and actor ordering. We then show how we can obtain an OT schedule that has

an iteration period close to the lower bound . Specifically, we show how to determine a trans-

action order such that holds (is the smallest integer greater than).

Thus we show how to find a near optimal transaction order for a given processor assignment, actor

ordering, and set of actor execution time estimates. The “optimality” is in the sense that the itera-

tion period lies within one time unit of its lower bound when the actor execution times

at run time are equal to their compile time estimates.

3 Notation

The DFG (assumed to be a homogeneous SDF graph in this paper) is represented as a

weighted digraph where the vertices represent the actors, and directed edges

 (is an edge directed from vertex to) represent the data depen-

dencies in . The function , where is the set of non-negative integers, assigns an

execution time to each actor (the actual execution time can be interpreted as cycles of a

base clock), and the function assigns initial tokens to each edge of

. Initial tokens specify data dependencies across iterations of the DFG. For example, if tokens

produced by the th execution of actor are consumed by the th execution of actor ,

then the edge contains two initial tokens, i.e. . We represent initial tokens

on arcs by bullets on the edges of the DFG. Every edge of represents theprecedence

constraint:

, (1)

TFS TOT TST≥ ≥

TST

TST TOT TST≤ ≤ TST TST

TOT TST

G V E,()= v V∈

vj vi,() E∈ vj vi,() vj V∈ vi V∈

G t v() Z
+∈ Z

+

v t v()

d vj vi,() Z
+∈ vj vi,() E∈

G

k A k 2+() B

A B,() d A B,() 2=

vj vi,() G

start vi k,() end vj k vj vi,()d–,()≥ k vj vi,()d≥∀

8

where the function represents the time that the th execution of the actor

starts; and represents the time the th execution of completes. We set

 and for as “initial conditions.” Any multiprocessor sched-

ule, in order to correctly implement the computation that specifies, must respect the prece-

dence constraints implied by the edges of (i.e. must satisfy (1)). The FS scheduling strategy

enforces these constraints by computing appropriate values at compile time and

enforcing them at run time. In the ST strategy, processors synchronize at run time to ascertain that

the precedence constraints are met, whereas in the OT strategy, precedence constraints are guaran-

teed by the transaction order that we impose at run time.

We define a path " " directed from to in to be a finite, nonempty

sequence of edges , where . Each ver-

tex is said to beon the path , and we indicate this by " ". A path directed from a vertex

to itself is called a cycle. The total number of tokens on a path is denoted by , i.e.

.

Recall that the semantics of a DFG is that an actor can begin execution when it has

tokens on all its input arcs, and it produces one token on each of its output arcs time units

after it begins execution. In the absence of precise timing information, we set equal to the

estimated execution time of actor .

4 Fully-static schedule

In the fully-static scheduling strategy all the three scheduling operations — assigning

actors to processors, ordering of actors on processors, and determining when each actor fires —

are performed at compile time [10]. Such a strategy is employed in VLIW arrays [3], and systolic

arrays [19, 20]. The classic controller/datapath architecture is also in a sense an example of fully-

static scheduling: the controller determines what each functional unit in the datapath does during

each clock cycle. Although determining an optimal fully-static schedule (essentially a resource

constrained multiprocessor scheduling problem) is NP-hard, several polynomial-time heuristics

have been proposed for this problem. Some of these heuristics, e.g. Hu’s classic list scheduling

start v k,() Z
+∈ k v

end v k,() Z
+∈ k v

start v k,() 0= end v k,() 0= k 0<

G

G

start v k,()

p v1 vn 1+ V E,()

v1 v2,() v2 v3,() v3 v4,()… vn vn 1+,()() vk vk 1+,() E∈

vk p vk p∈

p D p()

D p() d vi vj,()
vi vj,() p vi vj,() E∈,∈

∑=

v

t v()

t v()

v

9

technique [21] and Sih’s scheduling heuristics that take IPC costs into account [2], generate a

schedule assuming the program terminates after a finite number of iterations. Others explicitly

take overlapping of successive iterations of the DFG into account, for example the techniques in

[3, 4, 5] adapt list scheduling to generate overlapped schedules. Thus, if processors are avail-

able, these heuristics determine the processor assignment for each actor

, and specify when the th invocation of each actor starts (). Since the firing times

are enforced by a finite state controller in practice, a fully-static schedule is also constrained to be

periodic, i.e. ; is the starting time of the first execution of

actor (i.e.) and is the iteration period. The function and the

 values are chosen so that all data precedence constraints (of equation (1)) and resource

constraints are met in the final schedule. Thus a fully-static schedule specifies the triple

. Clearly, the throughput for such a schedule is .

An example of a fully-static execution of a DFG is shown in the Gantt chart in Fig. 1: Fig.

1(c) is one possible fully-static schedule on five processors for the graph of Fig. 1(a). Edges in

 that cross processor boundaries after scheduling represent IPC; we call such edgesIPC edges.

Inter-processor communication primitives (send andreceive actors) need to be inserted when data

cross processor boundaries. The fully-static schedule specifies exactly when these communica-

tions occur. If we ignore communication costs, i.e. assumesends andreceives take negligible

time, then for this example is 11 units. The and values are as follows:

, , , , and

;

, , , , and

.

In some cases it is advantageous tounfold a graph by a certain unfolding factor, say , and

schedule iterations of the graph together in order to exploit inter-iteration parallelism more

effectively [16, 6]. The unfolded graph contains copies of each actor of the original graph. In

this case and are defined for all the vertices of theunfolded graph (i.e. and are

defined for invocations of each actor); is the iteration period for the unfolded graph, and

the average iteration period for the original graph is then . In the remainder of this paper, we

P

σp v() 1 2 … P, , ,[]→

v k start v k,()

start v k,() σt v() kTFS+= σt v()

v start v 0,() σt v()= TFS σp v()

σt v()

σp v() σt v() TFS,,{ } TFS
1–

G

G

TFS σp σt

σp A() σp E() 1= = σp B() σp F() 2= = σp C() σp G() 3= = σp D() 4=

σp H() 5=

σt A() 7= σt B() σt D() σt G() σt H() 0= = = = σt C() 6= σt E() 3=

σt F() 5=

u

u

u

σp σt σp σt

u TFS
TFS

u

10

assume we are dealing with the unfolded graph and we refer only to the iteration period and

throughput of the unfolded graph, with the understanding that these quantities can be scaled by

the unfolding factor to obtain the corresponding quantities for the original graph.

Fully-static scheduling requires accurate estimates of execution times of actors and

requires that actors have constant, data-independent execution times, because the timings speci-

fied by the fully-static schedule () guarantee correct sender-receiver synchronization only when

the execution time estimates are accurate and constant. One way to get around this problem is to

use guaranteed worst-case execution time estimates when computing the FS schedule. Such

worst-case estimates are often used when scheduling hardware in high-level synthesis [22]. For

programmable processors, however, determining tight upper bounds on execution times is not

always possible — when the object code is compiled from a high level language for example, or

when processors employ pipelining and other instruction-level parallelism techniques, or due to

A

B

E D

C

Proc 1

Proc 4

Proc 3

Proc 2

Execution Times

A , B, F

C, H : 5
•

•

Figure 1.Fully-static schedule on five processors

: 6D

: 2G

t
5 10 15 200

TFS=11

= Idle

D

C

B F

G

H

E AProc 1

Proc 2

Proc 3

Proc 4

Proc 5

E

D

C

B F

G

H

A

D

C

B F

G

H

E A

D

C

B F

G

H

E A

E
G

H

•

F
Proc 5

Proc 1

Proc 2

Proc 3

Proc 4

Proc 5

(a) DFG “G” (b) Static schedule

(c) Fully-static execution

s1

r1

s2

r2

s3

r3

s4

r4

s5

r5

s6

s6

: 4

: 3

σt

11

phenomena such as cache misses or error handling. The strategy described next is more robust to

changes in execution times of actors, but it achieves this flexibility at a greater run time cost.

5 Self-timed schedule

The fully-static approach introduced in the previous section cannot be used when actors

have variable execution times, because the FS approach will not guarantee sender-receiver syn-

chronization in such a situation. An obvious strategy for solving this problem is to introduce

explicit synchronization whenever processors communicate. This leads to the self-timed schedul-

ing strategy of [18]. In this strategy we first obtain an FS schedule using the execution time esti-

mates, but we only retain the processor assignment and the ordering of actors on each

processor as specified by , and discard the precise timing information specified in the fully-

static schedule. Each processor is assigned a sequential list of actors, some of which aresend and

receive actors, that it executes in an infinite loop. When a processor executes a communication

actor, it synchronizes with the processor(s) it communicates with. Thus exactly when a processor

executes each actor depends on when, at run time, all input data for that actor are available, unlike

the fully-static case where no such run time check is needed. Conceptually, the processor sending

data writes data into a FIFO (first-in-first-out) buffer, and blocks when that buffer is full. The

receiver on the other hand blocks when the buffer it reads from is empty. Such buffers may be

implemented using shared memory, or by using hardware FIFOs between processors. It is possi-

ble to optimize (minimize) buffer sizes such that the throughput is not constrained by the fact that

buffer sizes are bounded [23]; however, since we are mainly interested in determining the best

performance achievable by a ST strategy, we do not consider buffer optimization in this paper.

Instead, we assume that the buffers are large enough so that their finite sizes do not affect the

throughput of the system of processors. Such an ST strategy is used in wavefront arrays [23], and

in situations where a fully-static approach is impractical due variability in execution times of

operations.

An ST strategy is robust with respect to changes in execution times of actors, because

sender-receiver synchronization is performed at run time. Such run time synchronization, how-

ever, implies higher IPC costs compared to the fully-static strategy because of the need for syn-

σp

σt

12

chronization (e.g. using semaphore management). In addition the ST strategy faces arbitration

costs: the FS schedule guarantees mutually exclusive access of shared communication resources,

whereas shared resources need to be arbitrated at run time in the ST schedule. Consequently,

whereas IPC in the FS schedule simply involves reading and writing from shared memory (no

synchronization or arbitration needed), implying a cost of a few processor cycles for IPC, the ST

strategy requires of the order of tens of processor cycles, unless special hardware is employed for

synchronization and arbitration [11].

Another feature of the ST strategy is that, since processors do not re-synchronize at the

end of each iteration of the DFG (there is no need for such synchronization), successive iterations

of the DFG overlap in a natural manner. Fig. 2 shows how the ST schedule corresponding to the

fully-static schedule in Fig. 1 evolves. This is of course an idealized scenario where IPC costs are

ignored; these costs are not negligible in practice as mentioned before. Note that the ST schedule

in Fig. 2 eventually settles to a periodic pattern consisting of two iterations of the DFG. It can be

shown that a ST schedule always settles down into a periodic execution pattern, but the number of

iterations spanned by the periodic repeating pattern can be exponential in the size of the DFG

[24]. From Fig. 2, therefore, the average iteration period under the self-timed schedule is 9 units.

The average iteration period () for such an idealized self-timed schedule represents alower

bound on the iteration period achievable byany schedule that maintains the same processor

assignment and actor ordering. This is because the only run time constraint on processors that the

ST schedule imposes is due to data dependencies: each processor executes actors assigned to it

(including the communication actors) according to the prescribed actor ordering as soon as data is

available for each actor. Any other schedule that maintains the same processor assignment and

actor ordering, and respects data precedences in , cannot result in an execution where actors fire

earlier than they do in the idealized ST schedule. Thus among all schedules with the same proces-

sor assignment and actor ordering, the idealized ST schedule achieves the minimum iteration

TST

G

13

period. In particular, the overlap of successive iterations of the DFG in the idealized ST schedule

ensures that .

We would like to maintain the unconstrained execution of the self-timed schedule, and

also eliminate the high IPC overhead that this strategy involves. To do this, we first develop an

analytical model for self-timed execution.

The values in the ST schedule are determined by how the schedule evolves at

run time as opposed to the FS schedule where these values are computed at compile time and

enforced at run time. We model the evolution of a ST schedule using a DFG

derived from the original SDF graph . The graph , which we refer to as theIPC

graph, models the sequential execution of the actors of assigned to the same processor, and it

models constraints due to IPC.

The IPC graph has the same vertex set as . The ST schedule specifies the actors

assigned to each processor, and the order in which they execute. For example in Fig. 1, Processor

1 executes and then repeatedly. We model this in by constructing a cycle around the

vertices corresponding to and , and placing a delay on the edge from to . The delay-free

edge from to represents the fact that the th execution of precedes the th execution of

, and the edge from to with a delay represents the fact that the th execution of can

occur only after the th execution of has completed. Thus if actors are

assigned to the same processor in that order, then would contain a cycle

, with . This reflects the fact that

actors assigned to the same processor run sequentially.

D

C

B F

G

H

E

D

B

H

EA

CG

F

TST = 9

D

C

B F

G

H

E

D

B

H

EA

CG

F

AProc 1

Proc 2
Proc 3

Proc 4

Proc 5

Figure 2.Self-timed schedule

18

TST TFS≤

start v k,()

Gipc V Eipc,()=

G V E,()= Gipc

G

V G

E A Gipc

E A A E

E A k E k

A A E k E

k 1–() A v1 v2 … vn, , ,

Gipc

v1 v2,() v2 v3,() … vn 1– vn,() vn v1,(), , , ,() d vn v1,() 1=

14

For each IPC edge in we add an IPC edge in between the same actors. We also

set equal to the delay on the corresponding edge in . Thus in the example of Fig. 1 we

add an IPC edge from to in with a single delay on it. The delay corresponds to the fact

that execution of is allowed to lag the execution of by one iteration. An IPC edge represents

a buffer implemented in shared memory, and initial tokens on the IPC edge are used to initialize

the shared buffer. IPC can be modeled explicitly by includingsend andreceive actors in , and

IPC costs can be modeled by setting execution times of these actors appropriately.

 for the example of Fig. 1(a), (b) is shown in Fig. 3; communication actors are not

included for the sake of clarity. Note, for instance, that actors B and F are linked into a cycle in

, reflecting the fact that they are both assigned to the same processor (Proc 2). Also, note that

the initial token is placed on the input arc of B; this ensures that the th firing of B always pre-

cedes the th firing of F on Proc 2.

As per dataflow semantics each edge of represents the precedence constraint

(similar to equation (1)):

, (2)

The constraints in (2) are both due to IPC edges (representing synchronization between

processors) and due to edges that represent serialization of actors assigned to the same processor.

Since in the ST schedule actors fire as soon as data is available at all their input edges, the evolu-

tion of the ST scheduled is precisely modeled by the “as soon as possible” (ASAP) execution of

. Since the execution time of an actor is , we can substitute

G e Gipc

d e() G

E D Gipc

E D

Gipc

Gipc

Gipc

k

A

B

E D

C

•

•
G

H

•

F

A

B

E D

C

Proc 1

Proc 4

Proc 3

Proc 2

•

•
G

H

•

F
•

•

•

•

•

Figure 3.Construction of from and from the static scheduleGipc G

Gipc

Proc 5

D
C

B F
G

H

E AProc 1

Proc 2
Proc 3

Proc 4

Proc 5

k

vj vi,() Gipc

start vi k,() end vj k vj vi,()d–,()≥ k vj vi,()d≥∀

Gipc v t v()

15

in (2) to obtain

(3)

ASAP execution implies:

(4)

 is really an instance of Reiter’s “computation graph” [26], also known as a “Timed

Marked graph” in Petrinet theory [24, 25] (the vertices correspond to the transitions in the marked

graph, edges correspond to places, and the initial tokens correspond to the initial marking). It is

well known (from these references among others) that the average iteration period for the ASAP

execution of such a graph is given by:

(5)

Note that for every cycle in if the schedule is deadlock free, because a cycle

with zero delay implies a circular dependency in the schedule. The quantity on the right hand side

of (5) is commonly referred to as themaximum cycle mean of . A cycle in that maxi-

mizes the quotient in the RHS of (5) is called acritical cycle.

We refer to [24, 26, 25] for the proof of (5). If we only have execution time estimates

available instead of exact values, and we set above to be these estimated values, then we

obtain theestimated iteration period by calculating .

For example, the value of obtained from in Fig. 3 is 9 units (corresponding to

the critical cycle B→E→D→C→B, which has total weight of 18 and has two initial tokens on it).

Thus the average iteration period for the ST schedule of Fig. 2 is 9. Note that is a rational

number, but it is not necessarily an integer.

end vj k,() start vj k,() t vj()+=

start vi k,() start vj k vj vi,()d–,() t vj()+≥ vj vi,() Eipc∈∀

start vi k,() start vj k vj vi,()d–,() t vj()+ vj vi,() Eipc∈{ }max=

Gipc

TST
max

cycle C inGipc
=

t v()
v C∈
∑
D C()

 
 
 
 
 

D C() 0> C Gipc S

Gipc Gipc

t v()

TST

TST Gipc

TST

16

6 Ordered transactions

The self-timed scheduling strategy in the previous section introduces synchronization

checks whenever processors communicate in order to allow for variations in actor execution

times. These checks introduce run time synchronization and arbitration costs. The ordered trans-

actions (OT) strategy alleviates some of these costs, and in doing so, trades off some of the flexi-

bility afforded by the ST approach. In the OT strategy we first obtain a fully-static schedule using

the execution time estimates, but we discard the precise timing information specified in the fully-

static schedule; we retain the processor assignment () and actor ordering on each processor as

specified by ; and, in addition, we also retain the order in which processors communicate with

one another and we enforce this order at run time [10]. We formalize the concept of transaction

order below.

Suppose there are IPC edges — where each is a

send-receive pair — in the FS schedule we obtain. Let be the set ofreceive actors, and be the

set ofsend actors (i.e. and). We define atransaction

order to be a sequence , where

 (each communication actor is present in the sequence). We

say a transaction order (as defined above) isimposed on a multiprocessor if at run time the

send and receive actors are forced to execute in the sequence specified by . That is, if

, then imposing means ensuring the constraints:

, , , ;

.

The OT schedule can be viewed as an ST schedule with the added transaction order con-

straints specified by . Recall that an ST schedule is modeled using the construction . Also,

an edge in that has represents the constraint

, as per equation (2). Imposing a transaction order can there-

fore be modeled by adding a set of edges between thesend andreceive actors in . Thus, just

as the ST schedule was described by , the OT schedule is described by

, where are the edges due to the transaction order constraints.

σp

σt

k s1 r1,() s2 r2,() … sk r k,(), , , si r, i()

R S

R r1 r2 … r k, , ,{ }≡ S s1 s2 … sk, , ,{ }≡

O v1 v2 v3 … v2k 1– v2k, , , , ,()=

v1 v2 … v2k 1– v2k, , , ,{ } S R∪≡ O

O

O

O v1 v2 v3 … v2k 1– v2k, , , , ,()= O

end v1 k,() start v2 k,()≤ end v2 k,() start v3 k,()≤ … end vk 1– k,() start vk k,()≤

k 0≥∀

O Gipc

vi vj,() Gipc d vi vj,() 0=

start vj k,() end vi k,()≥ k 0≥∀ O

Gipc

Gipc V Eipc,()=

V Eipc EOT∪,() EOT

17

After an FS schedule is obtained using the execution time estimates, the transaction order

is obtained from the function of the FS schedule: we simply set the transaction order to be

 such that

.

The transaction order can therefore be determined by sorting the set of communication actors

() according to their start times . Fig. 4 shows an example of how such an order could be

derived from a given static schedule.

The transaction order is enforced at run time by a controller implemented in hardware.

The main advantage of ordering inter-processor transactions is that it allows us to restrict access

to communication resources statically, based on the communication pattern determined at compile

time. Since communication resources are typically shared between processors, run time conten-

tion for these resources is eliminated by ordering processor accesses to them; this results in an

efficient IPC mechanism at low hardware cost. We have built a prototype four processor DSP

board, called the Ordered Memory Access (OMA) architecture, that demonstrates the ordered

transactions concept. The OMA board utilizes shared memory and a single shared bus for IPC —

the sender writes data to a particular shared memory location and the receiver reads that location.

In this multiprocessor a very simple controller on the board enforces the pre-determined transac-

tion order at run time, thus eliminating the need for run time bus arbitration or semaphore syn-

chronization. This results in efficient IPC (comparable to the FS strategy) at relatively low

hardware cost. The OMA multiprocessor is described in detail in [11].

σt

O v1 v2 v3 … v2k 1– v2k, , , , ,()=

σt v1() σt v2() … σt v2k 1–() σt v2k()≤ ≤ ≤ ≤

S R∪ σt

Transaction order:

Figure 4. One possible transaction order derived from the fully-static schedule

E

D

C

B F

G

H

AProc 1

Proc 2

Proc 3

Proc 4

Proc 5

s1

r1

s2

r2

s3

r3

s4

r4

s5

r5

s6

s6

s1 r1, s2 r2 s3 r3 s4 r4 s5 r5 s6 r6, , ,, , , , , , ,()

18

As in the ST scenario, the OT strategy is tolerant of variations in execution times of actors,

because the transaction order enforces correct sender-receiver synchronization; however, this

strategy is more constrained than ST scheduling, which allows the order that communication

actors fire to vary at run time. This is also apparent from our graph based execution model: the

IPC graph for the OT schedule has additional constraint edges . For example, the transaction

order in Fig. 4 enforces the order , but the ST schedule

allows reordering among these IPCs at run time. In fact we observe from Fig. 2 that once the ST

schedule settles into a periodic pattern, IPCs in successive iterations are ordered differently: in the

first iteration the order in which IPCs occur is indeed ,

but this order changes in successive iterations; once the schedule settles into a periodic pattern,

the order alternates between:

 and . In con-

trast, if we use the order in Fig. 4 as the transaction order, the resulting OT schedule evolves as

shown in Fig. 5. Notice that enforcing this schedule introduces idle time; as a result, the average

iteration period, , is 10 units, which is of course larger than the iteration period of the ideal

ST schedule (9 units) but is smaller than (11 units). In general : the ST

schedule only has assignment and ordering constraints, the OT schedule has the transaction order-

ing constraints in addition to the constraints in the ST schedule, whereas the FS schedule has

exact timing constraints that subsume the constraints in the ST and OT schedules.

EOT

s1 r1, s2 r2 s3 r3 s4 r4 s5 r5 s6 r6, , ,, , , , , , ,()

s1 r1, s2 r2 s3 r3 s4 r4 s5 r5 s6 r6, , ,, , , , , , ,()

s3 r3, s1 r1, s2 r2 s4 r4 s6 r6 s5 r5, , ,, , , , , ,() s1 r1, s3 r3, s4 r4 s2 r2 s5 r5 s6 r6, , ,, ,, , , ,()

TOT

TST TFS

Proc 1
Proc 2
Proc 3
Proc 4

Proc 5
D

C
B F
G

H

E

D

B

H

EA

CG
F

D

G

A
B

H

E
F

C

D

A

H

B
G C

F
E

G

H

D

B
A

TOT = 10 = idle time due to ordering
 constraint

Figure 5. Schedule evolution when the transaction ordering of Fig. 4 is enforced

20

TFS TOT TST≥ ≥

19

The ordered transactions strategy, therefore, falls in between fully-static and self-timed

strategies in that, like the ST strategy, it is tolerant of variations in execution times and, like the FS

strategy, has low communication and synchronization costs. The OT strategy is not as flexible as

ST, because the order in which processors access shared resources is forced at run time to exactly

match the order determined at compile time.

Recall that the OT schedule is obtained by first determining a fully-static schedule and

then discarding the precise firing time information, and can therefore be viewed as a self-timed

schedule with the added transaction order constraints. Clearly there is some flexibility in the trans-

action order we choose at compile time. The question then is: how do we pick one that is the

“best” in the sense that the restrictions imposed by it do not sacrifice throughput. In other words,

how do we pick a transaction order such that the resulting OT schedule has iteration period close

to , at least when execution times of actors are equal to their estimated values. One possibility

is to derive the transaction order from the repeating pattern that the ST schedule settles into. That

is, instead of using the transaction order of Fig. 4, if we enforce the transaction order that repeats

over two iterations in the evolution of the ST schedule of Fig. 2, the OT schedule would “mimic”

the ST schedule exactly, and we would obtain an OT schedule that performs as well as the ideal

ST schedule, and yet involves low IPC costs in practice. Unfortunately, the number of iterations

that the repeating pattern spans depends on the structure of , and it can be exponential in the

size of the DFG [24]. Consequently the memory requirements on the controller that enforces the

transaction order can be prohibitively large in certain cases. We therefore restrict ourselves to

determining and enforcing a transaction order that spans only one iteration of the DFG; the fol-

lowing section discusses how such an “optimal” transaction order is obtained.

7 Optimal ordering

 To summarize the previous sections, the fully-static schedule has the least run time over-

head for IPC, but is not practical when tight worst-case execution time bounds are not available

for all actors; the self-timed schedule retains only the processor assignment and ordering from the

FS schedule, hence is more flexible, but has higher run time overhead. The ordered transactions

approach lies in between.

TST

Gipc

20

The ordered transactions strategy is cheaper in terms of IPC costs than the self-timed

approach; however, the ST approach is more flexible, and if we ignore its more expensive IPC

mechanism, the average iteration period of the OT scheme may be larger than that of the ST, as

shown in the example of Fig. 5. In this section we show how to determine an order on the IPCs

in the schedule such that, even if we ignore the larger communication costs associated with the ST

schedule, imposing yields an OT schedule that has iteration period within one unit of the ideal

ST schedule (). Thus imposing the order we determine results in essentially

no loss in performance over an unrestrained schedule, and at the same time we get the benefit of

cheaper IPC.

It should be noted, however, that the resulting transaction-ordered schedule is more sensi-

tive to variations in execution times: even though the computations performed using the OT

schedule are robust with respect to execution time variations (the transaction order ensures correct

sender-receiver synchronization), the ordering restriction makes the iteration period more depen-

dent on execution time variations than the ideal ST schedule. Nevertheless, if the actual execution

times do not deviate significantly from the estimated values, the difference in performance of the

ST and OT strategies is minimal. If the execution times do in fact vary significantly, then even an

ST strategy is not practical: it then becomes necessary to use a more dynamic strategy such as

static assignment or fully dynamic scheduling [4] to make the best use of computing resources. It

is possible to quantify the effects of variations in actor execution times on the average throughput

achieved by an ST or an OT schedule; such an analysis is however beyond the scope of this paper.

Instead, we simply assume that the variations in execution times are small enough so that an ST or

an OT strategy is viable. Under this assumption we argue that it is in fact wiser to use the OT strat-

egy rather than ST because of the cheaper IPC of the OT strategy, and because of our ability to

determine the transaction order such that the ordering constraints do not sacrifice perfor-

mance: if the execution times of actors are close to their estimates, the OT schedule with as the

transaction order has iteration period close to the minimum achievable period .

Our approach to determining the transaction order is to modify a given fully-static

schedule so that the resulting FS schedule has equal to , and then to derive the transac-

tion order from that modified schedule. Intuitively it appears that, for a given processor assign-

O*

O*

TST TOT TST≤ ≤

O*

O*

TST

O*

TFS TST

21

ment and ordering of actors on processors, the ST approachalways performs better than the FS or

OT approaches () simply because it allows successive iterations to overlap. The

following result, however, tells us that it is always possible to modify any given fully-static sched-

ule so that it performs nearly as well as its self-timed counterpart. Stated more precisely:

Claim 1: Given a fully-static schedule , let be the average itera-

tion period for the corresponding ST schedule (as mentioned before,). Suppose

; then, there exists a valid fully-static schedule that has the same processor assign-

ment as , the same order of execution of actors on each processor, but an iteration period of

. That is, where, if actors , are on the same processor

(i.e.) then . Furthermore, is obtained

by solving the following set of linear inequalities for :

.

Proof: Let have a period equal to . Then, under the schedule , the th starting time of actor

 is given by:

(6)

Also, data precedence constraints imply (as in equation (3)):

(7)

Substituting (6) in (7):

That is:

(8)

Note that the construction of ensures that processor assignment constraints are automatically

met: if and is to be executed immediately after then there is an edge

 in . The relations in (8) represent a system of inequalities in unknowns

(the quantities).

TFS TOT> TST>

S σp v() σt v() TFS,,{ }≡ TST

TFS TST≥

TFS TST> S′

S

TST S′ σp v() σ′t v() TST,,{ }≡ vi vj

σp vi() σp vj()= σt vi() σt vj()> σ′t vi() σ′t vj()>⇒ S′

σ′t

σ′t vj() σ′t vi() TST d vj vi,()× t vj() for each edgevj vi,()in Gipc–≤–

S′ T S′ k

vi

start vi k,() σ′t vi() kT+=

start vi k,() start vj k vj vi,()d–,() t vj() for each edgevj vi,() in Gipc+≥

σ′t vi() kT+ σ′t vj() k vj vi,()d–()T t vj() vj vi,()∀ ∈ Eipc+ +≥

σ′t vj() σ′t vi() T d vj vi,()× t vj() vj vi,()∀ ∈ Eipc–≤–

Gipc

σp vi() σp vj()= vi vj

vj vi,() Gipc Eipc V

σ′t vi()

22

The system of inequalities (8) is a difference constraint problem that can be solved in

polynomial time () using the Bellman-Ford shortest-path algorithm [27, 28]. The

details of this approach are well described in [28]; the essence of it is to construct a constraint

graph that has one vertex for each unknown . Each difference constraint is then repre-

sented by an edge between the vertices corresponding to the unknowns, and the weight on that

edge is set to be equal to the RHS of the difference constraint. A “dummy” vertex is added to the

constraint graph, and zero weight edges are added from the dummy vertex to each of the remain-

ing vertices in the constraint graph. Then, setting the value of to be the weight of the

shortest path from the dummy vertex to the vertex that corresponds to in the constraint

graph results in a solution to the system of inequalities, if indeed a solution exists. A feasible solu-

tion exists if and only if the constraint graph does not contain a negative weight cycle [28], which

is equivalent to the following condition:

; and, from (5), this is equivalent to .

If we set , then the right hand sides of the system of inequalities in (8) are inte-

gers, and the Bellman-Ford algorithm yields integer solutions for . This is because the

weights on the edges of the constraint graph, which are equal to the RHS of the difference con-

straints, are integers if is an integer; consequently, the shortest paths calculated on the con-

straint graph are integers.

Thus is a valid fully-static schedule. ❒

Remark:Claim 1 essentially states that an FS schedule can be modified by skewing the relative

starting times of processors so that the resulting schedule has iteration period less than

; the resulting iteration period lies within one time unit of its lower bound for the spec-

ified processor assignment and actor ordering. It is possible to unfold the graph and generate a

fully-static schedule with average period exactly , but the resulting increase in code size is

usually not worth the benefit of (at most) one time unit decrease in the iteration period.

O Eipc V()

σ′t vi()

σ′t vi()

σ′t vi()

T
max

cycle C inGipc

t v()
v C∈
∑
D C()

 
 
 
 
 

≥ T TST≥

T TST=

σ′t v()

T

S′ σp v() σ′t v() TST,,{ }≡

TST 1+()

TST

23

For example the static schedule corresponding to Fig. 1 has units.

Using the procedure outlined in Claim 1, we can skew the starting times of processors in the

schedule to obtain a schedule , as shown in (7), that has a period equal to 9 units. Note that

the processor assignment and actor ordering in the schedule of Fig. 6 is identical to that of the

schedule in Fig. 1. The values are: , , ,

, , , and .

Claim 1 may not seem useful at first sight: why not obtain a fully-static schedule that has a

period to begin with, thus eliminating the post-processing step suggested in Claim 1?

Recall from Section 3.0 that an FS schedule is usually obtained using heuristic techniques that are

either based on blocked non-overlapped scheduling (which use critical path based heuristics) [2]

or are based on overlapped scheduling techniques that employ list scheduling heuristics [3, 5].

None of these techniques guarantee that the generated FS schedule will have an iteration period

within one unit of the period achieved if the same schedule were run in a self-timed manner. Thus

for a schedule generated using any of these techniques, we might be able to obtain a gain in per-

formance, essentially for free, by performing the post-processing step suggested in Claim 1. What

we propose can therefore be added as an efficient post-processing step in existing schedulers. Of

course, an exhaustive search procedure like the one proposed in [7] will certainly find the sched-

ule directly.

We set the transaction order to be the transaction order suggested by the modified

schedule (as opposed to the transaction order from used in Fig. 5). Thus

. Imposing the transaction order as in Fig. 6

S TFS 11 TST> 9= =

S S′

Proc 1

Proc 2
Proc 3

Proc 4

Proc 5

D

C

B F

G

H

E

D

B

H

EA

CG

F

A

D

C

B F

G

H

E A

D

C

B F

G

H

E A

9

Figure 6.Modified scheduleS′

σ′t v() σ′t A() 9= σ′t B() σ′t G() 2= = σ′t C() 6=

σ′t D() 0= σ′t E() 5= σ′t F() 8= σ′t H() 3=

TST

S′

O*

S′ S

O* s1 r1 s3 r3 s2 r2 s4 r4 s6 r6 s5 r5, , ,, ,, ,, ,, ,()= O*

24

results in of 9 units instead of 10 that one gets if the transaction order of Fig. 4 is used. Under

the transaction order specified by , ; thus imposing the order ensures

that the average period is within one unit of the unconstrained ST strategy. Again, unfolding may

be required to obtain a transaction ordered schedule that has period exactly equal to , but the

extra cost of a larger controller (to enforce the transaction ordering) outweighs the small gain of at

most one unit reduction in the iteration period, unless is close to 1 (), which is a rare

situation. Thus for all practical purposes is theoptimal transaction order. The “optimality” is

in the sense that the transaction order we determine statically is the best possible one, given

the timing information available at compile time.

The periodic schedule in (6) is similar toaffine schedules in systolic array literature[9, 8].

Affine schedules are usually defined over a multi-dimensional index space. In our formulation,

however, the index space has only one dimension, representing time, and the scaling of the index

is done by the iteration period . This allows us to solve the linear program involved using a low-

complexity shortest path based approach.

8 Conclusions

Determining the order of processor transactions at compile time and enforcing this order

at run time leads to a low-cost IPC mechanism. In this paper we have shown how to determine the

best possible transaction order for the timing information available at compile time. The proce-

dure, instead of simply extracting the transaction order from a fully-static schedule, first modifies

the fully-static schedule by skewing the starting times of processors. The resulting fully-static

schedule has a period within one time unit of the average period obtained if the same schedule

were run in an ideal self-timed fashion. Using the transaction order specified by the modified

schedule results in an ordered transaction schedule with an average period that is at most one unit

larger than that of the self-timed strategy. Thus enforcing this particular order on the transactions

results in essentially no penalty over the unconstrained self-timed strategy, under the reasonable

assumption that . Our procedure is useful as an efficient post-processing step for existing

scheduling algorithms, both for generating an improved fully-static schedule and for determining

an optimal transaction order.

TOT

S′ TST TOT TST≤ ≤ O*

TST

TST TST 1≅

O*

O*

T

TST 1»

25

REFERENCES

[1] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Dataflow Programs
for Digital Signal Processing,”IEEE Trans. on Computers, vol. C-36, no. 2, February 1982.

[2] G. C. Sih, “Multiprocessor Scheduling to account for Interprocessor Communication,” Ph. D.
Thesis, Memorandum No. UCB/ERL M91/29, Electronics Research Laboratory, University
of California at Berkeley, April 1991.

[3] M. Lam, “Software Pipelining: An Effective Scheduling Technique for VLIW Machines,”
Proceedings of the SIGPLAN 1988 Conference on Programming Language Design and
Implementation, June 1988, pp. 318-328.

[4] V. H. Allan, R. B. Jones, R. M. Lee, S. J. Allan, “Software pipelining,”ACM Computing Sur-
veys, Sept. 1995, vol.27, (no.3):367-432.

[5] S. M. H. de Groot, S. Gerez, and O. Herrmann, “Range-Chart-Guided Iterative Data-Flow
Graph Scheduling,”IEEE Transactions on Circuits and Systems, May 1992, pp. 351-364.

[6] K. Parhi, and D. G. Messerschmitt, “Static Rate-optimal Scheduling of Iterative Data-flow
Programs via Optimum Unfolding,”IEEE Transactions on Computers, vol. 40, no. 2, Febru-
ary 1991, pp. 178-194.

[7] D. A. Schwartz, and T. P. Barnwell III, “Cyclo-Static Solutions: Optimal Multiprocessor
Realizations of Recursive Algorithms,”VLSI Signal Processing II, IEEE Special Publica-
tions, June 1985, pp. 117-128.

[8] S. K. Rao, and T. Kailath, “Regular Iterative Algorithms and their Implementation on Proces-
sor Arrays,”Proceedings of the IEEE, Vol. 76, No. 3, 1988.

[9] A. Darte, Y. Robert, “Constructive methods for scheduling uniform loop nests,”IEEE Trans-
actions on Parallel and Distributed Systems, Aug. 1994, vol.5, (no.8):814-22.

[10]E. A. Lee, J. C. Bier, “Architectures for Statically Scheduled Dataflow,”Journal of Parallel
and Distributed Computing, vol. 10, December 1990, pp. 333-348.

[11]S. Sriram, and E. A. Lee, “Design and Implementation of an Ordered Memory Access Archi-
tecture,”Proceedings of the International Conference on Acoustics Speech and Signal Pro-
cessing, vol. 1, April 1993, pp. 345-348.

[12] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A Framework for Simulat-
ing and Prototyping Heterogeneous Systems,”International Journal of Computer Simulation,
vol. 4, January 1994, pp. 155-182.

[13]R. Lauwereins, M. Engels, J.A. Peperstraete, E. Steegmans, and J. Van Ginderdeuren,
“GRAPE: A CASE Tool for Digital Signal Parallel Processing,”IEEE ASSP Magazine, Vol.
7, No. 2, April 1990.

[14]D. B. Powell, E. A. Lee, and W. C. Newman, “Direct Synthesis of Optimized DSP Assembly
Code from Signal Flow Block Diagrams,”Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing, San Francisco, March 1992.

26

[15]S. Ritz, M. Pankert, and H. Meyr, “High Level Software Synthesis for Signal Processing Sys-
tems,”Proceedings of the International Conference on Application Specific Array Proces-
sors, Berkeley, August 1992, pp.679-693.

[16]E. A. Lee, “A Coupled Hardware and Software Architecture for Programmable DSPs,” Ph. D.
Thesis, Department of Electrical Engineering and Computer Sciences, University of Califor-
nia Berkeley, May 1986.

[17] J. M. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, “Fast Prototyping of Datapath Intensive
Architectures,”IEEE Design and Test of Computers, vol. 8, no. 2, June 1991, pp. 40-51.

[18]E. A. Lee, and S. Ha, “Scheduling Strategies for Multiprocessor Real-Time DSP,”Proceed-
ings of the Globecom Conference, Dallas Texas, November 1989, pp. 1279-1283.

[19]S. Borkaret. al., “iWarp: An Integrated Solution to High-Speed Parallel Computing”,Pro-
ceedings of Supercomputing 1988 Conference, Orlando, Florida, 1988.

[20]L. Thiele, “Resource constrained scheduling of uniform algorithms,”Journal of VLSI Signal
Processing, Aug. 1995, vol.10, (no.3):295-310

[21]T. C. Hu, “Parallel Sequencing and Assembly Line Problems,”Operations Research, vol.
9(6), November 1961, pp. 841-848.

[22]G. De Micheli, “Synthesis and Optimization of Digital Circuits,” McGraw Hill Inc., New Jer-
sey, 1994.

[23]S. Y. Kung, P. S. Lewis, and S. C. Lo, “Performance Analysis and Optimization of VLSI
Dataflow Arrays”Journal of Parallel and Distributed Computing, vol. 4, 1987, pp. 592-618.

[24]F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat, “Synchronization and Linearity,” John
Wiley & Sons Inc., New York, 1992.

[25] J. L. Peterson, “Petri Net Theory and the Modelling of Systems”, Prentice-Hall Inc., Engle-
wood Cliffs, New Jersey, 1981.

[26]R. Reiter, Scheduling Parallel Computations,Journal of the Association for Computing
Machinery, vol. 15. No. 4, October 1968, pp. 590-599.

[27]E. L. Lawler, “Combinatorial Optimization: Networks and Matroids,” Holt, Rinehart and
Winston, New York, pp. 65-80, 1976.

[28]T. H. Cormen, C. E. Leiserson, and R. L. Rivest, “Introduction to Algorithms,” The MIT
Press and the McGraw Hill Book Company, Sixth printing, Chapter 25, pp. 542-543, 1992.

27

Acknowledgment of Support

This research was part of the Ptolemy project, which is supported by the Advanced

Research Projects Agency and the U. S. Air Force (under the RASSP program, contract F33615-

93-C-1317), Semiconductor Research Corporation (project 94-DC-008), National Science Foun-

dation (MIP-9201605), Office of Naval Technology (via Naval Research Laboratories), the State

of California MICRO program, and the following companies: Bell Northern Research, Cadence,

Dolby, Hitachi, Mentor Graphics, Mitsubishi, NEC, Pacific Bell, Philips, Rockwell, and Synop-

sys.

28

List of Figure Captions

Figure 1. Fully-static schedule on five processors (page 10)
Figure 2. Self-timed schedule (page 13)
Figure 3. Construction of from and from the static

schedule (page 14)
Figure 4. One possible transaction order derived from the fully-static

schedule (page 17)
Figure 5. Schedule evolution when the transaction ordering of Fig. 4 is

enforced (page 18)
Figure 6. Modified schedule (page 23)

Gipc G

A

B

E D

C

Proc 1

Proc 4

Proc 3

Proc 2

Execution Times

A , B, F

C, H : 5
•

• : 6D

: 2G

t
5 10 15 200

TFS=11

= Idle

D

C

B F

G

H

E AProc 1

Proc 2

Proc 3

Proc 4

Proc 5

E

D

C

B F

G

H

A

D

C

B F

G

H

E A

D

C

B F

G

H

E A

E
G

H

•

F
Proc 5

Proc 1

Proc 2

Proc 3

Proc 4

Proc 5

(a) DFG “G” (b) Static schedule

(c) Fully-static execution

s1

r1

s2

r2

s3

r3

s4

r4

s5

r5

s6

s6

: 4

: 3

Figure 1 (a), (b), (c)

D

C

B F

G

H

E

D

B

H

EA

CG

F

TST = 9

D

C

B F

G

H

E

D

B

H

EA

CG

F

AProc 1

Proc 2
Proc 3

Proc 4

Proc 5

18

Figure 2

A

B

E D

C

•

•
G

H

•

F

A

B

E D

C

Proc 1

Proc 4

Proc 3

Proc 2

•

•
G

H

•

F
•

•

•

•

•

Gipc

Proc 5

D
C

B F
G

H

E AProc 1

Proc 2
Proc 3

Proc 4

Proc 5

Proc 1
Proc 2
Proc 3
Proc 4

Proc 5
D

C
B F
G

H

E

D

B

H

EA

CG
F

D

G

A
B

H

E
F

C

D

A

H

B
G C

F
E

G

H

D

B
A

TOT = 10 = idle time due to ordering
 constraint

20

Transaction order:

E

D

C

B F

G

H

AProc 1

Proc 2

Proc 3

Proc 4

Proc 5

s1

r1

s2

r2

s3

r3

s4

r4

s5

r5

s6

s6

s1 r1, s2 r2 s3 r3 s4 r4 s5 r5 s6 r6, , ,, , , , , , ,()

Figure 4

Figure 5

Proc 1

Proc 2
Proc 3

Proc 4

Proc 5

D

C

B F

G

H

E

D

B

H

EA

CG

F

A

D

C

B F

G

H

E A

D

C

B F

G

H

E A

9

Figure 6

