
A Type-theoretic Approach to

Deadlock-freedom of Asynchronous Systems

Samson Abramsky1, Simon Gay2, and Rajagopal Nagarajan3

1 Department of Computer Science, University of Edinburgh, May�eld Road,

Edinburgh, UK, EH9 3JZ; samson@dcs.ed.ac.uk
2 Department of Computer Science, Royal Holloway, University of London, Egham,

Surrey, UK, TW20 0EX; S.Gay@dcs.rhbnc.ac.uk
3 Department of Computing, Imperial College, 180 Queen's Gate,

London, UK, SW7 2BZ

&

Electronics Research Laboratory, University of California, Berkeley,

CA 94720, USA; R.Nagarajan@doc.ic.ac.uk

Abstract. We present a type-based technique for the veri�cation of

deadlock-freedom in asynchronous concurrent systems. Our general ap-

proach is to start with a simple interaction category, in which objects

are types containing safety speci�cations and morphisms are processes.

We then use a speci�cation structure to add information to the types so

that they specify stronger properties. In this paper the starting point is

the category ASProc and the extra type information concerns deadlock-

freedom. In the resulting category ASProcD, combining well-typed pro-

cesses preserves deadlock-freedom. It is also possible to accommodate

non-compositional methods within the same framework. The systems we

consider are asynchronous, hence issues of divergence become signi�cant;

our approach incorporates an elegant treatment of both divergence and

successful termination. As an example, we use our methods to verify the

deadlock-freedom of an implementation of the alternating-bit protocol.

1 Introduction

In the realm of sequential programming, type systems allow the programmer

to express constraints on the combinability of program modules. Compile-time

type-checking, and particularly type-inference in the case of functional lan-

guages, is a valuable aid to the construction of correct programs. When dis-

tributed software is considered, the issue of ensuring compatible combination of

subsystems becomes more complex. Interaction between components may take

the form of a prolonged, dynamic pattern of communication rather than a sim-

ple procedure call, and both parties must agree about the expected nature of

the dialogue. Our recent research on interaction categories [1, 2] has led to a

framework for the design of sophisticated type systems which are able to spec-

ify communication protocols of this form. In this framework, type-checking and

veri�cation are seen as di�erent facets of a single activity and this opens up the

possibility of developing a Propositions-as-Types approach to the veri�cation of

concurrent programs.

An interaction category is a semantic universe in which the objects are types,

incorporating speci�cations of various kinds, and the morphisms are concurrent

processes satisfying those speci�cations. A process interacts with its environ-

ment via an interface consisting of a number of typed ports. The structure of

the category allows ports to be combined in various ways, and the shape of in-

terfaces to be described. At the moment, only static connection topologies can

be described; none of our work on interaction categories has yet tackled the issue

of mobility. We hope to address this in future work.

Our approach to the construction of type systems for concurrency is to begin

with a simple interaction category such as ASProc [2, 3], in which the types

correspond to very basic safety speci�cations, and use a speci�cation structure

[2] to add information to the types so that they specify stronger properties. This

process can be iterated, leading to a \tower of categories" sharing a great deal

of structure and possessing progressively more complex types.

In this paper we are interested in specifying deadlock-freedom. Deadlocks arise

from communication failures, in which a message is not understood by its re-

cipient, and from situations in which all of the subcomponents of a system are

waiting for one another. The �rst of these possibilities may not be classically

viewed as a deadlock, but it turns out that our theory naturally includes it. We

construct a tower of three categories, beginning with ASProc (whose de�nition is
reviewed in Section 2). The next level up is the category ASProcV , whose types
incorporate a notion of valid maximal behaviour which is used to address the

issues of divergence and successful termination. The third level is ASProcD, in
which well-typed processes can always be combined without fear of introducing

deadlocks. However, the type structure of ASProcD does not support the forma-

tion of cyclic process con�gurations; to deal with such cases, we introduce an

additional veri�cation rule.

After presenting the necessary theory, we illustrate the use of our type system

by analysing a version of the alternating-bit protocol [19] and verifying that it

is deadlock-free. Communications protocols are a standard source of examples

and case studies of veri�cation techniques, so we see this as a signi�cant choice

of application.

The emphasis of the present paper is semantic; ASProcD provides a semantic

framework for reasoning about communication behaviour. Although the cate-

gorical structure supports a number of inference rules for combining typed pro-

cesses, we do not present a full type-checking system for syntactic processes. It

is this semantic, denotational emphasis which distinguishes our approach from

other recent work, for example Kobayashi's type system for a �-calculus-like

language [15]. Elsewhere we have studied process calculi whose type systems

correspond to the structure of various interaction categories: the synchronous

category SProc whose types are safety speci�cations [12]; the synchronous cat-

egory SProcD whose types specify deadlock-freedom [6]; and the asynchronous

category ASProc whose types are safety speci�cations [20]. Future work will

combine the ideas of these calculi into a syntax to accompany the semantic type

system of the present paper.

Much of our previous work has concentrated on deadlock-freedom of synchronous

systems [1, 11]. In the asynchronous case, the theory is complicated by the need

to consider issues of divergence. A divergent process is one which communicates

internally forever, and under the process equivalence we use this is equated to a

deadlocked process. Previous attempts to extend our work to the asynchronous

case [2, 11] have used the idea of fairness, by assuming that processes are fair in

the sense that every in�nite behaviour has an in�nite projection onto every port.

There are several technical di�culties with this approach, which we describe in

detail in Section 4.1, and the resulting theory is not completely satisfactory. The

theory described in the present paper gives a much cleaner account of deadlock-

freedom in asynchronous interaction categories.

2 The Interaction Category ASProc

In this section we brie
y review those parts of the de�nition of ASProc which

are relevant to the present paper. This includes the �-autonomous structure

[5], corresponding to the multiplicative connectives
, O and (�)
?

of linear

logic [13], but not the additive structure (products and coproducts) or the delay

operator. Complete de�nitions can be found in previous publications [1, 2, 3,

11]. Our use of ASProc in the present paper allows us to analyse asynchronous

systems, in which di�erent components are able to evolve at their own rate.

This is in contrast to much of our previous work on interaction categories (for

example, [12]) which assumes universal synchronisation with respect to a global

clock.

An object of ASProc is a triple A = (�A; �A; SA), in which �A is a set of

actions and �A 2 �A is the silent action. De�ning the observable actions by

ObAct(A)
def
= �A � f�Ag, SA �nepref ObAct(A)� (a non-empty, pre�x-closed set

of observable traces) is a safety speci�cation.

A process with sort � and silent action � 2 � is a labelled transition system

(strictly, a distinguished state of a labelled transition system) with label set �.

We identify processes up to observation equivalence [19]. Throughout the paper

we will omit the veri�cations that the operations we de�ne respect observation

equivalence.

A process P of type A, written P : A, is a process P with sort �A and silent

action �A such that obtraces(P) � SA, where obtraces is given by the following

coinductive de�nition.

allobtraces(P)
def
= f"g [fas j P

a
=)Q; s 2 allobtraces(Q)g

obtraces(P)
def
= fs 2 allobtraces(P) j s is �niteg

The morphisms of ASProc are de�ned via the object part of the �-autonomous
structure. Given objects A and B, the object A
B has

�A
B
def
= �A ��B �A
B

def
= (�A; �B)

SA
B
def
= fs 2 ObAct(�A
B)

� j s�A 2 SA; s�B 2 SBg

where, for � 2 ObAct(�A
B), ��A
def
=

�
fst(�) if fst(�) 6= �A
" otherwise

and for s 2 ObAct(�A
B)
�, s�A is obtained by concatenating the individual

��A. The projection ��B is de�ned similarly. Notice that taking �A
B = (�A; �B)

means that a process with several ports delays by simultaneously delaying in its

individual ports. Also, it is possible for a process to perform observable actions

simultaneously in several ports; this is a contrast to traditional process calculi.

The duality is trivial on objects: A? def
= A. This means that the types of ASProc

do not distinguish between input and output; later in the paper, this distinction

will be recovered.

A morphism p : A ! B of ASProc is a process p such that p : A (B. In

general, A(B
def
= (A
B?)

?
. In ASProc, the fact that (�)

?
is trivial means

that A(B = A
B.

If p : A ! B and q : B ! C, then the composite p ; q : A ! C is de�ned by

labelled transitions.

p
(a;�B)
- p0

p ; q
(a;�C)
- p0 ; q

q
(�B;c)
- q0

p ; q
(�A;c)
- p ; q0

p
(a;b)
- p0 q

(b;c)
- q0

p ; q
(a;c)
- p0 ; q0

The �rst two rules allow either process to make a transition independently, if no

communication is required. The third rule allows the processes to communicate

by performing the same action in the port B. Any of the actions a, b, c can be

� ; if b = �B in the third rule, then two simultaneous independent transitions are

made.

It is easy to see that if f : A! B and g : B ! C, then f ; g satis�es the safety

speci�cation necessary to be a morphism A! C.

Although ASProc is a category of asynchronous processes, the identity mor-

phisms are synchronous bu�ers. idA : A ! A instantaneously transmits any

data received in its left port to its right port, and vice versa. It is de�ned by

a 2 SA

idA
(a;a)
- idA=a:

where the type A=a is de�ned by �A=a = �A, �A=a = �A and SA=a = fs j as 2
SAg.

If p : A! C and q : B ! D then p
 q : A
B ! C
D and p? : C? ! A? are

de�ned by the transition rules below. The rules for
 illustrate the asynchronous

nature of ASProc; the two processes can make transitions either independently

or simultaneously.

p
(a;c)
- p0

p
 q
((a;�B);(c;�D))

- p0
 q

q
(b;d)
- q0

p
 q
((�A;b);(�C ;d))

- p
 q0

p
(a;c)
- p0 q

(b;d)
- q0

p
 q
((a;b);(c;d))

- p0
 q0

p
(a;c)
- p0

p?
(c;a)
- p0

?

The tensor unit I is de�ned by

�I
def
= f�Ig SI

def
= f"g:

The morphisms expressing the symmetric monoidal closed structure of ASProc
are formed from identity morphisms by applying suitable relabellings. For ex-

ample, symmA;B : A
B �= B
A is de�ned by

idA
B
((a;b);(a;b))

- id(A=a)
(B=b)

symmA;B

((a;b);(b;a))
- symmA=a;B=b:

Currying is similarly de�ned by relabelling: if f : A
 B ! C then �(f) : A !
(B (C) is de�ned by

f
((a;b);c)
- f 0

�(f)
(a;(b;c))
- �(f 0):

Proposition 1 ASProc is a �-autonomous category.

Because the linear negation (�)
?

is trivial in ASProc,
 and O coincide. A

�-autonomous category in which
 and O are the same (note that in general it

is possible for this to happen even if linear negation is non-trivial) is called a

compact closed category.

When dealing with interaction categories, compact closure is signi�cant because

it means that a wider class of process constructions is supported by the cat-

egorical structure. In a �-autonomous category, processes can be connected in

arbitrary acyclic con�gurations, by means of composition and appropriate use of

currying and application. However, the �nal step in the construction of a cyclic

network can only be carried out if
 and O coincide.

This point is discussed in more detail elsewhere [2], and in Section 5 of this

paper. In Section 4 we will construct a �-autonomous category of deadlock-free

processes; this category turns out not to be compact closed, which means that

additional veri�cation rules are required in order to form cyclic networks.

Notation In this paper we will use a CCS-like notation to describe processes in

ASProc. The main constructions used will be pre�xing, non-deterministic sum

and guarded recursion, with their usual interpretations in terms of labelled tran-

sition systems [19]. A formal calculus of typed asynchronous processes (with a

weaker type system which does not guarantee deadlock-freedom) has been de-

veloped [20], and this calculus will eventually be combined with the ideas of the

present paper, but for now we will concentrate on the semantic aspects of the

type system for deadlock-freedom. A signi�cant di�erence between our notation

and that of CCS is that we do not need complementary actions such as a and

�a. Instead, communication between two processes (on a particular port) consists

of them both performing the same action a, and the distinction between input

and output is indicated by the types.

3 Speci�cation Structures

The notion of speci�cation structure, at least in its most basic form, is no more

than a variation on standard notions from category theory. Nevertheless, it pro-

vides an alternative view of these standard notions which is highly suggestive,

particularly from a Computer Science point of view. Similar notions have been

studied, for a variety of purposes, by Burstall and McKinna [18], Hoofman [14],

O'Hearn and Tennent [21] and Pitts [23].

Let C be a category. A speci�cation structure S over C is de�ned by the following

data:

{ for each object A of C, a set PSA of \properties over A".
{ for each pair of objects A, B of C, a relation SA;B � PSA�C(A;B)�PSB .

We write 'ffg for SA;B('; f;), borrowing the notation of Hoare triples. This

relation is required to satisfy the following axioms, for f : A ! B, g : B ! C,

' 2 PSA, 2 PSB and � 2 PSC:

'fidAg' (1)

'ffg ; fgg� =) 'ff ; gg� (2)

The axioms (1) and (2) are typed versions of the standard Hoare logic axioms

for \skip" and \sequential composition" [9]. Given C and S as above, we can

de�ne a new category CS as follows. The objects are pairs (A;') with A 2 obC
and ' 2 PSA. A morphism f : (A;') ! (B;) is a morphism f : A ! B in C
such that 'ffg .

Composition and identities are inherited from C; the axioms (1) and (2) ensure

that CS is a category. Moreover, there is an evident faithful functor CS � C
given by (A;') 7! A.

Two simple examples of speci�cation structures are useful at this point. In each

case we specify the base category C, the set of properties PSX over each object

X , and the Hoare triple relation.

1. C = Set , PSX = X , affgb
def
, f(a) = b.

In this case, CS is the category of pointed sets.

2. C = Rel , PSX = f�g, �fRg�
def
, 8x 2 A; y; z 2 B:(xRy ^ xRz) y = z).

Then CS is the category of sets and partial functions.

The notion of speci�cation structure acquires more substance when there is

additional structure on C which should be lifted to CS . Suppose for example

that C is a monoidal category, i.e. there are a bifunctor
 : C2 ! C, an object I ,

and natural isomorphisms

assocA;B;C : (A
B)
 C �= A
 (B
 C)

unitlA : I
A �= A

unitrA : A
 I �= A

satisfying the standard coherence equations [17]. A speci�cation structure for C
must then correspondingly be extended with an action

A;B : PSA� PSB ! PS(A
B)

and an element u 2 PSI satisfying, for f : A ! B, f 0 : A0 ! B0 and properties

', '0, , 0, � over suitable objects:

'ffg ; '0ff 0g 0 =) ('
 '0)ff
 f 0g(
 0)

(('
)
 �)fassocA;B;Cg('
 (
 �))

(u
 ')funitlAg'
('
 u)funitrAg':

The monoidal structure on C can be lifted to CS , by de�ning

(A;')
 (B;) = (A
B;'
A;B):

The axioms ensure that the conditions for a monoidal product are satis�ed in

CS . The action of
 on morphisms in CS is the same as in C, and the axioms

guarantee that this is correct: if f : (A;') ! (B;) and g : (A0; '0) ! (B0; 0),

then

f
 g : (A
A0; '
 '0)! (B
B0;
 0):

Moreover, the monoidal structure is preserved by the faithful functor CS � C.

In the present paper we are interested in speci�cation structures over �-auton-
omous categories, in particular ASProc. If C is a �-autonomous category with a

notion of a set of processes of each type, written Proc(A) (a process P of type A

may be identi�ed with a morphism P : I ! A), then the following sequence of

steps provides a convenient way to de�ne a speci�cation structure S over C. This
sequence will be used in the next Section when de�ning speci�cation structures

over ASProc; it mirrors the sequence already used in the de�nition of ASProc
itself.

1. De�ne PSA for each A.

2. For each A, de�ne a relation of satisfaction: j=A � Proc(A)� PSA.

3. De�ne (�)
?

A.

4. De�ne
A;B and hence OA;B and (A;B .

5. De�ne the Hoare triple relation by �ffg'
def
, f j=A(B �('.

6. Verify that the desired structure of C, including the �-autonomous structure,
lifts to CS .

Consider again the idea of a tower of categories, mentioned in the introduction:

C0� C1� C2� � � �� Ck:

Such a tower arises by progressively re�ning C0 by speci�cation structures

S1; : : : ; Sk

so that Ci+1 = (Ci)Si+1 . Each such step adds propositional information to the

underlying \raw" computational entities (morphisms of C0). The aim of veri-

�cation in this framework is to \promote" a morphism from Ci to Cj , where
i < j. That is, to promote a C0 morphism f : A ! B to a Ck morphism

f : (A;'1; : : : ; 'k) ! (B; 1; : : : ; k) is precisely to establish the \veri�ca-

tion conditions"
Vk
i=1 'iffg i. Once this has been done, by whatever means|

model checking, theorem proving, manual veri�cation, etc.|the morphism is

now available in Ck to participate in typing judgements there. In this way, a

coherent framework for combining methods, including both compositional and

non-compositional approaches, begins to open up.

4 A Speci�cation Structure for Deadlock-Freedom

4.1 The Category ASProcV

We need to de�ne a category ASProcV , which is like ASProc except that each

type is augmented with a notion of valid maximal trace. For any ASProc type A,

we can de�ne

SA = fs 2 ObAct(A)! j 8t 2 ObAct(A)�:t v s) t 2 SAg

max�ntraces(A) = fs 2 SA j 8t 2 SA:s v t) s = tg

maxtraces(A) = max�ntraces(A) [SA;

where v is the pre�x ordering on traces.

An object A of ASProcV is a tuple (�A; �A; SA; VA) such that (�A; �A; SA) is an

object of ASProc and VA � maxtraces(A). A process of type A in ASProcV is a

process of type (�A; �A; SA) in ASProc.

The linear type structure of ASProcV is de�ned as for ASProc, with the addition

of

VA? = VA

VA
B = fs 2 maxtraces(A
B) j s�A 2 VA ^ s�B 2 VBg

VI = f"g:

As suggested by the name, ASProcV can be de�ned by means of a speci�cation

structure V over ASProc. However, the notation is easier to control if ASProcV
is de�ned directly.

When we de�ne the speci�cation structure for deadlock-freedom, the component

VA of a type A will be used to de�ne what we mean by deadlock. Finite traces

in VA are interpreted as successful terminations. In�nite traces in VA are con-

structed from in�nite traces or successfully terminated traces in simpler types.

Notice that because SI = f"g, " is a maximal �nite trace in I and is interpreted

as a successful termination.

At this point we can say a few words about divergence. Consider the processes

P : A! B and Q : B ! C, de�ned by P = (�A; b):P and Q = (b; �C):Q. It does

not matter what the types A, B and C are, as long as b 2 ObAct(B). If P and Q

are forced to communicate, in the composite P ;Q, the result is divergence: they

can communicate internally forever, and never produce any observable actions. If

deadlock is simply taken to be termination (this approach was used in our earlier

work [2, 11]), then P ; Q is deadlocked even though successful communication

takes place. The introduction of the sets V of valid in�nite traces provides a

nice resolution of this con
ict. As we will see, for P and Q to be individually

acceptable means that the traces (�A; b)
! and (b; �C)

! must be valid in�nite

traces in the types A (B and B (C respectively. This in turn means that

" 2 VA and " 2 VC , hence " 2 VA(C and P ; Q is interpreted as a successfully

terminated process.

Compared to our previous work [2, 11], the present theory o�ers a much more sat-

isfactory treatment of deadlock-freedom in interaction categories of asynchronous

processes. The improvements stem from the use of the sets V of valid maximal

traces; although this is a simple addition, it makes the theory much more ele-

gant. In the earlier version, all processes were required to run forever; the fact

that the type I of ASProc does not permit in�nite behaviour meant that the

category of deadlock-free processes had no tensor unit. This defect in the cate-

gorical structure has now been recti�ed. Before the introduction of the sets V ,

the only way of avoiding problems such as the divergent composition of P and Q

above was to require every process to be fair. Fairness of a process meant equal

use of all ports, in the sense that every in�nite behaviour had to perform an

in�nite sequence of observable actions in every port. To preserve this property

it was necessary to make fairness assumptions about the way in which
 (par-

allel composition) interleaved process behaviours. These fairness assumptions

were incorporated into the theory by attaching to each process a speci�cation of

which of its in�nite behaviours were to be ignored. This rather awkward feature

has now been eliminated. Finally, the introduction of successful termination into

the theory allows a wider range of process behaviour to be analysed.

We should also point out that the treatment of deadlock-freedom in the asyn-

chronous case is signi�cantly more complex than in the synchronous case. The

problem of divergence does not arise in categories based on SProc, because a

process performs actions in all of its ports at every step (this is a consequence

of the synchrony assumption). Synchrony also means that all parts of a system

must terminate simultaneously, if at all, and so successful termination is a much

less useful concept; it does not make sense to consider successful termination of

the behaviour in an individual port.

4.2 The Speci�cation Structure D

In order to discuss correct communication, we need the operation u which se-

lects the behaviours in common to two processes|i.e. the behaviours which

correspond to sequences of communication. If P;Q : A in ASProcV , then the

process P uQ : A is de�ned by the following transition rules.

P
a
- P 0 Q

a
- Q0

P uQ
a
- P 0 uQ0

P
�A
- P 0

P uQ
�A
- P 0 uQ

Q
�A
- Q0

P uQ
�A
- P uQ0

Before looking at ways of combining processes without introducing deadlocks,

we need to restrict attention to processes which, in isolation, do not terminate

unsuccessfully or diverge. Let P : A in ASProcV . Then P # (P converges) if and

only if whenever P
s

=)Q there is t 2 alltraces(Q) such that st 2 VA. The notion of

deadlock-freedom used in this paper is convergence. Hence the distinction between

deadlock and successful termination is determined by the safety speci�cation,

rather than by distinguishing the �nal states in the execution of the process.

Note that convergence of P does not mean that every maximal trace of P is

valid; rather, it means that P never reaches a state from which only invalid

maximal traces are possible. For example, P
Q has in�nite traces which contain

no contribution from Q; these traces ignore certain ports, and could lead to

divergence when composition is used. But if P and Q are convergent, so is

P
Q, because from any state, the valid maximal behaviours of P and Q can be

combined to yield a valid maximal behaviour of P
Q. In a system containing P

Q, we would like to consider only the valid traces of P
Q; in practice, some form
of fair scheduler would be needed. We interpret the de�nition of convergence as a

way of allowing us to avoid considering the scheduler explicitly. This de�nition of

convergence, and the way it allows us to type more processes without introducing

fairness constraints, is another di�erence between the present theory and our

previous work.

For each object A of ASProcV , Proc(A)
def
= fP : A j P #g. There is an orthogo-

nality relation on Proc(A), de�ned by P ? Q () (P uQ) #. If P and Q are

orthogonal, then any sequence of communications between them can be extended

to either a valid in�nite behaviour or a successfully terminated behaviour.

Orthogonality can be lifted to sets of processes, and used to de�ne the notion of

linear negation on sets of processes. If P is a process and U a set of processes,

de�ne

P ? U () 8Q 2 U:P ? Q

U? = fP j P ? Ug:

U? is the set of processes which can successfully communicate with processes in

the set U . If U describes the possible behaviours in a particular port, then U?

is the type of ports which can be connected to that port without introducing

deadlocks.

The speci�cation structure D over ASProcV is obtained from the following se-

quence of de�nitions.

PDA = fU � Proc(A) j U 6= ?; U = U??g

U
 V
def
= fP
Q j P 2 U;Q 2 V g

??

U O V
def
= (U?
 V ?)

?

U (V
def
= (U
 V ?)

?

If P : A and U 2 PDA then P j= U () P 2 U . Finally, UffgV () f j=
U (V .

The composition axiom is the key property which needs to be checked. Suppose

that f : A ! B and g : B ! C with f j= U (V and g j= V (W . The

types can be rewritten as f j= U?
O V and g j= V ?

OW . The behaviour of f

in its second port is described by the processes in the set V , and the behaviour

of g in its �rst port is described by the processes in the set V ?. The de�nition

of orthogonality means that when f and g are connected together along those

ports (which is what f ;g means), communication is successful and no deadlocks

arise. This is not the complete proof, but gives the general idea of the argument.

The category constructed from ASProcV by means of the speci�cation structure

D is our category of deadlock-free processes. For consistency it should be called

ASProcV D, but we will refer to it as ASProcD . The multiplicative structure of

ASProcV can be lifted to the new category, and ASProcD is �-autonomous.

4.3 Standard Deadlock-Free Types

It is useful to have a collection of standard deadlock-free types over eachASProcV
type. Two obvious types, which we will now de�ne, correspond to input and

output. For each type A of ASProcV , we have Proc(A) 2 PDA. Proc(A) is the

maximal property over A; it is satis�ed by every convergent process of type

A. Using Proc(A) as a speci�cation imposes no constraint on a process, and

so a port with the ASProcD type (A;Proc(A)) corresponds to a possibly non-

deterministic output. We will therefore refer to the property Proc(A) as outA;

every convergent process of type A satis�es outA. Dually we expect to use a

property inA to represent an input; naturally the de�nition is inA = out?A. It can

be shown that inA = fmaxAg, where maxA is de�ned by

a 2 SA

maxA
a
- maxA=a:

The process maxA is always prepared to engage in any action allowed by the

underlying safety speci�cation; this is precisely the property required of an input

port.

The most useful fact about in and out properties is that for any A and B,

inA
 inB = inA
B . We will not prove this fact here, but it expresses the intuitive

idea that a pair of input ports can be viewed as a single input of a compound

type. Dually, outAOoutB = outAOB . This fact allows certain ASProcV processes

to be immediately assigned types in ASProcD, as follows. If P : A1O � � �OAn in

ASProcV , and P #, then P j= outA1O���OAn = outA1 O � � � O outAn . This means

that P has type (A1; outA1)O � � �O (An; outAn) in ASProcD.

The properties in and out only allow us to describe very simple patterns of

interaction, namely those in which each port is committed to being either an

input or an output for all time. For the examples which we consider in the

present paper, these simple patterns are su�cient. However, the structure of

ASProcD is able to support much richer interaction patterns, and future work

will address the question of using ASProcD to provide a semantics for a more

realistic language of types.

As indicated earlier, the category ASProcD is not compact closed:
 and O are

in general di�erent. The simplest example of this loss of compact closure is as

follows. Consider the ASProcV types A and B, de�ned by

�A = fa; �Ag �B = fb; c; �Bg
SA = fag� SB = fb; cg�

VA = fa!g VB = fb; cg!:

We will outline the proof that inA
 inB 6= inAO inB . First, we have inA
 inB =

inA
B = fmaxA
Bg. Also, because maxA is the only convergent process of type

A, inA = outA. The de�nitions of O and
 give

inA O inB = (outA
 outB)
?

= fmaxA
 P j P 2 Proc(B)g
?

To prove that inA
 inB 6= inAO inB we just need to �nd a process Q : A
B such

that 8P 2 Proc(B):Q ? (maxA
 P) but Q 6= maxA
B . If Q is de�ned by Q =

(a; b):Q+ (a; c):Q then this condition is satis�ed. Clearly Q 6= maxA
B because

Q never performs an action (a; �B). However, we do have (Q u (maxA
 P)) #
for every P 2 Proc(B); indeed, the behaviour of Q u (maxA
 P) is simply that

of P with actions b replaced by (a; b) and actions c replaced by (a; c).

4.4 Constructing Cyclic Networks in ASProcD

Because ASProcD is not compact closed, we are in general unable to construct

cyclic con�gurations of processes. This is to be expected, as it is the presence of

cycles which can lead to deadlock. However, in a particular system there may be

other reasons why speci�c cycles can be formed without introducing deadlock.

We can formulate the following proof rule for the construction of deadlock-free

cycles:

P : (�;U)O (X;W)O (X?;W?)
cycle(P)

P : (�;U)

Here P is a process representing the acyclic portion of the desired con�guration;

it has two ports, of types (X;W) and (X?;W?), which could potentially be

connected together. The port of type (�;U) may in general be composed of

several ports: (�;U) = (A1; U1) O � � � O (An; Un). The process P results from

connecting the X and X? ports, and forcing the actions in those ports to match.

Thus the behaviour of P is de�ned by:

P
(a;x;x)
- Q

P
a
- Q

cycle(P) is a su�cient condition for P to be deadlock-free. It is de�ned by:

For any Q 2 U?, if P
s

=)P 0 and Q
s��
=)Q0 with �X (s) = �X?(s),

9t 2 allobtraces(P 0) such that t�� 2 allobtraces(Q0), �X(t) = �X?(t),

and st 2 V�OXOX? .

�X(s) and �X?(s) are the projections of the trace s in the X and X? ports

respectively; � actions are preserved by these projections.

The cycle condition has two functions. The �rst is to ensure that P is convergent.

The second is to ensure that P is able to interact with its environment as required

by the type (�;U). It is the second part which requires processes Q 2 U? to be

considered; they are the processes which P must be able to interact with.

Proposition 2 The proof rule for cycle formation is semantically sound.

Proof We need to prove that P 2 U , i.e. that P ? U?. Let Q 2 U?. In

order to prove that (P uQ)#, suppose that P uQ
u

=)P 0 uQ0. This means that

P
s

=)P 0 and Q
u

=)Q0 with u = s�� and �X (s) = �X?(s).

The condition cycle(P) gives t 2 allobtraces(P 0) such that t�� 2 allobtraces(Q0),

�X(t) = �X?(t) and st 2 V�OXOX? .

Let v = t�� . Then v 2 allobtraces(P 0 uQ0) and uv 2 V� . Thus v is the required
extension of u, and we have established (P uQ)#. �

The proof rule for cycle formation is not compositional; in order to check the

condition cycle(P) we may need to examine the internal behaviour of P . The

details of this check will be speci�c to particular examples. Once cycle(P) has

been established, the process P has a type in ASProcD and can be combined with

other processes on the basis of that type. We have separated the compositional

(acyclic) and non-compositional (cyclic) veri�cation steps, and identi�ed the

condition which must be checked when cycles are formed.

5 Deadlock-Freedom of the Alternating-Bit Protocol

5.1 The Protocol

The Alternating-Bit Protocol is a communications protocol which is used for the

transmission of messages under adverse conditions. In the diagram below, Accept

receives a message and sends it across the transmission medium; Reply delivers

the message to its destination and also sends an acknowledgement signal back

to Accept ; and Trans and Ack are the two parts of the transmission medium,

one for each direction.

There are several versions of the protocol, with di�erent assumptions about

the nature of the transmission medium. In the version which we will consider,

corresponding to Exercise 15 in Chapter 6 of Milner's book [19], the transmission

lines Trans and Ack each have capacity for at most one message, and may lose

messages. Thus any message sent by Accept , and any acknowledgement sent by

Reply , may disappear unpredictably. Furthermore, the bounded capacity of the

transmission lines introduces the possibility of deadlock because they may not

be prepared to accept input.

x ya

b

c

d

accept deliverAccept

Trans

Reply

Ack

The basic idea of the protocol is that a single bit, either 0 or 1, is attached to each

message or acknowledgement which is sent. An acknowledgement of a message

always carries the same bit as the original message, and successive messages

carry opposite bits. If Accept receives an acknowledgement with the same bit

as the most recent message, then the next message can be sent; otherwise, the

previous message must be resent. Similarly, if Reply receives a message with

the opposite bit to the most recent acknowledgment, then it is a new message

which can be acknowledged; otherwise, the previous acknowledgement is judged

to have been lost and must be sent again.

Using a CCS-style syntax, the processes can be de�ned as follows. Note that the

subscript b can be either 0 or 1, parameterising the processes and the actions

on the value of the current bit. As mentioned in Section 2, the interaction cate-

gory approach does not use complementary actions, and this is re
ected in the

de�nitions.

Acceptb = senb:Accept
0
b

Accept 0b = �:Acceptb + ackb:Accept
00
:b + ack:b:Accept

0
b

Accept 00b = accept:Acceptb

Replyb = recb:Reply
0
b

Reply 0b = �:Replyb + tra:b:Reply
00
:b + trab:Reply

0
b

Reply
00
b = deliver:Replyb

Trans = sen0:Trans0 + sen1:Trans1

Transb = trab:Trans + �:Trans

Ack = rec0:Ack0 + rec1:Ack1

Ackb = ackb:Ack + �:Ack

It is important to appreciate the various roles played by the silent actions � in

these de�nitions. In Accept , � is used to model the receipt of a timeout signal

from a timer (which is not explicitly represented in our system). If timeout occurs

before the acknowledgement of a message is received, the message is retransmit-

ted. In Reply , � also models a timeout, this time limiting the waiting period for

the next message to arrive. If timeout occurs, the previous acknowledgement is

repeated. However, the � actions in Trans and Ack represent spontaneous loss

of messages.

The complete system is de�ned as follows. The current state assumes that a

message has just been delivered and another is ready to be accepted.

Protocol = (Accept 00
1
j Trans j Ack j Reply 0

0
)n

fsen0; sen1; tra0; tra1; rec0; rec1; ack0; ack1g

The remainder of this section will demonstrate the assignment of types to the

components of the system, in both ASProcV and ASProcD. It is important to
note that we are only considering one aspect of the system's correctness, namely

deadlock-freedom. The types do not express the speci�cation that the sequence

of delivered messages is the same as the sequence of received messages. This

speci�cation could be expressed in our typed framework [20], and we have anal-

ysed similar speci�cations of other systems [1, 11], but it is not the purpose of

the present paper to illustrate this aspect of the theory.

5.2 Types in ASProcV

In order to type the system at the most elementary level, without taking account

of deadlock-freedom, we need the following ASProcV types. In each case, the

safety speci�cation consists of all �nite traces over the alphabet.

�X = f�X ; acceptg VX = faccept!g
�Y = f�Y ; deliverg VY = fdeliver!g
�A = f�A; ack0; ack1g VA = f(ack0jack1)

!g
�B = f�B ; sen0; sen1g VB = f(sen0jsen1)

!g
�C = f�C ; tra0; tra1g VC = f(tra0jtra1)

!g
�D = f�D; rec0; rec1g VD = f(rec0jrec1)

!g

There is a certain amount of redundancy in these de�nitions: the types A, B, C

and D are isomorphic, as are X and Y . However, using di�erent names makes

it easier to keep track of the steps in the construction of the system.

With these de�nitions, the types of the components of the system are as follows.

Some changes are necessary to the equations de�ning the processes, to take

account of the fact that an observable action in one port must be accompanied

by silent actions in the other ports. For example, the de�nition of Ack becomes

Ack = (�A; rec0):Ack0 + (�A; rec1):Ack 1.

Accept : X?
OB OA

?

Trans : B?
O C

Reply : Y O C
?
OD

Ack : AOD
?

x ya

b

c

d

u

q

p

v

s
t

r
w

X? YAccept

Trans

Reply

Ack

A?

B

A

B?

D?

D

C
C?

The types of the ports of each process are combined using O. In ASProcV this

could just as well be
, but again it is useful to stick to notation which re
ects the
logical distinctions between the connectives. In general, O relates to connected

concurrency and
 to disjoint concurrency; O is the appropriate connective for

combining ports of a single process. Again to maintain the logical distinction

between various types, we have distinguished between, for example, A and A?

despite the fact that at the ASProcV level these types are identical.

The categorical structure of ASProcV allows the components to be connected in

the desired con�guration. The �rst step is to connect Accept and Ack .

x a

d

q

s

X? Accept

Ack

B

D?

The typed processes

Accept : X?
OB OA

?

Ack : AOD
?

can be viewed as morphisms

Accept : I ! X?
OB OA

?

Ack : I ! AOD
?

and the following categorical calculation produces a morphism I ! X?
OBOD

?.

I

I
 I
?

o (unit)

(X?
OB OA

?)
 (AOD
?)

?

Accept
Ack

X?
OB O (A?
A)OD

?

?

(canonical nat. trans.)

X?
OB O?OD

?

?

(evaluation)

X?
OB OD

?

?

o (unit)

This morphism, viewed as a process of type X?
O B OD?, corresponds to the

process which, in CCS notation, is written (Accept j Ack)nfack0; ack1g.

Another view of this construction is as follows. The structure of a compact closed

category allows us to construct morphisms (once again, denoted here by Accept

and Ack for convenience)

Accept : (X?
OB)

?
! A?

Ack : A? ! D?

which have the same process behaviour as before, but di�erently organised in-

terfaces. (For more details of the way in which a single process can be viewed

as many di�erent morphisms, see [1, 11]). Now, connecting Accept and Ack is

simply an application of categorical composition.

However we use the categorical structure to form process connections, the e�ect

is to justify the following typing rule:

P : AOB Q : B?
O C

(P j Q)n�B : AO C

Again we are using an informal CCS-like notation here. In our typed calculus of

synchronous processes [12], based on the structure of SProc, the corresponding
operation (treated formally) is cut.

Using the same typing rule we can connect Reply and then Trans, to obtain the

following process.

PreProtocol : X?
OB O Y OB

?:

x ya

b

c

d

q
v

X? YAccept

Trans

Reply

Ack

B

B?

The following categorical calculation, justi�ed by the compact closed structure

of ASProcV , allows the free ends to be connected.

I

X?
OB O Y OB

?

?

o PreProtocol

X?
O Y OB

?
OB

?

(permutation)

X?
O Y OB

?
B

?

(iso in ASProcV)

X?
O Y O?

?

(evaluation)

X?
O Y

?

o (unit)

The �nal process is

Protocol : X?
O Y:

Because X �= Y , we can also write Protocol : X?
OX to emphasise the fact that

the receiving and delivering ports are of compatible types.

This calculation also justi�es a general typing rule (valid in ASProcV but not in

ASProcD), again using an informal process notation:

P : AOB OB
?

Pn�B : A

5.3 Types in ASProcD

Each process in the system is convergent. We will explain why this is true for

Accept ; the other cases are similar. In each of the types A, B and X , all in�nite

traces are valid. Hence VX?OBOA? consists of the in�nite traces which include

in�nite sequences of actions in the X , B and A ports. Whenever Accept
s

=)P ,

we can see from the de�nition of Accept that there are in�nite behaviours of P

which never take the � branch of Accept 0. Any such behaviour generates a trace

t which includes sen actions, ack actions and the accept action in�nitely often.

Hence st 2 VX?OBOA? .

The previous description of the protocol makes it clear whether each port is used

as an input or as an output, and by using the properties in and out accordingly

we expect the components of the system to have the following ASProcD types.

Here we can drop the notational distinction between A and A?, as the real

distinction is now indicated by the presence of in or out.

Accept : (X; inX)O (B; outB)O (A; inA)

Trans : (B; inB)O (C; outC)

Reply : (Y; outY)O (C; inC)O (D; outD)

Ack : (A; outA)O (D; inD)

Verifying that the processes do indeed have these types requires some work. For

example, to check Trans : (B; inB)O (C; outC) we need to show that

Trans 2 inB O outC

= (outB
 inC)
?

= fP
maxC j P 2 outBg
?
:

We do this semantically; we do not have a formal syntax and typing system

which allows the individual components to be constructed with their ASProcD
types. Such a typing system is being developed for the synchronous case [6] and

will be adapted for the asynchronous case.

Proposition 3 Trans 2 inB O outC :

Proof We need to show that for any convergent process P of type B,

Trans ? P
maxC ;

i.e.

(Trans u P
maxC)# :

Suppose

Trans u (P
maxC)
s

=)Q u (P 0
maxC=s):

This means that P
s�B
=)P 0. Because P # there is t 2 allobtraces(P 0) such that

(s�B)t 2 VB . The de�nition of VB means that t is in�nite.

The process Q is either Trans, Trans0 or Trans1. We can �nd u 2 allobtraces(Q)

such that u�B = t, by considering the behaviour of Q which alternately does a

sen0 or sen1 action (whichever is needed to match t), and a tra action.

The de�nition of max processes means that u�C 2 allobtraces(maxC=s). Now u�C

is in�nite, because u contains a tra action for every sen action.

We now have u 2 allobtraces(Qu(P 0
maxC=s)). We know that (su)�B is in�nite,

hence is in VB , and (su)�C is in�nite, hence is in VC . Therefore su 2 VBOC , as

required. �

Intuitively, we have made use of the fact that whenever Trans is capable of

performing an action in its B port, it must o�er a choice of all possible actions.

This is consistent with our description of the deadlock-free type over B as inB .

Similar informal reasoning applies to the other components of the system; the

arguments can also be formalised as above.

The �-autonomous structure of ASProcD allows the components to be connected

together, using the same typing rule as in ASProcV , up to the point at which the

cycle is about to be completed. This gives the following process, PreProtocol .

x ya

b

c

d

q

v

(X; inX) (Y; outY)Accept

Trans

Reply

Ack

(B; outB)

(B; inB)

Because we have already established that the individual components have com-

patible types, no extra work is needed to take the construction to this point.

However, the type system of ASProcD does not allow the cycle to be closed. Thus

we need to verify that the condition cycle(PreProtocol) is satis�ed, in order to es-

tablish that the process PreProtocol = Protocol has the type (X; inX)O(Y; outY)

in ASProcD.

To check the condition cycle(PreProtocol), observe that (�;U) = (X; inX) O

(Y; outY). We need to consider any Q 2 (inX O outY)
?
. We have

(inX O outY)
?
= outX
 inY

= inX
 inY

= inX
Y

by the duality of
 and O, the fact that outX = inX (because X has only one

observable action), and the properties of in types. Hence we only need to consider

Q = maxX
Y , since in general inA = fmaxAg.

Suppose PreProtocol
s

=)P 0, maxX
Y
s�X;Y
=) maxX
Y and �B(s) = �B?(s). We

need to �nd t 2 allobtraces(P 0) such that

{ t�X;Y 2 allobtraces(maxX
Y) (this condition is vacuous, since max has all

traces)
{ �B(t) = �B?(t)
{ st 2 VXOBOYOB (this condition holds, provided that st is in�nite).

Checking the condition cycle(PreProtocol) reduces to checking that any be-

haviour of PreProtocol which has matching actions in the B ports, can be ex-

tended to an in�nite behaviour of PreProtocol which has matching actions in

the B ports. This is equivalent to checking that any behaviour of Protocol can

be extended to an in�nite behaviour, i.e. that Protocol does not deadlock. We

carry out this check by using a traditional argument. The only potential dead-

lock arises from the use of a one-place bu�er in the transmission lines Trans and

Ack|if the bu�er is full then a new message could be rejected. However, the �

actions in the de�ning equations for Transb and Ack b play a dual role: as well

as representing an undesirable message loss, they can also be interpreted as a

deliberate message discard when a new message is received before the previous

message has been passed on. This is a rather peculiar feature of this particular

implementation of the alternating-bit protocol; the protocol could be modi�ed,

for example by introducing additional actions to represent fullness of the bu�ers,

but such modi�cations would merely increase the complexity without changing

the essential points of our argument.

The other purpose of the condition cycle(PreProtocol) is to ensure that Protocol

can interact with its environment, on the X and Y ports, as required by the

type (X; inX)O (Y; outY). In this example, we have

inX O outY = outX O outY

= outXOY

and if Protocol is convergent then trivially Protocol 2 outXOY (any convergent

process satis�es an out type). Hence this part of the condition becomes trivial.

In other examples, it may be less trivial to verify that the process can continue

to interact with its environment in the same way after completion of the cycle.

But once cycle(P) has been established, P has a type in ASProcD and can be

combined with other processes on the basis of that type, without further veri�ca-

tion. Any process with a port of type (X; outX) can be connected to the (X; inX)

port of Protocol without introducing deadlock; similarly, any process with a port

of type (Y; inY) can be connected to the (Y; outY) port of Protocol . No further

checking is needed in order to establish the correctness of these connections.

In this example the types of the individual ports are very simple|just input

or output. However, the overall type of, say, Accept is fairly complex: inX O
outB O inA. The treatment of complex combinations of inputs and outputs in a

uniform semantic theory is one of the signi�cant features of our approach. It is

also possible to describe more complex types for individual ports. For example,

given a type A of ASProcV , let

U = fP 2 Proc(A) j 8a;Q:P
a

=)Q) Q = maxA=ag:

Then (A;U) is a type of ASProcD which speci�es one step of output followed

by repeated inputs. In general, the choice of input or output can be made in-

dependently at each step. The structure of ASProcD allows a rich variety of

input/output behaviour to be speci�ed.

6 Related Work

The analysis of deadlock-freedom in concurrency has been investigated by a

number of authors [4, 7, 8, 10, 22, 24, 25]. The work of Roscoe and Daithi [24] is

one of the most recent, and also the most relevant to our own. Their approach

is to de�ne a variant function which assigns a value to each state of a process.

A network of processes, satisfying certain conditions, is deadlock-free if for each

process P that is waiting for another process Q, the value of the state of P

is greater than that of the state of Q. This enables local analysis of deadlock-

freedom, and hence o�ers the possibility of constructing deadlock-free networks

from deadlock-free subcomponents.

None of the above-mentioned approaches is based on types. However, Takeuchi,

Honda and Kubo [26] have developed a typed language for interaction, in which

the type system guarantees avoidance of a class of communication errors; these

errors can be viewed as weak forms of deadlock, but do not include the possibility

of cyclic dependencies. Based on this work, Kobayashi, Pierce and Turner [16]

have developed a linear type system for the �-calculus. Recently Kobayashi [15]

has proposed a process calculus with a type system which captures information

about order of channel usage, and uses this information to guarantee deadlock-

freedom. In this calculus, a distinction is made between reliable and unreliable

channels, and it is the reliable channels whose use is guaranteed not to cause

deadlock.

The main di�erence between our work and other work on type systems for dead-

lock avoidance is that we take a more semantic view; the structure of the category

ASProcD provides a uniform framework in which a range of communication be-

haviours can be described. The link with category theory and linear logic also

means that our type system follows the tradition of the Curry-Howard isomor-

phism, well established in functional programming. Another distinguishing fea-

ture of the interaction categories approach is the use of speci�cation structures to

organise the process of successively adding information to a type system, so that

a range of program properties can be discussed within a common framework.

The key advance of the present paper over our previous work is a satisfactory

treatment of an interaction category of asynchronous deadlock-free processes,

achieved by adding the notion of valid maximal traces to the types.

7 Conclusions and Future Work

We have presented a typed framework for the veri�cation of deadlock-freedom.

The main novelty of this paper is the new category ASProcD , which is a category
of deadlock-free processes constructed by means of a speci�cation structure over

the category ASProcV (ASProc with a notion of valid maximal traces). This is

a simple but e�ective treatment of asynchronous deadlock-freedom incorporat-

ing notions of deadlock, divergence, and termination. We have also applied the

techniques presented to verify the deadlock-freedom of the alternating-bit pro-

tocol. We see this work as a signi�cant step in the development of type-theoretic

methods for compositional veri�cation of concurrent systems.

Work is in already progress to develop a formal syntax for deadlock-free pro-

cesses, using ideas from the typed process calculi that we have already devel-

oped [11, 12, 20] and the typed language of Takeuchi et al. [26]. In addition,

it is highly desirable to develop techniques whereby forming cyclic connections

can be automated to some extent, perhaps under certain conditions. The use

of variants as in Roscoe and Daithi's work [24] may provide some clues. An-

other possibility is the cycle sum test of Wadge [27], which captures the idea

that the presence of non-trivial delays in feedback loops is a necessary condition

for deadlock-freedom. In any case, extra information about processes would be

needed in order to automate checking of cyclic connections; we would hope to

be able to de�ne an additional speci�cation structure, on top of D, whose types

incorporate the necessary data. This approach would further demonstrate the

scope of speci�cation structures for organising a range of type systems.

Future work will include applications of these ideas to more substantial examples,

perhaps illustrating the use of successful termination. Although we have focused

on deadlock-freedom in this paper, speci�cation structures allow other properties

such as liveness to be added in the same framework; we also aim to investigate

this in the future. A speci�cation structure for liveness, built on top of that

for deadlock-freedom, would allow speci�cation of more detailed properties of

in�nite executions. Finally, we would like to extend interaction categories to

handle mobility, which would enable us to establish a more direct connection

with other work based on the �-calculus.

Acknowledgements

We would like to thank the referees for their valuable comments. This research

was partly supported by the EPSRC projects \Foundational Structures in Com-

puter Science", \Typed Concurrent Object-Oriented Languages: foundations,

methods and tools" and the ESPRIT BRA 6454 (CONFER). The second au-

thor was also supported by the ESPRIT BRA 9102 (Coordination), and a grant

from the Nu�eld Foundation. The third author was also funded by the Ptolemy

project, which is supported by the Defense Advanced Research Projects Agency

(DARPA), the State of California MICRO program, and the following compa-

nies: The Alta Group of Cadence Design Systems, Dolby Laboratories, Hewlett

Packard, Hitachi, Hughes Space and Communications, LG Electronics, Lockheed

Martin ATL, NEC, Philips, and Rockwell. Paul Taylor's commutative diagrams

package was used in the production of the paper.

References

1. S. Abramsky, S. J. Gay, and R. Nagarajan. Interaction categories and foundations

of typed concurrent programming. In M. Broy, editor, Deductive Program Design:

Proceedings of the 1994 Marktoberdorf International Summer School, NATO ASI

Series F: Computer and Systems Sciences. Springer-Verlag, 1995.

2. S. Abramsky, S. J. Gay, and R. Nagarajan. Speci�cation structures and

propositions-as-types for concurrency. In G. Birtwistle and F. Moller, editors,

Logics for Concurrency: Structure vs. Automata|Proceedings of the VIIIth Ban�

Higher Order Workshop, volume 1043 of Lecture Notes in Computer Science.

Springer-Verlag, 1996.

3. S. Abramsky. Interaction Categories and communicating sequential processes. In

A. W. Roscoe, editor, A Classical Mind: Essays in Honour of C. A. R. Hoare,

pages 1{15. Prentice Hall International, 1994.

4. L. Aceto and M. Hennessy. Termination, deadlock and divergence. Journal of the

ACM, 39:147{187, January 1992.

5. M. Barr. �-autonomous categories and linear logic. Mathematical Structures in

Computer Science, 1(2):159{178, July 1991.

6. M. Berger, S. Gay, and R. Nagarajan. A typed calculus of deadlock-free processes.

Paper in preparation, 1997.

7. S. D. Brookes and A. W. Roscoe. Deadlock analysis in networks of communi-

cating processes. In K. Apt, editor, Logics and Models of Concurrent Systems,

volume 13, pages 305{324. NATO Advanced Study Institutes, Series F, Springer-

Verlag, Berlin, 1985.

8. K. M. Chandy and J. Misra. Deadlock absence proofs for networks of communi-

cating processes. Information Processing Letters, 9(4), November 1979.

9. J. W. de Bakker. Mathematical Theory of Program Correctness. Prentice Hall

International, 1980.

10. E. W. Dijkstra and C. S. Scholten. A class of simple communication patterns. In

Selected Writings on Computing. EWD643. Springer-Verlag, 1982.

11. S. J. Gay. Linear Types for Communicating Processes. PhD thesis, University of

London, 1995.

12. S. J. Gay and R. Nagarajan. A typed calculus of synchronous processes. In

Proceedings, Tenth Annual IEEE Symposium on Logic in Computer Science. IEEE

Computer Society Press, 1995.

13. J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50(1):1{102, 1987.

14. R. Hoofman. Non-Standard Models of Linear Logic. PhD thesis, Universiteit

Utrecht, Netherlands, 1992.

15. N. Kobayashi. A partially deadlock-free typed process calculus. In Proceedings,

Twelfth Annual IEEE Symposium on Logic in Computer Science. IEEE Computer

Society Press, 1997.

16. N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus.

In Proceedings, 23rd ACM Symposium on Principles of Programming Languages,

1996.

17. S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, Berlin,

1971.

18. J. McKinna and R. Burstall. Deliverables: A categorical approach to program de-

velopment in type theory. In Proceedings of Mathematical Foundation of Computer

Science, 1993.

19. R. Milner. Communication and Concurrency. Prentice Hall, 1989.

20. R. Nagarajan. Typed Concurrent Programs: Speci�cation & Veri�cation. PhD

thesis, University of London, 1997. To appear.

21. P. W. O'Hearn and R. D. Tennent. Relational parametricity and local variables.

In Proceedings, 20th ACM Symposium on Principles of Programming Languages.

ACM Press, 1993.

22. S. S. Owicki and D. Gries. Verifying properties of parallel programs. Communica-

tions of the ACM, 19(5):279{285, May 1976.

23. A. M. Pitts. Relational properties of recursively de�ned domains. In 8th Annual

Symposium on Logic in Computer Science, pages 86{97. IEEE Computer Society

Press, Washington, 1993.

24. A. W. Roscoe and N. Daithi. The pursuit of deadlock freedom. Information and

Computation, 75(3):289{327, December 1987.

25. J. Sifakis. Deadlocks and livelocks in transition systems. In Mathematical Foun-

dations of Computer Science, volume 88 of Lecture Notes in Computer Science,

pages 587{599. Springer-Verlag, Berlin, 1980.

26. K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its typing

system. In Proceedings of the 6th European Conference on Parallel Languages and

Architectures, number 817 in Lecture Notes in Computer Science. Springer-Verlag,

1994.

27. W. W. Wadge. An extensional treatment of data
ow deadlock. Theoretical Com-

puter Science, 13:3{15, 1981.

