UNIVERSITY OF CALIFORNIA AT BERKELEY

COLLEGE OF ENGINEERING
* DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES
BERKELEY, CALIFORNIA 94720

Vol. 3 - Ptolemy 0.7 Kernel Manual

Primary Authors
Joseph T. Buck (Part | — The Kernel Manual, Chapters 1-12)
Soonhoi Ha (Part Il — Code Generation, Chapters 13-18)
Other contributors

Shuvra Bhattacharyya, Wan-Teh Chang, Michael J. Chen, John S. Davis Il, Brian L.
Evans, Mudit Goel,Christopher Hylands, Asawaree Kalavade, Alan Kamas, Tom Lane,
Bilung Lee, Edward A. Lee, Jie Liu, David G. Messerschmitt, Praveen Murthy, Thomas M.
Parks, José Luis Pino, Gilbert Sih, Neil Smyth, S. Sriram, Michael C. Williamson, Kennard
White,Yuhong Xiong

Copyright © 1990-1997

The Regents of the University of California
All rights reserved.

Permission is hereby granted, without written agreement and without license or royalty fees,
to use, copy, modify, and distribute the Ptolemy software and its documentation for any pur-
pose, provided that the above copyright notice and the following two paragraphs appear in all
copies of the software and documentation.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMEN-
TATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRAN-
TIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
PROVIDED HEREUNDER IS ON AN “AS IS” BASIS, AND THE UNIVERSITY OF CAL-
IFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Ptolemy Last updated: 10/9/97

Current Sponsors

The Ptolemy project is supported by the Defense Advanced Research Projects Agency
(DARPA), the State of California MICRO program, and the following companies: The Alta
Group of Cadence Design Systems, Hewlett Packard, Hitachi, Hughes Space and Communi-
cations, LG Electronics, NEC, Philips, and Rockwell.

The Ptolemy project is an ongoing research project focusing on design methodology for heter-
ogeneous systems. Additional support for further research is always welcome.

Trademarks

Sun Workstation, OpenWindows, SunOS, Sun-3, Sun-4, SPARC, and SPARCstation are
trademarks of Sun Microsystems, Inc.

Unix is a trademark of Unix Systems Laboratories, Inc.
PostScript is a trademark of Adobe Systems, Inc.

About the Cover

The image on the cover is from a medieval illuminated manuscript at the Bibliotheque Nation-
ale, Paris. It depicts a monk usingamstrolabe,a device for measuring the angular distance of
stars above the horizon. An assistant records the readings.

Ptolemy Last updated: 10/9/97

The Almagest

Contents

Introd

uction 1

1. Basic concepts, classes, and facilities

1.1 The C++ SubsetUsedInPtolemy 1-1
1.2 Herators 1-1
1.3 Non-class utility procedures 1-2
1.4 GenericData Structures. 1-3
1.5 ClassSequentiallist. 1-3

SequentialList information functions 1-3
Functions that modify a SequentialList 1-3
Class Listlter 1-4
1.6 Doublylinkedlists 1-4
Class DoubleLink 1-4
Class DoubleLinkList 1-5
Class DoubleLinklter 1-6
1.7 Other generic containerclasses. 1-7

Class Queue 1-7
Class Stack 1-7
1.8 ClassNamedObj. i 1-7
NamedODbj constructors and destructors 1-8
NamedObj public members 1-8
Flags on named objects 1-9
NamedObj protected members 1-10
1.9 ClassNamedObjList. 1-10
NamedObijList information functions 1-10
Other NamedObijList functions 1-10
NamedObijList iterators 1-11

1.10 Attributes. 1-11
Attribute member functions 1-11
1.11 FlagArray e 1-12

FlagArray constructors and destructor 1-12
FlagArray public methods 1-12

2. Support for multithreading

3. Blo

Ptolemy

21 ClassPtGate e 2-1
2.2 ClassCriticalSection 2-1

2.3 Class GateKeeper. 2-2
24 ClassKeptGate.t 2-3

ck and related classes

Last updated: 10/9/97

3.1 ClassBIlocK. ... 3-1
Block constructors and destructors 3-1
Block public “information” members 3-1
Other Block public members 3-2
Block protected members 3-4
Block iterator classes 3-4
3.2 Class Star ... 3-4

Star public members 3-4
Star protected members 3-5
3.3 ClassGalaxy.couiiiii i 3-5
Galaxy public members 3-5
Galaxy protected members 3-6
Galaxy iterators 3-7
3.4 ClassDynamicGalaxyciiiii... 3-7
3.5 ClassInterpGalaxy.c.uuiiiiiiiiin... 3-7
Building structures with InterpGalaxy 3-8
Deleting InterpGalaxy structures 3-9
InterpGalaxy and cloning 3-10
Other InterpGalaxy functions 3-10

3.6 ClassRunnable 3-10
3.7 Class Universe i e e i 3-11
3.8 ClassInterpuniverse 3-11

4. Control of Execution and Error Reporting

41 ClassTarget i 4-1

Target public members 4-1
Target protected members 4-4

4.2 Class Scheduler. 4-5

Scheduler public members 4-6
Scheduler protected members 4-7

4.3 Class Error e 4-7
4.4 Class SImControl 4-8

Access to SimControl status flags. 4-8
Pre-actions and Post-actions 4-9
SimControl interrupts and polling 4-9

5. Interfacing domains — wormholes and related classes

51 Class Wormhole. i 5-1

Wormhole public members 5-1
Wormhole protected members 5-2

52 Class EventHorizon 5-3

How EventHorizons are used 5-3
EventHorizon public members 5-3

U. C. Berkeley Department of EECS

The Almagest

EventHorizon protected members 5-4

5.3 Class ToEventHorizon 5-4
5.4 Class FromEventHorizon. 5-5
55 Class WormMultiPort i i .. 5-5

6. Classes for connections between blocks

6.1 ClassGenericPort. 6-1
GenericPort query functions 6-1
Other GenericPort public members 6-3
GenericPort protected members 6-3
6.2 ClassPortHole 6-3
PortHole public members 6-4
PortHole protected members 6-6
CircularBuffer — a class used to implement PortHole 6-7
6.3 Class MultiPortHole 6-8
MultiPortHole public members 6-8
MultiPortHole protected members 6-8
6.4 AutoFork and AutoForkNode. 6-9
Class AutoFork 6-9
Class AutoForkNode 6-9
6.5 Class ParticleStack. 6-10
6.6 ClassGeodesiC. 6-10
Geodesic public members 6-11
Geodesic protected members 6-13

6.7 ClassPlasma......... 6-13
6.8 Class ParticleQueue. 6-14
6.9 ClassesforGalaxyports 6-15
6.10 The PortHole type resolution algorithm 6-15
6.11 Changes since Ptolemy0.6......................... 6-18
7. Particles and Messages

7.1 ClassParticle 7-1
7.2 Particle publicmembers 7-1
7.3 Arithmetic Particleclasses 7-2
7.4 The Heterogeneous Message Interface 7-2

Class Envelope 7-3
Class Message 7-4
Class MessageParticle 7-5

7.5 Example Messagetypes.iiiiii.. 7-5
8. The incremental linker

8.1 Id-A style linking vs. dlopen() style linking............ 8-1

8.2 Temporary vs. Permanent Incremental Linking. 8-1

Ptolemy Last updated: 10/9/97

8.3 Linker public members
8.4 Linkerimplementation. 8-3

Shared Objects and dlopen() style linking 8-3
Porting the Dynamic Linking capability 8-3

Id -A Style Dynamic Linking 8-4

dlopen() Style Dynamic Linking 8-4

9. Parameters and States

9.1 Class State 9-1

State public members 9-1
The State parser and protected members 9-2

9.2 Typesofstates.o i 9-5
Class IntState and class FloatState 9-5
Class ComplexState 9-5
Class StringState 9-5
Numeric array states 9-5
Class StringArrayState 9-6
10. Support for known lists and such
10.1 Class KnownBlock. 10-1
10.2 ClassKnownTarget, 10-3
10.3 ClassDomain, 10-4
Domain virtual functions 10-4
10.4 Class KnownState 10-5
11. I/O classes
11.1 StringList, a kind of Stringclass 11-1

StringList constructors and assignment operators 11-1
Adding to StringLists 11-1
StringList information functions 11-2
StringList conversion to const char * 11-2
StringList destruction and zeroing 11-2
Class StringListlter 11-3
11.2 InfString, a class supporting unbounded strings. 11-3
InfString constructors and assignment operators 11-3
Adding to InfStrings 11-4
InfString information functions 11-4
InfString conversion to char * 11-4
InfString destruction and zeroing 11-4
Class InfStringlter 11-4
11.3 Tokenizer, a simple lexical analyzerclass............ 11-5
Initializing Tokenizer objects 11-5
Reading from Tokenizers 11-5
Tokenizer include files 11-6

U. C. Berkeley Department of EECS

The Almagest

11.4 pt_ifstream and pt_ofstream: augmented fstream classes11-6
11.5 XGraph, an interface to the xgraph program.......... 11-7
11.6 Histogramclassesc. ... 11-7

Class Histogram 11-8
Class XHistogram 11-8

12. Miscellaneous classes

12.1 Mathematicalclasses. 12-1

Class Complex 12-1
class Fraction 12-2

12.2 ClassIntervalList i, 12-2
class Interval and methods 12-2
IntervalList public members 12-3
IntervallList iterator classes. 12-4
12.3 Classes for interacting with the system clock. 12-4
13. Overview of Parallel Code Generation
14. APEG generation
14.1 ClasS EGAICo e e e e 13-1
14.2 Class EGGaAte e e 13-1

EGGate public members 13-1
Class EGGatelList 13-3
14.3 ClassEGNode. i 13-4
Other EGNode public members 13-4
EGNodelList 13-5
14.4 Class ExpandedGraph 13-5

Other ExpandedGraph public members 13-6
Iterators for ExpandedGraph 13-7

15. Parallel Schedulers

15.1 ParNode. e 15-1

ParNode protected members 15-1
Other ParNode public members 15-2
Iterators for ParNode 15-4
15.2 ClassParGraph.......... i, 15-4
Other ParGraph protected members 15-5
Other ParGraph public members 15-5
Class NodePair 15-6

15.3 ClassParScheduler 15-6
compileRun method 15-7
Other ParScheduler protected members 15-8
Other ParScheduler public members 15-8

15.4 class ParProcessors. oo e 15-9

Ptolemy Last updated: 10/9/97

Other ParProcessors protected members 15-10
Other ParProcessors public members 15-10
15,5 UniProcessor ... 15-11
Class NodeSchedule 15-12
Members for scheduling 15-12
Sub-Universe creation 15-13
Members for code generation 15-15
Other UniProcessor protected members 15-16
Other UniProcessor public members 15-16
Iterator for UniProcessor 15-17

15.6 Dynamic Level Scheduler 15-17
15.7 ClassDLGraph......... 15-17
15.8 classDLScheduler........... 15-18
159 ClassDLParProcsciiiiiiiin. 15-19
15.10 Hu Level Scheduler 15-20

Class HuNode 15-20
Class HuGraph 15-21
Class HuScheduler 15-21
Class HuParProcs 15-22
15.11 Declustering Scheduler. 15-22
Class DCNode 15-24
Classes DCArc and DCArcList 15-25
Class DCGraph 15-26
Class DCCluster 15-27
Class DCClusterList 15-29
Class DCClustArc and class DCClustArcList 15-30
Class DCParProcs 15-30

16. Base Code Generation Domain and Supporting Classes

16.1 ClassCodeStreamo i, 16-1
Class NamedList 16-3

16.2 Class CodeBlockand Macros. 16-3

16.3 Class SymbolList and Unique Symbol Generation. 16-5

16.4 Class CGGeodesic and Resource Management. 16-8

16.5 Utility Functions. 16-10

16.6 ClassCGStar i 16-10

CGStar Protected Methods and Members 16-10
CGStar Public Methods 16-11
16.7 ClassCGPortHole 16-12
Buffer Management 16-12
Buffer Embedding 16-12
Geodesic Switching 16-13
Other CGPortHole Members 16-14

U. C. Berkeley Department of EECS

The Almagest

CGPortHole Derived Classes 16-14

17. Target

17.1 Class CGTarget.o e 17-1
Other CGTarget protected members 17-5
Other CGTarget public members 17-5
Class HLLTarget 17-7

17.2 Multiprocessor Targetsoouiiiiinnn... 17-7
Class MultiTarget 17-8
Class CGMultiTarget 17-10
Class CGSharedBus 17-14

17.3 Heterogeneous Support., 17-15
18. CGC Domain
18.1 Buffer Allocation. 18-1

Buffer requirement 18-2
Splice stars 18-4
Buffer naming 18-6

18.2 Data structure for galaxy and stars. 18-7
Buffer initialization 18-8

18.3 CGCcodestreamsccviiiiiiiiiieinnn... 18-8

18.4 Other CGCPortHolemembers...................... 18-9

18.5 OtherCGCStarmembers......................... 18-10

18.6 Other CGCTargetmembers....................... 18-11

Other CGCTarget protected members 18-11
Other CGCTarget public members 18-12

18.7 Class CGCMultiTarget 18-13

CGCMultiTarget protected members 18-14
CGCMultiTarget public members 18-15

18.8 StatuS.ot 18-15
18.9 References. 18-16

Ptolemy Last updated: 10/9/97

U. C. Berkeley Department of EECS

The Almagest

Introduction

The Ptolemy Kernel Manual describes the C++ classes that make up the core of
Ptolemy. It is assumed that the reader is intimately familiar with the Ptolemy system (If you
are not, seattp://ptolemy.eecs.berkeley.edu) . The Kernel Manual was originally
written by Joe Buck, Soonhoi Ha added the Code Generation chapters. The last version of the
Kernel Manual was released with Ptolemy 0.5.2. With the release of Ptolemy 0.7, we decided
that it was time to update the Kernel Manual to include things like Tom Lane’s changes to the
type checking system (“The PortHole type resolution algorithm” on page 6-15). However,
much of the Kernel Manual is still out of date, the most common errors are changes in the call-
ing signature of methods, or the addition or removal of methods. Ultimately, the source code
is the best reference for these sorts of issues. We decided to release the Kernel Manual in an
unpolished form because the usefulness of some of the sections far outweighs the bugs in
other sections.

Ptolemy Last updated: 10/9/97

U. C. Berkeley Department of EECS

The Almagest 1-1

Chapter 1. Basic concepts, classes,
and facilities

Authors: The Ptolemy Team

This section describes some basic classes and low-level concepts that are used throughout
Ptolemy. There are a number of iterator classes, all with the same interface. Several important
non-class library functions are provided. A basic linked list class called SequentialList is heavi-

ly used. States (see section 9.1) and Portholes (see section 6.2) catirlites these are
particularly important in code generation. Finally, many of the significant classes in Ptolemy —
functional blocks, portholes to implement connections, parameters — are derived from Named-
Obj, the basic object for implementing a named object that lives in a hierarchy.

1.1 The C++ Subset Used In Ptolemy

The Ptolemy system has grown up with the C++ language, so it does not use all the latest fea-
tures in the newest compilers or every nook and cranny of Ellis and Stroustrup’s Annotated
Reference Manual, because of unimplemented features or lack of stability of implementation.
Instead, we focused on stability. Accordingly, Ptolemy can be built with a number of different
C++ compilers. This means, for one thing, that templates are not used (except in the experi-
mental IPUS domain). In addition, some features that do not work that well yet under g++, such

as nested classes, are also avoided. Nested enumerations, however, are used in several places.

1.2 lterators

Iterators are a very basic and widely used concept in Ptolemy, and are used repeatedly in Ptole-
my programming in almost any situation where a composite object contains other objects. We
have chosen to use a consistent interface for all iterator objects. The typical iterator class has
the following basic interface (some iterators provide additional functions as well):

class Mylterator {

public:

/[constructor: argument is associated outer object
Mylterator(OuterObject&);
/I next: return a pointer to the next object,
/I or a null pointer if no more
InnerObject* next();
/I operator form: a synonym for next
InnerObject* operator++(POSTFIX_OP) {return next();}
/ reset the iterator to point to the first object
void reset();

POSTFIX_OPis a macro that is defined to be an empty string on older compilers (such

as cfront 2.1 and versions of g++ before 2.4) and to the string "int" with newer compilers. This
conditional behavior is required because of the evolution of the C++ language; previously,

Ptolemy Last updated: 10/9/97

1-2 Basic concepts, classes, and facilities

postfix and prefix forms of the operators ++ and — were not distinguished when overloaded;
now, a dummy int argument indicates that the postfix form is intended.

A typical programming application for iterators might be something like

/I print the names of all objects in the container
Listlter nextltem(myList);
Item *itemP;
while ((itemP = nextltem++) 1= 0)
cout << itemP->name() << "\back n";

It is, as a rule, not safe to modify most container classes in parallel with the use of an iterator,
as the iterator may attempt to access an object that does not exist any more. However, the
set member function will always make the iterator safe to use even if the list has been modi-
fied (user-written iterators should preserve this property).

1.3 Non-class utility procedures

The kernel provides several useful ordinary (non-class) procedures, primarily for manipulating
strings and path names. Some are defin@dsoFuncs.h, others inpaths.h.

char* savestring(const char* text);
Create a copy of thext argument witmew and return a pointer to it. It is the caller’s
responsibility to assure that the string is eventually deleted by usidgléte [] opera-
tor. The argumentext must not be a null pointer.

const char* hashstring(const char* text);
Enters a copy ofext into a hash table and return a pointer to the entry. If two strings
compare equal when passedtieamp, then if both are passedHtashstring, the
return values will be the same pointer.

const char* expandPathName(const char* fileName);
Expand a path name that may begin with an environment variable or a user’s home direc-
tory. If the string does not begin with a ~®character, the string itself is returned. A
leading *~/ " is replaced by the user’s home directory; a leadingsér " is replaced by
the home directory favser, unless there is no such user, in which case the original string
is returned. Finally, a leadingénv” is replaced by the value of the environment variable
env; if there is no such environment variable, the original string is returned. Note that ref-
erences to environment variables other than at the beginningtamgbstituted. If any
substitutions are made, the return value is actually a pointer into a static buffer. This means
that a second call to this function may write on top of a value returned by a previous call.

const char* pathSearch(const char* file , const char* path =0);
For this functionpath is a series of Unix-style directory names, separated by colons. If
no second argument is supplied or if the value is null, the value of the PATH environment
variable is used instead. For each of the colon-separated directory strings, the function
checks to see whether the file exists in the named directory. If it finds a match, it returns a
pointer to an internal buffer containing the full path of the match. If it does not find a
match, it returns a null pointer.

U. C. Berkeley Department of EECS

The Almagest 1-3

int progNotFound(const char* program ,const char* extra =0);
This function searches fgrogram in the user’s PATH using thmthSearch function.
If a match is found, the function returns false (0). Otherwise it returns true (1) and also
generates an error message withghrer::abortRun function. If theextra argument
is given, it forms the second line of the error message.

1.4 Generic Data Structures

As Ptolemy does not use templates, our generic lists use the generic pointer technique, with
typedef void * Pointer;

The most commonly used generic data structure in PtoleB8ggigentialList. Other lists
are, as a rule, privately inherited from this class, so that type safety can be preserved. It is pos-
sible to insert and retrieve items at either the head or the tail of the list.

1.5 Class SequentiallList

This class implements a single linked list with a count of the number of elements. The construc-
tor produces a properly initialized empty list, and the destructor deletes the links. However, the
destructor does not delete the items that have been added to the list; this is not possible because
it has onlyoid * pointers and would not know how to delete the items. There is an associated
iterator class for SequentialList called Listlter.

1.5.1 SequentialList information functions
These functions return information about the SequentialList but do not modify it.

int size() const;
Return the size of the list.

Pointer head() const;
Return the first item from the list (O if the list is empty). The list is not changed.

Pointer tail() const;
Return the last item from the list (O if the list is empty). The list is not changed.

Pointer elem(int n) const;
Return thenth item on the list (O if there are fewer thaiitems). Note that the time
required is proportional to.

int empty() const;
Return 1 if the list is empty, O if it is not.

int member(Pointer arg) const;
Return 1 if the list has a Pointer that is equalrtp O if not.

1.5.2 Functions that modify a SequentiallList

void prepend(Pointer p);
Add an item at the beginning of the list.

Ptolemy Last updated: 10/9/97

1-4 Basic concepts, classes, and facilities

void append(Pointer p);
Add an item at the end of the list.

int remove(Pointer P);
Remove the pointgy from the list if it is present (the test is pointer equality). Return 1 if
present, O if not.

Pointer getAndRemove();
Return and remove the head of the list. If the list is empty, return a null pointer (0).

Pointer getTailAndRemove();
Return and remove the last item on the list.

void initialize();
Remove all links from the list. This does not delete the items pointed to by the pointers
that were on the list.

1.5.3 Class Listlter

Listlter is a standard iterator class for use with objects of class SequentialList. The constructor
takes an argument of tyjpenst SequentialList and the ++ operator (oext function)

returns &ointer. Class Listlter is a friend of class SequentialList. In addition to the standard
iterator functionsiext andreset, this class also provides a function

void reconnect(const SequentialList& newlList)
that attaches the Listlter to a different SequentialList.

1.6 Doubly linked lists

Support for doubly linked lists is foundDoubleLink.h. The class DoubleLink implements

a base class for nodes in the list, class DoubleLinkList implements the list itself, and class Dou-
bleLinkiter forms an iteratodWARNING: We consider this class to have serious design flaws,
so it may be reworked quite a bit in subsequent Ptolemy releases

1.6.1 Class DoubleLink

A DoubleLink object is an item in the list defined by DoubleLinkList. Normally, a programmer
will not interact directly with this class, but rather will use methods in DoubleLinkList. None-
theless, we present it here because some of the methods of DoubleLinkList do refer to it.

There are two constructors:

DoubleLink(Pointer p, DoubleLink* next , DoubleLink* prev):

DoubleLink(Pointer P);
The first form initializes th@ext andprev pointers of the node as well as the contents.
The second form sets these pointers to null and only initializes the contents pointer.

Pointer content();
Return the content pointer of the node.

U. C. Berkeley Department of EECS

The Almagest 1-5

virtual ~DoubleLink();
The destructor is virtual.

void unlinkMe();
Delete the node from the list it is contained in. l.e. connect the elements pointed to by the
prev andnext pointers. The object pointed to by the node is not deleted.

The following data members are protected:

DoubleLink *next; // next node in the list
DoubleLink *prev; // previous node in the list
Pointer e; /I contents of this node

1.6.2 Class DoubleLinkList

DoubleLinkList();

DoubleLinkList(Pointer* e);
The first constructor creates an empty list. The second creates a one-node list containing
the object pointed to by. That object must live at least as long as the link lives.

virtual ~DoubleLinkList();
The destructor is virtual. It deletes all DoubleLinks in the list, but does not delete the
objects pointed to by each link.

DoubleLink* createLink(Pointer e);
Return a newly allocated DoubleLink that contains a pointer tbis up to the caller to
delete the DoubleLink, or to use eithemoveLink or remove .

void insertLink(DoubleLink * X);
void insert(Pointer e);

These methods insert an item at the beginning of the list. The first inserts a DoubleLink;
the second creates a DoubleLink wdthateLink and inserts that. If the second form is
used, the link should only be removed usi&goveLink orremove , notunlink ,
becauseanlink will not delete the DoubleLink.

void appendLink(DoubleLink * X);
void append(Pointer e);

These methods append at the end of the list. The first appends a DoubleLink; the second
creates a DoubleLink wittreateLink and appends that. If the second form is used, the
link should only be removed usimgmoveLink orremove , notunlink , because

unlink will not delete the DoubleLink.

void insertAhead(DoubleLink * vy, DoubleLink * X);

void insertBehind(DoubleLink * vy, DoubleLink * X);
The first method inserggsimmediately ahead of the DoubleLink pointed tajaye sec-
ond insertyy immediately after the DoubleLink pointed toxbyBoth of these functions
assume that is in the list; disaster may result otherwise.

DoubleLink* unlink(DoubleLink * X);
Remove the link from the list and return a pointer to it. Make sure thigtin the list

Ptolemy Last updated: 10/9/97

1-6 Basic concepts, classes, and facilities

before calling this method, or disaster may result.

void removeLink(DoubleLink * X);
This is the same amlink, except thak is deleted as well. The same cautions apply.

void remove(Pointer e);
Search for a DoubleLink whose contents match a match is found, the node is
removed from the list and the DoubleLink is deleted. The object pointededshyot
deleted. The search starts at the head of the list.

int find(Pointer e);
Search for a DoubleLink whose contents matchi a match is found, 1 (true) is returned;
otherwise 0 (false) is returned. The search starts at the head of the list.

virtual void initialize();
Delete all DoubleLinks in the list and make the list empty.

void reset();
Make the list empty, but do not delete the DoubleLinks in each of the nodes.

int size();
Return the number of elements in the list. This method should be const but isn'’t.

DoubleLink *head();
DoubleLink *tail();

Return a pointer to the head or to the tail of the list. If the list is empty both methods will
return a null pointer.

DoubleLink *getHeadLink();
Pointer takeFromFront();

The first method gets and removes the head link, returning a pointer to it. The second
method returns the object pointed to by the head link, and deletes the DoubleLink. If the
list is empty, both functions return a null pointer.

DoubleLink *getTailLink();
Pointer takeFromBack();

These methods are identical to the previous pair except that they remove the last node
rather than the first.

The following two data members are protected:

DoubleLink *myHead;
DoubleLink *myTail;

1.6.3 Class DoubleLinklter

DoubleLinkliter is an iterator for DoubleLinkList. It is only capable of moving “forward”
through the list (following the “next” links, not the “prev” links). isxt operator returns the

U. C. Berkeley Department of EECS

The Almagest 1-7

Pointer values contained within the nodes; it is also possible to use the non-starttarkl
function to return successive DoubleLink pointers.

1.7 Other generic container classes

The file DataStruct.h defines two other generic container classes that are privately derived
from SequentialList: Queue and Stack. Class Queue may be used to implement a FIFO or a
LIFO queue, or a mixture. Class Stack implements a stack.

1.7.1 Class Queue

The constructor for class Queue builds an empty queue. The following four functions move
pointers into or out of the queue:

void putTail(Pointer P);

void putHead(Pointer P);

Pointer getHead();

Pointer getTail();

In addition,put is a synonym foputTail, = andget is a synonym fogetHead. All these
functions are implemented on top of the (hidden) SequentialList functions. The SequentialList
functionssize andinitialize are re-exported (that is, are accessible as public member

functions of class Stack).

1.7.2 Class Stack

The constructor for class Stack builds an empty stack. The following functions move pointers
onto or off of the stack:

void pushTop(Pointer p);

Pointer popTop();

pushBottom(Pointer p);
pushTop andpopTop are the functions traditionally associated with a stpeéhBot-
tom adds an item at the bottom, which is non-traditional. The following non-destructive
function also exists:

Pointer accessTop() const;
This accesses but does not remove the element from the top of the stack.

All these functions are implemented on top of the (hidden) SequentialList functions. The Se-
guentialList functionsize andinitialize are re-exported.

1.8 Class NamedObj

NamedObj is the base class for most of the common Ptolemy objects. A NamedObj is, simply

put, a named object; in addition to a name, a NamedObj has a pointer to a parent object, which
is always a Block (a type of NamedObj). This pointer can be null. A NamedObj also has a de-

scriptor. Warning! NamedObj assumes that the name and descriptor “live” as long as the

NamedObj does. They are not deleted by the destructor, so that they can be compile-time
strings. Important derived types of NamedObj include Block (see section3.1), GenericPort (see

section 6.1), State (see section 9.1), and Geodesic (see section 6.6).

Ptolemy Last updated: 10/9/97

1-8 Basic concepts, classes, and facilities

1.8.1 NamedObj constructors and destructors

All constructors and destructors are public. NamedObj has a default constructor, which sets the
name and descriptor to empty strings and the parent pointer to null, and a three-argument con-
structor:

NamedObj(const char* nameBlock* parent , const char* descriptor)

NamedObj's destructor is virtual and does nothing.

1.8.2 NamedObj public members

virtual const char* className() const;
Return the name of the class. This needs to have a new implementation supplied for every
derived class (except for abstract classes, where this is not necessary).

const char* name() const;
Return the local portion of the name of the class (vs. the full name).

const char* descriptor() const;
Return the descriptor.

Block* parent() const;
Return a pointer to the parent block.

virtual StringList fullName() const;
Return the full name of the object. This has no relation to the class name; it specifies the
specific instance’s place in the universe-galaxy-star hierarchy. The default implementation
returns names that might look likeiverse.galaxy.star.port for a porthole; this is
the full name of the parent, with a period and the name of the object appended.

void setName(const char* name;
Set the name of the object. The string must live at least as long as the object.

void setParent(Block* parent);
Set the parent of the object, which is always a Block. The parent must live at least as long

as the object.

void setNameParent (const char* my_name Block* my parent)
Change the name and parent pointer of the object.

virtual void initialize() = 0;
Initialize the object to prepare for system execution. This is a pure virtual method.

virtual StringList print (int verbose) const;
Return a description of the object. If the argumembose is 0, a somewhat more com-
pact form is printed than if the argument is non-zero.

virtual int isA(const char* chame) const;
Return TRUE if the argument is the name of the class or of one of its base classes. This

U. C. Berkeley Department of EECS

The Almagest 1-9

method needs to be redefined for all classed derived from NamedObj. To make this easy to
do, a macraSA_FUNC s provided; for example, in the fildock.cc we see the line

ISA_FUNC(Block,NamedObj);

NamedObj is the base class from which Block is derived. This macro creates the function
definition

int Block::isA(const char* cname) const {

if (strcmp(cname,"Block™) == 0) return TRUE;
else return NamedObj::isA(chame);

}

MethodsisA andclassName are overridden in all derived classes; the redefinitions will not
be described for each individual class.

1.8.3 Flags on named objects

FlagArray flags
Many schedulers and targets need to be able to mark blocks in various ways, to count invo-
cations, or flag that the block has been visited, or to classify it as a particular type of block.
To support this, we provide an array of flags that are not used by class Block, and may be
used in any way by a Target. The target may defer their use to its schedulers. The array can
be of any size, and the size will be increased automatically as elements are referenced. For
readability and consistency, the user should define an enum in the target or scheduler class
to give the indices, so that mnemonic names can be associated with flags, and so that mul-
tiple schedulers for the same target are consistent. For instamég aifpointer to a
Block, a target might contain the following:

private:
enum {
visited = 0,
fired =1
}

which can then be used in code to set and read flags in a readable way,
b->flags|visited] = TRUE;
if (b->flags{visited]) { ... }

WARNING:For efficiency, there is no checking to prevent two different pieces of code

(say a target and scheduler) from using the same flags (which are indexed only by non-
negative integers) for different purposes. The policy, therefore, iththédrget is in

charge It is incumbent upon the writer of the target to know what flags are used by sched-
ulers invoked by that target, and to avoid corrupting those flags if the scheduler needs them
preserved. We weighed a more modular, more robust solution, but ruled in out in favor of
something very lightweight and fast.

Ptolemy Last updated: 10/9/97

1-10 Basic concepts, classes, and facilities

1.8.4 NamedObj protected members

void setDescriptor(const char* desc);
Set the descriptor tdesc. The string pointed to byesc must live as long as the
NamedObj does.

1.9 Class NamedObijList

Class NamedObijList is simply a list of objects of class NamedOb;. It is privately inherited from
class SequentialList (see section 1.5), and, as a rule, other classes privately inherit from it. It
supports only a subset of the operations provided by SequentialList; in particular, objects are
added only to the end of the list. It provides extra operations, like searching for an object by
name and deleting objects. This object enforces the rule that only const pointers to members
can be obtained if the list is itself const; hence, two versions of some functions are provided.

1.9.1 NamedObijList information functions

The size and initialize functions of SequentialList are re-exported. Note that
initialize removes only the links to the objects and does not delete the objects. Here is
what’s new:

NamedObj* objWithName(const char* name),

const NamedObj* objWithName(const char* name) const;

Find the first NamedObj on the list whose name is equaie, and return a pointer to
it. Return O if it is not found. There are two forms, one of which returns a const object.

NamedObj* head();
const NamedObj* head() const;
Return a pointer to the first object on the list (O if none). There are two forms, one of

which returns a const object.

1.9.2 Other NamedObjList functions

void put(NamedObj& obj)
Add a pointer twbj to the list, at the end. The object must live at least as long as the list.

void initElements();
Apply theinitialize method to each NamedObj on the list.

int remove(NamedObj* obj);
Removeobj from the list, if present (this does not delebg). Return 1 if it was
present, O if not.

void deleteAll();
Delete all elements from the list, and reset it to be an empty list. WARNING: this assumes
that the members of the list are on the heap (allocatedvby so that deleting them is
valid)!

U. C. Berkeley Department of EECS

The Almagest 1-11

1.9.3 NamedObijList iterators

There are two different iterators associated with NamedODbijList; class NamedObijListlter and
class CNamedObijListlter. The latter returns const objects (which cannot then be modified).
The former returns a non-const pointer, and can only be used if the NamedObijList itself is not
const. Both obey the standard iterator interface and are privately derived from class Listlter.

1.10 Attributes

Attributes represent logical properties that an object may or may not have. Certain classes such
as State and Porthole contain attributes and provide interfaces for setting and clearing at-
tributes. For the State class, for instance, the initial value may or may not be settable by the
user; this is indicated by an Attribute. In code generation classes, attributes may indicate
whether an assembly-language buffer should be allocated to ROM or RAM, fast memory or
slow memory, etc. The set of attributes of an object is stored in an entity caitveta . At

present, a bitWord is represented as an unsigned long, which restricts the number of distinct
attributes to 32; this may be changed in future releases. An Attribute object represents a request
to turn certain attributes of an object off, and to turn other attributes on. As a rule, constants of
class Attribute are used to represent attributes, and users have no need to know whether a given
property is represented by a true or false bit in the bitWord. Although we would prefer to have

a constructor for Attribute objects of the form

Attribute(bitword bitsOn , bitword bitsOff);

it has turned out that doing so presents severe problems with order of construction, since a num-
ber of global Attribute objects are used and there is no simple, portable way of guaranteeing

that these objects are constructed before any use. As a reshils@ne andbitsOff mem-

bers are public, but we forbid use of that fact except in one place: constant Attribute objects

can be initialized by the C “aggregate form”, as in the following example:

extern const Attribute P_HIDDEN = {PB_HIDDEN, 0},

(This particular attribute is used by Porthole to indicate that a port should not be visible to the
user, i.e. should not appear on an icon.) The first word specified ibitd@n field,
PB_HIDDEN and the second word specified is HitgOff field. Other than to initialize ob-
jects, we pretend that these data members are private.

1.10.1 Attribute member functions

Attribute& operator |= (const Attribute& arg);

Attribute& operator &= (const Attribute& arg);
These operations combine attributes, by applying=thend&= operators to the bitsOn
and bitsOff fields. The first operation, as attributes are commonly used, represents a
requirement that two sets of attributes be met, so it has been argued that it really should be
the “and” operation. However, the current scheme has the virtue of consistency.

bitWord eval(bitWord defaultvVal) const;

Evaluate an attribute given a default value. Essentially, bits corresponding to bitsOn are
turned on, and then bits corresponding to bitsOff are turned off.

Ptolemy Last updated: 10/9/97

1-12 Basic concepts, classes, and facilities

bitWord clearAttribs(bitWord defaultvVal) const;
This method essentially applies the attribute backwards, reversing the roles of bitsOn and
bitsOff in eval.

bitWord on() const;

bitWord off() const;
Retrieve the bitsOn and bitsOff values, respectively. Inline definitions of opetatnd}
are also defined to implement nondestructive forms of.thend|= operations.

1.11 FlagArray

FlagArray is a lightweight, self-expanding array of integers. It is meant to store an array of
flags or counters, and its main appearance in Ptolemy is as a public member Macleds

Obj, and therefore is available in most Ptolemy classes, which are derivetidroeaOb;.

Targets and schedulers use this member to keep track of various kinds of data. Many schedulers
and targets need to be able to mark blocks in various ways, for example to count invocations,
or flag that the block has been visited, or to classify it as a particular type of block. This class
provides a simple mechanism for doing thiszl&gArray object is indexed like an array, us-

ing square brackets.ifis aFlagArray andi is a non-negative integer, theij is a refer-

ence to an integer element of the array. i§ out of bounds (beyond the currently allocated
limits of the array), then the class automatically increases the size of the array. New elements
are filled with zeros. Thus, RlagArray may be viewed as an infinite dimensional array of
integers initialized with zeros. if is a negative integer, thefi] is an error. For efficiency,

the class does not test for this error at run time, so you could get a core dump if you make this
error.

1.11.1 FlagArray constructors and destructor

FlagArray()
This constructor creates a zero-length flag array.

FlagArray(int size)
This constructor creates a flag array with the specified size already allocated and filled
with zeros.

FlagArray(int size ,int fill_value)
This constructor creates a flag array with the specified size filled with the specified integer
value. The destructor frees the memory allocated to store the array of integers.

1.11.2 FlagArray public methods

FlagArray & operator = (const FlagArray & V)
An assignment to ondagArray from another simply copies its size and data.

int size() const
Return the current allocated size of the array.

int & operator [] (int n)
If nis less than the currently allocated size of the array, then this returns a reference to the

U. C. Berkeley Department of EECS

The Almagest 1-13

n-th element of the array. #fis greater than or equal to the currently allocated size of the
array, then the size of the array is increased, the new elements are filled with zeros, and a
reference to the n-th element is returned. Indexing of elements begins with zero. The
returned reference, of course, can be used on the left-hand side of an assignment. This is
how values are written into an array.

Ptolemy Last updated: 10/9/97

1-14 Basic concepts, classes, and facilities

U. C. Berkeley Department of EECS

The Almagest 2-1

Chapter 2. Support for multithreading

Authors: Joseph T. Buck

Multithreading means that there are multifileeads of contrglor lightweight processesn

the same Ptolemy process. The principal consequence of the existence of multithreading is that
it is necessary to provide mechanisms that guarantee exclusive access to resources. The Ptole-
my kernel does not provide a multithreading library, as this is currently a very OS and CPU-
specific operation. There are a variety of such libraries that might be used; Sun’s lightweight
processes library and the University of Colorado’s Awesime package are two examples. What
the kernel does provide is a locking mechanism for implemeantitigal regions noninter-

ruptable regions of code in which only one thread can be active at a time. This facility is used
to protect critical resources in the kernel that might be accessed by multiple threads.

2.1 Class PtGate

Objects of classes derived from PtGate are used as semaphores to obtain exclusive access to
some resource. PtGate is an abstract base class: it specifies certain functionality but does not
provide an implementation. Derived classes typically provide the desired semantics for use
with a particular threading library. PtGate has three virtual functions that must be implemented
by each derived class. The first is a public method:

virtual PtGate* makeNew() const = 0;
ThemakeNewmethod returns a new object of the same class as the object it is called for,
which is created on the heap. For example, a hypothetical SunLWPGate object would
return a new SunLWPGate. The other two methods are protected. They are:

virtual void lock() = 0;

virtual void unlock() = 0;
The first call requests access for a resource; the second call releases access. If code in
another thread callsck() on the same PtGate aftetk() has already been called on
it, the second call will block until the first thread doesialnck() call. Note that two
successive calls tock() on the same PtGate from the same thread will cause that thread
to hang. It is for this reason that these calls are protected, not public. Access to PtGates by
user code is accomplished by means of another class, CriticalSection. The CriticalSection
class is a friend of class PtGate.

2.2 Class CriticalSection

CriticalSection objects exploit the properties of constructors and destructors in C++ to provide

a convenient way to implemetritical sectionssections of code whose execution can be guar-
anteed to be atomic. Their use ensures that data structures can be kept consistent even when
accessed from multiple threads. The CriticalSection class implements no methods other than
constructors and a destructor. There are three constructors:

CriticalSection(PtGate *);

Ptolemy Last updated: 10/9/97

2-2 Support for multithreading

CriticalSection(PtGate &);
CriticalSection(GateKeeper &);

The function of all of these constructors is to optionally set a lock. The first constructor

will set the lock on the given PtGate unless it gets a null pointer; the second form always
sets the lock. The third form takes a reference to an object known as a GateKeeper (dis-
cussed in the next section) that, in a sense, may “contain” a PtGate. If it contains a PtGate,
a lock is set; otherwise no lock is set. The lock is set by cadiah¢) on the PtGate

object. The CriticalSection destructor frees the lock by callmgck() on the PtGate

object, if a lock was set. CriticalSection objects are used only for their side effects. For
example:

PtGate& MyClass::gate;

void MyClass::updateDataStructure() {
CriticalSection region(MyClass::gate);
code;

The code between the declaration of the CriticalSection and the end of its scope will not
be interrupted.

2.3 Class GateKeeper

The GateKeeper class provides a means of registering a number of PtGate pointers in a list, to-
gether with a way of creating or deleting a series of PtGate objects all at once. The motivation
for this is that most Ptolemy applications do not use multithreading, and we do not wish to pay
the overhead of locking and unlocking where it is not needed. We also want to have the ability
to create a number of fine-grain locks all at once. GateKeeper objects should be declared only
at file scope (never as automatic variables or on the heap). The constructor takes the form

GateKeeper(PtGate *& gateToKeep);
The argument is a reference to a pointer to a GateKeeper, and the function of the construc-
tor is to add this reference to a master list. It will later be possible to “enable” the pointer,
by setting it to point to a newly created PtGate of the appropriate type, or “disable” it, by
deleting the PtGate object and setting the pointer to null. The GateKeeper destructor
deletes the reference from the master list and also deletes any PtGate object that may be
pointed to by the PtGate pointer. The public method

int enabled() const;
returns 1 if the GateKeeper’'s PtGate pointer is enabled (points to a PtGate) and 0 other-
wise (the pointer is null). There are two public static functions:

static void enableAll(const PtGate& master);
This function creates a PtGate object for each GateKeeper on the list, byroakiig
New() on the master object.

static void disableAll();

This function destroys all the PtGate objects and sets the pointers to be null. This function
must never be called from within a block controlled by a CriticalSection, or while multi-

U. C. Berkeley Department of EECS

The Almagest 2-3

threading operation is in progress. A GateKeeper may be used as the argument to a Criti-
calSection constructor call; the effect is the same as if the PtGate pointer were passed to
the constructor directly.

2.4 Class KeptGate

A KeptGate object is simply a GateKeeper that contains its own PtGate pointer. It is derived
from GateKeeper, has a private PtGate pointer member, and a constructor with no arguments.
Like a GateKeeper, it should be declared only at file scope and may be used as an argument to
a CriticalSection constructor call.

Ptolemy Last updated: 10/9/97

2-4 Support for multithreading

U. C. Berkeley Department of EECS

The Almagest 3-1

Chapter 3. Block and related classes

Authors: Joseph T. Buck
Other Contributors: J. Liu

This section describes Block, the basic functional block class, and those objects derived from
it. It is Blocks more than anything else that a user of Ptolemy deals with. Actors as well as col-
lections of actors are Blocks. Although the Target class is derived from class Block, it is doc-
umented elsewhere, as it falls under control of execution .

3.1 Class Block

Block is the basic object for representing an actor in Ptolemy. It is derived from NamedObj (see
section 1.8). Important derived types of Block are Star (see section 3.2), representing an atomic
actor; Galaxy , representing a collection of actors that can be thought of as one actor, and Uni-
verse , representing an entire runnable system. A Block has portholes (connections to other
blocks —, states (parameters and internal states — , and multiportholes (organized collections
of portholes — . While the exact data structure used to represent each is a secret of class Block,
it is visible that there is an order to each list, in that iterators return the contained states, port-
holes, and multiportholes in this order. Iterators are a set of helper classes that step through the
states, portholes, or multiportholes that belong to the Block, see the menu entry. Furthermore,
Blocks can be cloned, an operation that produces a duplicate block. There are two cloning func-
tions: makeNew, which resembles making a new block of the same classlae] which

makes a more exact duplicate (with the same values for states, for example). This feature is
used by the KnownBlock class to create blocks on demand.

3.1.1 Block constructors and destructors

Block has a default constructor, which sets the name and descriptor to empty strings and the
parent pointer to null, and a three-argument constructor:

Block(const char* nameBlock* parent , const char* descriptor);
Block’s destructor is virtual and does nothing, except for the standard action of destroying
the Block’s data members. In addition, Block possesses two types of “virtual construc-
tors”, the public member functiomsakeNewandclone.

3.1.2 Block public “information” members

int numberPorts() const;
int numberMPHSs() const;
int numberStates() const;

The above functions return the number of ports, the number of multiports, or the number
of states in the Block.

virtual int isltAtomic() const;

Ptolemy Last updated: 10/9/97

3-2 Block and related classes

virtual int isltWormhole() const;
These functions retuffRUE or FALSE, based on whether the Block is atomic or not, or a
wormhole or not. The base implementations reTlRDE for isltAtomic, FALSE for islt-
Wormhole.

virtual StringList print(int verbose) const;
OverridesNamedObj::print. This function gives a basic printout of the information in
the block.

GenericPort* genPortWithName(const char* name);

PortHole* portWithName(const char* name);

MultiPortHole* multiPortWithName(const char* name);

virtual State *stateWithName(const char* name);

These functions search the appropriate list and return a pointer to the contained object
with the matching nam@enPortwWithName searches both the multiport and the regular
port lists (multiports first). If a match is found, it returns a pointer to the matching object
as aGenericPort pointer.

int multiPortNames (const char** names , const char** types ,
int* io , int nMax) const;
Get a list of multiport names.

StringList printPorts(const char* type , int verbose) const;
Print portholes as part of the info-printing method.

virtual Scheduler* scheduler() const;
Return the controlling scheduler for this block. The default implementation simply recur-
sively calls thescheduler() function on the parent, or returns O if there is no parent.
The intent is that eventually a block with a scheduler will be reached (the top-level uni-
verse has a scheduler, and so do wormholes).

virtual Star& asStar();

virtual const Star& asStar() const;
Return reference to me as a Star, if | am one. Warning: it is a fatal error (the entire program
will halt with an error message) if this method is invoked on a Galaxy! Checlswth
Atomic before calling it.

virtual Galaxy& asGalaxy();

virtual const Galaxy& asGalaxy() const;
Return reference to me as a Galaxy, if | am one. Warning: it is a fatal error (the entire pro-
gram will halt) if this method is invoked on a Star! Check vgtiAtomic before call-
ing it.

virtual const char* domain() const;
Return my domain (e.g. SDF, DE, etc.)

3.1.3 Other Block public members
virtual void initialize();

U. C. Berkeley Department of EECS

The Almagest 3-3

overridesNamedObj::initialize . Block::initialize initializes the portholes
and states belonging to the block, and cadtap(), which is intended to be the “user-
supplied” initialization function.

virtual void preinitialize();
Perform a "pre-initialization” step. The default implementation does nothing. This method
is redefined by HOF stars and other stars that need to rewire a galaxy before the main ini-
tialization phase starts. Blocks must act safely if preinitialized multiple times (unless they
remove themselves from the galaxy when preinitialized, as the HOF stars do). Preinitialize
is invoked byGalaxy::preinitialize , Which see.

virtual int run();
This function is intended to “run” the block. The default implementation does nothing.

virtual void wrapup();
This function is intended to be run after the completion of execution of a universe, and
provides a place for wrapup code. The default does nothing.

virtual Block& setBlock(const char* nameBlock* parent =0);
Set the name and parent of a block.

virtual Block* makeNew() const
This is a very important function. It is intended to be overloaded in such a way that calling
it produces a newly constructed object of the same type. The default implementation
causes an error. Every derived type should redefine this function. Here is an example
implementation of an override for this function:

Block* MyClass::makeNew() const { return new MyClass;}

virtual Block* clone() const
The distinction betweetione andmakeNewis that the former does some extra copying.
The default implementation calisakeNewand thercopyStates, and also copies addi-
tional members likélags; it may be overridden in derived classes to copy more infor-
mation. The intent is thatone should produce an identical object.

void addPort(PortHole& port)
void addPort(MultiPortHole& port)
Add a porthole, or a multiporthole, to the block’s list of known ports or multiports.

int removePort(PortHole& port)
Removeport from the Block’s port list, if it is presert.is returned ifport was present
ando is returned if it was not. Note thadrt is not deleted. The destructor for class Port-
Hole calls this function on its parent block.

void addState(State& S);
Add the states to the Block’s state list.

virtual void initState();
Initialize the States contained in the Block’s state list.

Ptolemy Last updated: 10/9/97

3-4 Block and related classes

StringList printStates(const char* type ,int verbose) const;
Return a printed representation of the states in the Block. This function is used as part of
the Block'sprint method.

int setState(const char* stateName , const char* expression);
Search for a state in the block nanseateName. If not found, returro. If found, set its
initial value toexpression and returri.

3.1.4 Block protected members

virtual void setup();
User-specified additional initialization. By default, it does nothing. It is called by
Block::initialize (and should also be called if initialize is redefined).

Block* copyStates(const Block& src);
method for copying states during cloning. It is designed for use by clone methods, and it
assumes that the src argument has the same state listras thabject.

3.1.5 Block iterator classes

There are three types of iterators that may be used on Blocks: BlockPortlter, BlockStatelter,
and BlockMPHIter. Each takes one argument for its constructor, a reference to Block. They
step through the portholes, states, or multiportholes, of the Block, respectively, using the stan-
dard iterator interface. There are also variant versions with a “C” prefix (CBlockPortlter, etc)
defined in the fileConstlters.h that take a reference to a const Block and return a const
pointer.

3.2 Class Star

Class Star represents the basic executable atomic version of Block. It is derived from Block .
Stars have an associated Target , an index value, and an indication of whether or not there is
internal state. The default constructor sets the target poirteng sets the internal state flag

to TRUE and sets the index value-to.

3.2.1 Star public members

int run();
Execute the Star. This method also interfaces to the SimControl class to provide for con-
trol over simulations. All derived classes that override this method must invoke
Star::run.

StringList print(int verbose =0) const;
Print out info on the star.

Star& asStar();
const Star& asStar() const;

These simply return a referenceti®s, overridingBlock::asStar.

int index() const;
Return the index value for this star. Index values are a feature that assists with certain

U. C. Berkeley Department of EECS

The Almagest 3-5

schedulers; the idea is to assign a numeric index to each star at any level of a particular
Universe or Galaxy.

virtual void setTarget(Target* t);
Set the target associated with this star.

void nolnternalState();
Declare that this star has no internal state (This function may change to protected in future
Ptolemy releases).

int hasinternalState();
ReturnTRUEIf this star has internal stateALSE f it doesn’t. Useful in parallel schedul-

ing.

3.2.2 Star protected members

virtual void go();
This is a method that is intended to be overridden to provide the principal action of execut-
ing this block. It is protected and is intended to be called frormuttfe member func-
tion. The separation is so that actions common to a domain can be provided in the run
function, leaving the writer of a functional block to only implenga{).

3.3 Class Galaxy

A Galaxy is a type of Block that has an internal hierarchical structure. In particular, it contains
other Blocks (some of which may also be galaxies). It is possible to access only the top-level
blocks or to flatten the hierarchy and step through all the blocks, by means of the various iter-
ator classes associated with Galaxy. While we generally define a different derived type of Star
for each domain, the same kinds of Galaxy (and derived classes such as InterpGalaxy — are
used in each domain. Accordingly, a Galaxy has a data member containing its associated do-
main (which is set to null by the constructor). PortHoles belonging to a Galaxy are, as a rule,
aliased so that they refer to PortHoles of an interior Block, although this is not a requirement.

3.3.1 Galaxy public members

void initialize();
System initialize method. Derived Galaxies should not redefine initialize; they should
write asetup() method to do any class-specific startup.

virtual void preinitialize();
Preinitialization of a Galaxy invokes preinitialization of all its member blocks. Preinitial-
ization of the member blocks is done in two passes: the first pass preinits atomic blocks
only, the second all blocks. This allows clean support of graphical recursion; for example,
a HOFIfElseGr star can control a recursive reference to the current galaxy. The IfElse star
is guaranteed to get control before the subgalaxy does, so it can delete the subgalaxy to
stop the recursion. The second pass must preinit all blocks in case a non-atomic block

adds a block to the current gala®alaxy::preinitialize is called fromGal-
axy:initialize . (It would be somewhat cleaner to have the various schedulers invoke
preinitialize() separately fronmitialize() , but that would require many more

Ptolemy Last updated: 10/9/97

3-6 Block and related classes

pieces of the system to know about preinitialization.) Because of this decision, blocks in
subgalaxies will see a preinitialize call during the outer galaxy’s preinitialize pass and then
another one when the subgalaxy is itself initialized. Thus, blocks must act safely if preini-
tialized multiple times. (HOF stars generally destroy themselves when preinitialized, so
they can’t see extra calls.)

void wrapup();
System wrapup method. Recursively calls wrapup in subsystems

void addBlock(Block& b,const char* bname),
Add block to the galaxy and set its name.

int removeBlock(Block& by;
Remove the block from the galaxy’s list of blocks, if it is in the list. The block is not
deleted. If the block was presentis returned; otherwise is returned.

virtual void initState();
Initialize states.

int numberBlocks() const;
Return the number of blocks in the galaxy.

StringList print(int verbose) const;
Print a description of the galaxy.

int isltAtomic() const;
ReturnsFALSE (galaxies are not atomic blocks).

Galaxy& asGalaxy();
const Galaxy& asGalaxy() const;

These return myself as a Galaxy, overridBhock::asGalaxy.

const char* domain() const;
Return my domain.

void setDomain(const char* dom;
Set the domain of the galaxy (this may become a protected member in the future).

Block* blockWithName(const char* name),
Support blockWithName message to access internal block list.

3.3.2 Galaxy protected members

void addBlock(Block& b)
Add b to my list of blocks.

void connect(GenericPort& source , GenericPort& destination
int numberDelays =0)
Connect sub-blocks with a delay (default to zero delay).

U. C. Berkeley Department of EECS

The Almagest 3-7

void alias(PortHole& galPort , PortHole& blockPort);
void alias(MultiPortHole& galPort , MultiPortHole& blockPort);

Connect a Galaxy PortHole to a PortHole of a sub-block, or same for a MultiPortHole.

void initSubblocks();
void initStateSubblocks();

Former: initialize subblocks only. Latter: initialize states in subblocks only.

3.3.3 Galaxy iterators

There are three types of iterators associated with a Galaxy: GalTopBlocklter, GalAllBlocklter,
and GalStarlter. The first two iterators return pointers to Block; the final one returns a pointer
to Star. As its name suggests, GalTopBIlocklter returns only the Blocks on the top level of the
galaxy. GalAllBlockliter returns Blocks at all levels of the hierarchy, in depth-first order; if
there is a galaxy inside the galaxy, first it is returned, then its contents are returned. Finally,
GalStarlter returns only the atomic blocks in the Galaxy, in depth-first order. There is also a
const form of GalTopBlocklter, called CGalTopBlocklter. Here is a function that prints out the
names of all stars at any level of the given galaxy onto a given stream.

void printNames(Galaxy& g,ostreamé& stream) {
GalStarlter nextStar(g);
Star* s;
while ((s = nextStar++) != 0)
stream << s->fullName() << "\back n";

}
3.4 Class DynamicGalaxy

A DynamicGalaxy is a type of Galaxy for which all blocks, ports, and states are allocated on
the heap. When destroyed, it destroys all of its blocks, ports, and states in a clean manner.
There’s not much more to it than that: it provides a destructor, class identification functions
isA andclassName, and little else.

3.5 Class InterpGalaxy

InterpGalaxy is derived from DynamicGalaxy. It is the key workhorse for interfacing between
user interfaces, such as ptcl or pigi, and the Ptolemy kernel, because it has commands for build-
ing structures given commands specified in the form of text strings. These commands add stars
and galaxies of given types and build connections between them. InterpGalaxy interacts with
the KnownBlock class to create stars and galaxies, and the Domain class to create wormholes.
InterpGalaxy differs from other classes derived from Block in that the “class name” (the value
returned byclassName()) is a variable; the class is used to create many different “derived
classes” corresponding to different topologies. In order to use InterpGalaxy to make a user-de-
fined galaxy type, a series of commands are executed that add stars, connections, and other fea-
tures to the galaxy. When a complete galaxy has been designeafjdieKnownList

member function adds the complete object to the known list, an action that has the effect of
adding a new “class” to the system. InterpGalaxy methods that return an intLritusniccess

ando for failure. On failure, an appropriate error message is generated by means of the Error
class.

Ptolemy Last updated: 10/9/97

3-8 Block and related classes

3.5.1 Building structures with InterpGalaxy

The no-argument constructor creates an empty galaxy. There is a constructor that takes a single
const char* argument specifying the class name (the value to be returnieddiyame().

The copy constructor creates another InterpGalaxy with the identical internal structure. There
is also an assignment operator that does much the same.

void setDescriptor(const char* dtext)
Set the descriptor. Note that this is public, though the NamedObj function is protected.
dtext must live as long as the InterpGalaxy does.

int addStar(const char* Starname , const char* starclass);
Add a new star or galaxy with class nasmgclass to this InterpGalaxy, naming the
new instancetarname. The known block list for the current domain is searched to find
starclass. Returns 1 on success, 0 on failure. On failures, an error message of the form

No star/galaxy named ’'starclass’ in domain 'current-domain’

will be produced. The name is a misnomer sktagclass may hame a galaxy or a
wormhole.

int connect(const char* srcblock , const char* srcport
const char* dstblock , const char* dstport
const char* delay =0);

This method creates a point-to-point connection between therppett in the sub-

block sreblock and the portistport in the subblocldstblock, with a delay value
represented by the expressuriay. If the delay parameter is omitted there is no delay.
The delay expression has the same form as an initial value for an integer state (class
IntState), and is parsed in the same way as an IntState belonging to a subblock of the gal-
axy would bel is returned for successfor failure. A variety of error messages relating

to nonexistent blocks or ports may be produced.

int busConnect(const char* srcblock , const char* srcport
const char* dstblock , const char* dstport
const char* width , const char* delay =0);

This method creates a point-to-point bus connection between the muitygpart in

the subblocksrcblock and the multiportistport in the subblockistblock, with a

width value represented by the expressiaath and delay value represented by the
expressiondelay. If the delay parameter is omitted there is no delay. A bus connection is

a series of parallel connections: each multiport contaigis portholes and all are con-

nected in parallel. The delay and width expressions have the same form as an initial value
for an integer state (class IntState), and are parsed in the same way as an IntState belong-
ing to a subblock of the galaxy would heis returned for success for failure. A variety

of error messages relating to nonexistent blocks or multiports may be produced.

int alias(const char* galport |, constchar* block , const char * blockport);
Create a new port for the galaxy and make it an alias for the potthokport con-
tained in the subblocklock. Note that this is unlike the Galagjias method in that
this method creates the galaxy port.

U. C. Berkeley Department of EECS

The Almagest 3-9

int addNode(const char* nodename);,
Create a node for use in netlist-style connections and naméchame.

int nodeConnect(const char* blockname , const char* portname ,
const char* node, const char* delay =0);
Connect the porthole namedrtname in the subblock namedockname to the node
namednode. Returnl for success) and an error message for failure.

int addState(const char* Statename , const char* stateclass
const char* statevalue),
Add a new state namestaitename, of typestateclass, to the galaxy. Its default ini-

tial value is given bystatevalue.

int setState(const char* blockname , const char* Statename
const char* statevalue),
Change the initial value of the state namedename that belongs to the subblock
blockname to the string given bytatevalue. As a special case, ifockname is the
stringthis, the state belonging to the galaxy, rather than one belonging to a subblock, is
changed.

int setDomain(const char* newDomain);
Change the inner domain of the galaxytéovDomain. This is the technique used to cre-
ate wormholes (that are one domain on the outside and a different domain on the inside). It
is not legal to call this function if the galaxy already contains stars.

int numPorts(const char* blockname , const char* portname , int nump;
Hereportname names a multiporthole amdockname names the block containing it.
numPportholes are created within the multiporthole; these become ports of the block as a
whole. The names of the portholes are formed by appe#rdim®, etc. to the name of
the multiporthole.

3.5.2 Deleting InterpGalaxy structures

int delStar(const char* Sstarname),
Delete the instance namsthrname from the current galaxy. Ports of other stars that
were connected to ports sfarname will become disconnected. Returns 1 on success, 0
on failure. On failure an error message of the form

No instance of “starname” in “galaxyname”

will be produced. The name is a misnomer sistaeclass may name a galaxy or a
wormhole.

int disconnect(const char* block , const char* port);
Disconnect the portholeort, in subblockblock, from whatever it is connected to.
This works for point-to-point or netlist connections.

int delNode(const char* nodename);
Delete the node nodename.

Ptolemy Last updated: 10/9/97

3-10 Block and related classes

3.5.3 InterpGalaxy and cloning

Block *makeNew() const;

Block *clone() const;
For InterpGalaxy the above two functions have the same implementation. An identical
copy of the current object is created on the heap.

void addToKnownList(const char* definitionSource,
const char* outerDomain
Target* innerTarget =0);

This function adds the galaxy to the known list, completing the definition of a galaxy
class. The “class name” is determined by the name of the InterpGalaxy (as set by
Block::setBlockor in some other way). This class name will be returned bgldbeName
function, both for this InterpGalaxy and for any others produced from it by cloniog- If
erDomainis different from the system’s current domain (read from class KnownBlock), a
wormhole will be created. A wormhole will also be creatadnérTargetis specified, or if
galaxies for the domaiouterDomainare always wormholes (this is determined by asking
the Domain class). OneeldToKnownListis called on an InterpGalaxy object, that object
should not be modified further or deleted. The KnownBlock class will manage it from this
point on. It will be deleted if a second definition with the same name is added to the known
list, or when the program exits.

3.5.4 Other InterpGalaxy functions

const char* className() const
Return the current class name (which can be changed). Unlike most other classes, where
this function returns the C++ class name, we consider the class name of galaxies built by
InterpGalaxy to be variable; it is set @&ydToKnownList and copied from one galaxy to
another by the copy constructor or by cloning.

void preinitialize();
OverridesGalaxy::preinitialize() . This re-executes initialization steps that
depend on variable parameters, such as delays and bus connections for which the delay
value or bus width is an expression with variabBGgaxy::preinitialize is then
invoked to preinitialize the member blocks.

Block* blockWithDottedName(const char* name);
Returns a pointer to an inner block, at any depth, whose name matches the specification
name. For exampleblockWithDottedName(“a.b.c") would look first for a subgal-

axy nameda", then within that for a subgalaxy namid, and finally with that for a
subgalaxy namett", returning either a pointer to the final Block or a null pointer if a
match is not found.

3.6 Class Runnable

The Runnable class is a sort of “mixin class” intended to be used with multiple inheritance to
create runnable universes and wormholes. It is defined in thénfilerse.h. Constructors:

Runnable(Target* tar , const char* ty , Galaxy* 9);
Runnable(const char* targetname , const char* dom Galaxy* 9);

U. C. Berkeley Department of EECS

The Almagest 3-11

void initTarget();
This function initializes target and/or generates the schedule.

int run();
This function causes the object to run, until the stopping condition is reached.

virtual void setStopTime(double stamp);
This function sets stop time. The default implementation just calls the identical function in
the target.

StringList displaySchedule();
Display schedule, if appropriate (some types of schedulers will return a string saying that
compile-time scheduling is not performed, e.g. DE and DDF schedulers).

virtual ~Runnable();
The destructor deletes the Target.

A Runnable object has the following protected data members:

const char* type;

Galaxy* galP;
As a rule, when used as one of the base classes for multiple inheritaryzd? theointer
will point to the galaxy provided by the other half of the object.

A Runnable object has the private data member:
Target* target;

3.7 Class Universe

Class Universe is inherited from both Galaxy and Runnable. It is intended for use in standalone
Ptolemy applications. For applications that use a user interface to dynamically build universes,
class InterpUniverse is used instead. In addition to the Runnable and Galaxy functions, it has:

Universe(Target* S,const char* typeDesc);
The constructor specifies the target and the universe type.
Scheduler* scheduler() const;

Returns the scheduler belonging to the universe’s target.

int run();
ReturnRunnable::Run

3.8 Class InterpUniverse

Class InterpUniverse is inherited from both InterpGalaxy and Runnable. Ptolemy user interfac-
es build and execute InterpUniverses. In addition to the standard InterpGalaxy functions, it pro-
vides:

InterpUniverse (const char* name= "mainGalaxy");
This creates an empty universe with no target and the given name. If no name is specified,
mainGalaxy is the default.

Ptolemy Last updated: 10/9/97

3-12 Block and related classes

int newTarget(const char* newTargName = 0);
This creates a target of the given name (from the KnownTarget list), deleting any existing
target.

const char* targetName() const;
Return the name of the current target.

Scheduler* scheduler() const;
Return the scheduler belonging to the current tagyet Gone).

Target* myTarget() const;
Return a pointer to the current target.

int run();
InvokesRunnable::run

void wrapup();
Invokes wrapup on the target.

U. C. Berkeley Department of EECS

The Almagest 4-1

Chapter 4. Control of Execution and
Error Reporting

Authors: Joseph T. Buck
Other Contributors: John S. Davis Il

The principal classes responsible for control of the execution of the universe are the Target and
the Scheduler. The Target has high-level control over what happens when a userrtypes

from the interface. Targets take on particular importance in code generation domains where
they describe all the features of the target of execution, but they are used to control execution
in simulation domains as well. Targets use Schedulers to control the order of execution of
Blocks under their control. In some domains, the Scheduler does almost everything; the Target
simply starts it up. In others, the Scheduler determines an execution order and the Target takes
care of many other details, such as generating code in accordance with the schedule, download-
ing the code to an embedded processor, and executing it. The Error class provides a means to
format error messages and optionally to halt execution. The interface is always the same, but
different user interfaces typically provide different implementations of the methods of this
class. The SimControl class provides a means to register actions for execution during a simu-
lation, as well as facilities to cleanly halt execution on an error.

4.1 Class Target

Class Target is derived from class Block; as such, it can have states and a parent (the fact that
it can also have portholes is not currently used). A Target is capable of supervising the execu-
tion of only certain types of Stars; th&arClass argument in its constructor specifies what

type. A Universe or InterpUniverse is run by executing its Target. Targets have Schedulers,
which as a rule control order of execution, but it is the Target tiatmntrol A Target can

have children that are other Targets; this is used, for example, to represent multi-processor sys-
tems for which code is being generated (the parent target represents the system as a whole, and
child targets represent each processor).

4.1.1 Target public members

Target(const char* name, const char’starClass ,const chardesc ="");
This is the signature of the Target constructame specifies the name of the Target and
desc specifies its descriptor (these fields end up filling in the corresponding NamedObj
fields). ThestarClass argument specifies the class of stars that can be executed by the
Target. For example, specifyimptaFlowStar for this argument means that the Target
can run any type of star of this class or a class derived from itsAhfinction is used to
perform the check. See the descriptiomw{StarClass below.

Ptolemy Last updated: 10/9/97

4-2 Control of Execution and Error Reporting

const char* starType() const;
Return the supported star class (§h@Class argument from the constructor).

Scheduler* scheduler() const;
Return a pointer to my scheduler.

Target* cloneTarget() const;
This simply returns the result of thiene function as a Target. It is used by the Known-

Target class, for example to create a Target object corresponding to a name specified from
a user interface.

virtual StringList displaySchedule();

The default implementation simply passes this call along to the scheduler; derived classes
may modify this.

virtual StringList pragma () const;
A Target may understand certain annotations associated with Blockspraligdas For
example, an annotation may specify how many times a particular Star should fire. Or it
could specify that a particular Block should be mapped onto a particular processor. Or it
could specify that a particular State of a particular Block should be settable on the com-
mand line that invokes a generated program. The above method returns the list of named
pragmas that a particular target understands figmgsPeriteration or proces-
sorNumber). In derived classes, each item in the list is a three part stnagge'type
value ", separated by spaces. Tr#ue will be a default value. The implementation in
class Target returns a StringList with only a single zero-length string in itypéecan
be any type used in states.

virtual StringList pragma (const char* parentname
const char* blockname) const;
To determine the value of all pragmas that have been specified for a particular block, call
this method. In derived classes, it returns a lishafrie value " pairs, separated by
spaces. In the base class, it returns an empty stringpafvetname is the name of the
parent class (universe or galaxy master name).

virtual StringList pragma (const char* parentname ,

const char* blockname

const char* pragmaname) const;
To determine the value of a pragma of a particular type that has been specified for a partic-
ular block, call this method. In derived classes, it returns a value. In the base class, it
returns a zero-length string.

virtual StringList pragma (const char* parentname

const char* blockname ,

const char* pragmaname,

const char* value) const;
To specify a pragma to a target, call this method. The implementation in the base class
“Target” does nothing. In derived classes, the pragma will be registered in some way. The
return value is always a zero-length string.

U. C. Berkeley Department of EECS

The Almagest 4-3

Target* child(int ny;
Return thenth child Target, null if no children or i exceeds the number of children.

Target* proc(int ny;
This is the same aild if there are children. If there are no children, an argument of O
will return a pointer to the object on which it is called, otherwise a null pointer is returned.

int nProcs() const;
Return the number of processors (1 if no children, otherwise the number of children).

virtual int hasResourcesFor(Star& S,const chartextra =0);
Determine whether this target has the necessary resources to run the given star. It is virtual
in case this is necessary in child classes. The default implementatioeasseses
states of the target and the star.

virtual int childHasResources(Star& s.int childNum),
Determine whether a particular child target has resources to run the given star. It is virtual
in case later necessary.

virtual void setGalaxy(Galaxy& 9);
Associate a Galaxy with the Target. The default implementation just sets its galaxy pointer
to point tog.

virtual void setStopTime(double when);
Set the stopping condition. The default implementation just passes this on to the scheduler.

virtual void resetStopTime(double when);
Reset the stopping condition for the wormhole containing this Target. The default imple-
mentation just passes this on to the scheduler. In addition to the action perforsaed by
StopTime, this function also does any synchronization required by wormholes.

virtual void setCurrentTime(double now;
Set the current time taow.

virtual int run();
virtual void wrapup();

The following methods are provided for code generation; schedulers may call these. They may
move to class CGTarget in a future Ptolemy release.

virtual void beginlteration(int repetitions , int depth);
Function called to begin an iteration (default version does nothing).

virtual void endlteration(int repetitions , int depth);
Function called to end an iteration (default version does nothing).

virtual void writeFiring(Star& S, int depth);
Function called to generate code for the star, with any modifications required by this par-

Ptolemy Last updated: 10/9/97

4-4 Control of Execution and Error Reporting

ticular Target (the default version does nothing).

virtual void beginlf(PortHole& cond, int truthdir
int depth , int haveElsePart);
virtual void beginElse(int depth);
virtual void endlf(int depth);
virtual void beginDoWhile(PortHole& cond,inttruthdir | intdepth);
virtual void endDoWhile(PortHole& cond);

These above functions are used in code generation to generate conditionals. The default
implementations do nothing.

virtual int commTime(int sender ,int receiver int nUnits | inttype);
Return the number of time units required to setidits units of data whose type is the
code indicated byype from the child Target numbereeénder to the child target num-
beredreceiver. The default implementation returns 0 regardless of the parameters. No
meaning is specified at this level for the type codes, as different languages have different
types; all that is required is that different types supported by a particular target map into
distinct type codes.

Galaxy* galaxy();
Return my galaxy pointer (O if it has not been set).

4.1.2 Target protected members

virtual void setup();
This is the main initialization function for the target. It is called byiritialize func-
tion, which by default initializes the Target states. The default implementatiogaalls
axySetup(), and if it returns a nonzero value, then catlsedulerSetup().

virtual int galaxySetup();
This method (and overloaded versions of it) is responsible for checking the galaxy belong-
ing to the target. In the default implementation, each star is checked to see if its type is
supported by the target (becauseiside function reports that it is one of the supported
star classes). If a star does not match this condition an error is reported. In asktition,
Target() is called for each star with a pointer to the Target as an argument. If there are
errors, O is returned, otherwise 1.

virtual int schedulerSetup();
This method (and overloaded versions of it) are responsible for initializing an execution of
the universe. The default implementation initializes the scheduler andetafl§ on it.

void setSched(Scheduler* sch);
The target’s scheduler is setsich, which must either point to a scheduler on the heap or
be a null pointer. Any preexisting scheduler is deleted. Also, the schedel@dsget
member is called, associating the Target with the Scheduler.

void delSched();
This function deletes the target’'s scheduler and sets the scheduler pointer to null.

U. C. Berkeley Department of EECS

The Almagest 4-5

void addChild(Target& child);
Add child as a child target.

void inheritChildren(Target* parent ,intstart ,intstop);
This method permits two different Target objects to share child Targets. The child targets
numberedstart throughstop of the Target pointed to kyarent become the children
of this Target (the one on which this method is called). Its primary use is in multi-proces-
sor scheduling or code generation, in which some construct is assigned to a group of pro-
cessors. It has a big disadvantage; the range of child targets must be continuous.

void remChildren();
Remove thehildren list. This does not delete the child targets.

void deleteChildren();
Delete all thechildren . This assumes that the child Targets were createcheasith

virtual const char* auxStarClass() const;
Auxiliary star class: permits a second type of star in addition to the supported star class
(seestartType()). The default implementation returns a null pointer, indicating no aux-
iliary star class. Sorry, there is no present way to support yet a third type.

const char* writeDirectoryName(const char* dirName =0);
This method returns a directory name that is intended for use in writing files, particularly
for code generation targets. If the directory does not exist, it attempts to create it. Returns
the fully expanded path name (which is saved by the target).

const char* workingDirectory() const;
Return the directory name previously setifeDirectoryName.

char* writeFileName(const char* fileName = 0);
Method to set a file name for writingriteFileName prependslirFullName (which
was set bywriteDirectoryName) to fileName with "/ " between. Always returns a

pointer to a string in new memory. It is up to the user to delete the memory when no longer
needed. IbirFullName or fileName is NULL then it returns a pointer to a new copy of
the string/dev/null

4.2 Class Scheduler

Scheduler objects determine the order of execution of Stars. As a rule, they are created and
managed by Targets. Some schedulers, such as those for the SDF domain, completely deter-
mine the order of execution of blocks before any blocks are executed; others, such as those for
the DE domain, supervise the execution of blocks at run time. The Scheduler class is an abstract
base class; you can’t have an object of class Scheduler. All schedulers have a pointer to the Tar-
get that controls them as well as to a Galaxy. Usually the Galaxy will be the same one that the
Target points to, but this is not a requirement. The Scheduler constructor just zeros its target,
galaxy pointers. The destructor is virtual and do-nothing.

Ptolemy Last updated: 10/9/97

4-6 Control of Execution and Error Reporting

4.2.1 Scheduler public members

virtual void setGalaxy(Galaxy& 9);
This function sets the galaxy pointer to poingto

Galaxy* galaxy();
This function returns the galaxy pointer.

virtual void setup() = 0;
This function (in derived classes) sets up the schedule. In compile-time schedulers such as
those for SDF, a complete schedule is computed; others may do little more than minimal
checks.

virtual void setStopTime(double limit) = 0;
Set the stop time for the scheduler. Schedulers have an abstract notion of time; this deter-
mines how long the scheduler will run for.

virtual double getStopTime() = 0;
Retrieve the stop time.

virtual void resetStopTime(double limit);
Reset the stopping condition for the wormhole containing this Scheduler. The default
implementation simply callsetStopTime with the same argument. For some derived
types of schedulers, additional actions will be performed as well by derived Scheduler
classes.

virtual int run() = 0;
Run the scheduler until the stop time is reached, an error condition occurs, or it stops for
some other reason.

virtual void setCurrentTime(double val);
Set the current time for the scheduler.

virtual StringList displaySchedule();
Return the schedule if this makes sense.

double now() const;
Return the current time (the value of the protected memipemtTime).

int stopBeforeDeadlocked() const;
Return the value of th&opBeforeDeadFlag protected member. It is set in timed
domains to indicate that a scheduler inside a wormhole was suspended even though it had
more work to do.

virtual const char* domain() const;
Return the domain for this scheduler. This method is no longer used and will be removed
from future releases; it dates back to the days in which a given scheduler could only be
used in one domain.

U. C. Berkeley Department of EECS

The Almagest 4-7

void setTarget(Target& t);
Set the target pointer to point#o

Target& target ();
Return the target.

virtual void compileRun();
Call code-generation functions in the Target to generate code for a run. In the base class,
this just causes an error.

The following functions now forward requests to SimControl, which is responsible for control-
ling the simulation.

static void requestHalt();
CallsSimControl::declareErrorHalt. NOTE: SimControl::requestHalt
only sets the halt bit, not the error bit.

static int haltRequested();
Calls SimControl::haltRequested. Returns TRUE if the execution should halt.

static void clearHalt();
CallsSimControl::clearHalt. Clears the halt and error bits.

4.2.2 Scheduler protected members
The following two data members are protected.

/I current time of the scheduler

double currentTime;

I flag set if stop before deadlocked.

/I for untimed domain, it is always FALSE.
int stopBeforeDeadlocked;

4.3 Class Error

Class Error is used for error reporting. While the interfaces to these functions are always the
same, different user interfaces provide different implementateis: connects to the Tcl er-

ror reporting mechanisnpigi pops up windows containing error messages, iated

preter simply prints messages on the standard error stream. All member functions of Error
are static. There are four “levels” of messages that may be produced by the errorEacility:
ror::abortRun Is used to report an error and cause execution of the current universe to halt.
Error::error reports an errorError::warn reports a warning, anérror::message

prints an information message that is not considered an error. Each of these four functions is
available with two different signatures. For example:

static void abortRun (const char*, const char* = 0, const char* = 0);
static void abortRun (const NamedObj& obj , const char*, const char* = 0,
const char* = 0);

The first form produces the error message by simply concatenating its arguments (the second

Ptolemy Last updated: 10/9/97

4-8 Control of Execution and Error Reporting

and third arguments may be omitted); no space is added. The second form prepends the full
name of theobj argument, a colon, and a space to the text provided by the remaining argu-
ments. If the implementation provides a marking facility, the object namedtjbis marked

by the user interface (at present, the interface associategigvithwill highlight the object if

its icon appears on the screen). The remaining static Error funetronsvarn, andmes-

sage have the same signatures as diestRun (there are the same two forms for each func-
tion). In addition, the Error class provides access to the marking facility, if it exists:

static int canMark();
This function returns TRUE if the interface can mark NamedObj objects (generally true
for graphic interfaces), and FALSE if it cannot (generally true for text interfaces).

static void mark (const NamedObj& obj);
This function marks the objeobj, if marking is implemented for this interface. It is a
no-op if marking is not implemented.

4.4 Class SimControl

The SimControl class controls execution of the simulation. It has some global status flags that
indicate whether there has been an error in the execution or if a halt has been requested. It also
has mechanisms for registering functions to be called before or after star executions, or in re-
sponse to a particular star’'s execution, and responding to interrupts. This class interacts with
the Error class (which sets error and halt bits) and the Star class (to permit execution of regis-
tered actions when stars are fired). Schedulers and Targets are expected to monitor the Sim-
Control halt flag to halt execution when errors are signaled and halts are requested. Once
exceptions are commonplace in C++ implementations, a cleaner implementation could be pro-
duced.

4.4.1 Access to SimControl status flags.

SimControl currently has four global status bits: the error bit, the halt bit, the interrupt bit, and
the poll bit. These functions set, clear, or report on these bits.

static void requestHalt ();
This function sets the halt bit. The effect is to cause schedulers and targets to cease execu-
tion. It is important to note that this function does not alter flow of control; it only sets a
flag.

static void declareErrorHalt ();
This is the same asquestHalt ~ except that it also sets the error bit. It is called, for
example, byError::abortRun.

static int haltRequested ();

This function returns true if the halt bit is set, false otherwise. If the poll or interrupt bits
are set, it calls handlers for them (see the subsection describing these).

static void clearHalt ();
This function clears the halt and error flags.

U. C. Berkeley Department of EECS

The Almagest 4-9

4.4.2 Pre-actions and Post-actions

SimControl can register a function that will be called before or after the execution of a partic-
ular star, or before or after the execution of all stars. A function that is called before a star is a
preaction on that is called after a star ip@st-action The functions that can be registered have
take two arguments: a pointer to a Star (possibly null), amtist char* pointer that points

to a string (possibly null). The type definition

typedef void (*SimActionFunction)(Star*,const char*);
gives the name SimActionFunction to functions of this type; several SimControl functions
take arguments of this form.

static SimAction* registerAction(SimActionFunction action, int pre,

const char* textArg = 0, Star* which = 0);
Register a pre-action or post-actionpdé is TRUE it is a preaction. textArg is given,
it is passed as an argument when the action function is calleblic is 0, the function
will be called unconditionally byioPreActions (if it is a preaction) odoPostAc-
tions (if it is a post-action; otherwise it will only be called if the star being executed has
the same addresswabich. The return value represents the registered action; class
SimAction is treated as if it is opaque (I’'m not telling you what is in it) which can be used
for cancel calls.

static int doPreActions(Star * which);
static int doPostActions(Star * which);
Execute all pre-actions, or post-actions, for a the particulam&iah. The which
pointer is passed to each action function, along with any text argument declared when the
action was registered. Return TRUE if no halting condition arises, FALSE if we are to
halt.

static int cancel(SimAction* action);
Cancelaction. Warning: argument is deleted. Future versions will provide more ways
of cancelling actions.

4.4.3 SimControl interrupts and polling

Features in this section will be used in a new graphic interface; they are mostly untested at this
point. The SimControl class can handle interrupts and can register a polling function that is
called for every star execution. It only provides one handler.

static void catchint(int signo = -1, int always = 0);
This static member function installs a simple interrupt handler for the signal with Unix
signal numbesigno. If always is true, the signal is always caught; otherwise the signal
is not caught if the current status of the signal is that it is ignored (for example, processes
running in the background ignore interrupt signals from the keyboard). This handler sim-
ply sets the SimControl interrupt bit; on the next caldbRequested, the user-speci-
fied interrupt handler is called.

static SimHandlerFunction setinterrupt(SimHandlerFunction f);
Set the user-specified interrupt handlef, tcand return the old handler, if any. This func-

Ptolemy Last updated: 10/9/97

4-10 Control of Execution and Error Reporting

tion is called in response to any signals specifieztchint.
static SimHandlerFunction setPoll(SimHandlerFunction f);

Register a function to be called bgitRequested if the poll flag is set, and set the poll
flag. Returns old handler if any.

U. C. Berkeley Department of EECS

The Almagest 5-1

Chapter 5. Interfacing domains —
wormholes and related classes

Authors: Joseph T. Buck
Other Contributors: J. Liu

This section describes the classes that implement the mechanism that allows different domains
to be interfaced. It is this ability to integrate different domains that sets Ptolemy apart from oth-
er systems.

5.1 Class Wormhole

A wormhole for a domain is much like a star belonging to that domain, but it contains pointers

to a subsystem that operates in a different domain. The interface to that other domain is through
a “universal event horizon”. The wormhole design, therefore, does not depend on the domain
it contains, but only on the domain in which it is used as a block. It must look like a star in that
outer domain. The base Wormhole class is derived from class Runnable , just like the class Uni-
verse . Every member of the Runnable class has a pointer to a component Galaxy and a Target
(\pxref class Target). Like a Universe, a Wormhole can perform the scheduling actions on the
component Galaxy. A Wormhole is different from a Universe in that it is not a stand-alone ob-
ject. Instead, it is triggered from the outer domain to initiate the scheduling. Also, since Worm-
hole is an abstract base class, you cannot create an object of class Wormhole; only derived
Wormholes can be created. Each domain has a derived Wormhole class. For example, the SDF
domain has class SDFWormhole. This domain-specific Wormhole is derived from not only the
base Wormhole class but also from the domain-specific star class, SDFStar. This multiple in-
heritance realizes the inherent nature of the Wormhole. First, the Wormhole behaves exactly
like a Star from the outer domain (SDF) since it is derived from SDFStar. Second, internally it
can encapsulate an entire foreign domain with a separate Galaxy and a separate Target and
Scheduler.

5.1.1 Wormhole public members

const char* insideDomain() const;
This function returns the name of the inside domain.

void setStopTime(double stamp);
This function sets the stop time for the inner universe.

Wormhole(Star& self , Galaxy& g, const char* targetName = 0);

Wormhole(Star& self , Galaxy& g, Target* innerTarget = 0);
The above two signatures represent the constructors provided for class Wormhole. We
never use plain Wormholes; instead we always have objects derived from Wormhole and
some kind of Star. For example:

Ptolemy Last updated: 10/9/97

5-2 Interfacing domains — wormholes and related class-

class SDFWormhole : public Wormhole, public SDFStar {
public:
SDFWormhole(Galaxy& g,Target* t) : Wormhole(*this,g,t) {
buildEventHorizons();

}
2
The first argument to the constructor should always be a reference to the object itself, and
represents “the wormhole as a star”. The second argument is the inner galaxy. The third
argument describes the target of the Wormhole, and may be provided either as a Target
object or by name, in which case it is created by using the KnownTarget class.

Scheduler* outerSched();
This returns a pointer to the scheduler for the outer domain (the one that lives above the
wormhole). The scheduler for the inner domain for derived wormhole classes can be
obtained from thacheduler() method.

5.1.2 Wormhole protected members

void setup();
The default implementation callstTarget.

int run();
This function executes the inside of the wormhole for the appropriate amount of time.

void buildEventHorizons ();
This function creates the EventHorizon objects that connect the inner galaxy ports to the
outside. A pair of EventHorizons is created for each galaxy port. It is typically called by
the constructor for the XXXWormhole, where XXX is the outer domain name.

void freeContents();
This function deletes the event horizons and the inside galaxy. It is intended to be called
from XXXWormhole destructors. It cannot be part of the Wormhole constructor due to an
ordering problem (we want to assure that it is called before the destructor for either of
XXXWormhole’s two base classes is called).

virtual double getStopTime() = 0;
Get the stopping condition for the inner domain. This is a pure virtual function and must
be redefined in the derived class.

virtual void sumUp();
This function is called byWwormhole::run after running the inner domain. The default
implementation does nothing. Derived wormholes can redefine it to put in any “summing
up” work that is required after running the inner domain.

Galaxy& gal;
The membegal is a reference to the inner galaxy of the Wormhole.

U. C. Berkeley Department of EECS

The Almagest 5-3

5.2 Class EventHorizon

Class EventHorizon is another example of a “mixin class”; EventHorizon has the same rela-
tionship to PortHoles as Wormhole has to Stars. The name is chosen from cosmology, repre-
senting the point at which an object disappears from the outside universe and enters the interior
of a black hole, which can be thought of as a different universe entirely. As for wormholes, we
never consider objects that are “just an EventHorizon”. Instead, all objects that are actually
used are multiply inherited from EventHorizon and from some type of PortHole class. For each
type of domain we require two types of EventHorizon. The first, derived from ToEventHori-
zon, converts from a format suitable for a particular domain to the “universal form”. The other,
derived from FromEventHorizon, converts from the universal form to the domain-specific
form.

5.2.1 How EventHorizons are used

Generally, EventHorizons are used in pairs to form a connection across a domain boundary be-
tween domain XXX and domain YYY. An object of class XXXToUniversal (derived from
XXXPortHole and ToEventHorizon) and an object of class YYYFromUniversal (derived from
YYYPortHole and FromEventHorizon) are inserted between the ordinary, domain-specific
PortHoles. Thefar() member of the XXXToUniversal points to the XXXPortHole; the
ghostAsPort() member points to the YYYFromUniversal object. Similarly, for the YYY-
FromUniveral objectfar() points to the YYYPortHole anghostAsPort() points to the
XXXToUniversal object. These pairs of EventHorizons are created hyutli&ventHo-

rizons member function of class Wormhole.

5.2.2 EventHorizon public members

EventHorizon(PortHole* self);
The constructor for EventHorizon takes one argument, representing (for derived classes
that call this constructor from their own), “myself’ as a PortHole (a pointer to the Port-
Hole part of the object). The destructor is declared virtual and does nothing.

PortHole* asPort();
This returns “myself as a PortHole".

PortHole* ghostAsPort();
This returns a pointer to the “matching event horizon” as a porthole.

virtual void ghostConnect(EventHorizon& to);
This connects another EventHorizon to myself and makes it my “ghost port”.

virtual int isltinput() const;
virtual int isltOutput() const;
Say if | am an input or an output.

virtual int onlyOne() const;
Derived EventHorizon classes should redefine this method to feRwEfor domains in
which only one particle may cross the event horizon boundary per execution. The default
implementation returnSALSE .

Ptolemy Last updated: 10/9/97

5-4 Interfacing domains — wormholes and related class-

virtual void setEventHorizon(inOutType inOut , const char* portName
Wormhole* parentWormhole , Star* parentStar
DataType type = FLOAT, unsigned numTokens =1);

Sets parameters for the EventHorizon.

double getTimeMark();
void setTimeMark(double a);
Get and set the time mark. The time mark is an internal detail used for bookkeeping by

schedulers.

virtual void initialize();
Scheduler *innerSched();
Scheduler *outerSched();
These methods return a pointer to the scheduler that lives inside the wormhole, or outside

the wormhole, respectively.

5.2.3 EventHorizon protected members

void moveFromGhost(EventHorizon& from , int numpParticles);
Move numParticles ~ from the buffer ofrom, another EventHorizon, to mine (the
object on which this function is called). This is used to implermeBtentHori-
zon::transferData.

CircularBuffer* buffer();
Access the myBuffer of the porthole.

EventHorizon* ghostPort;
This is the peer event horizon.

Wormhole* wormhole;
This points to the Wormhole | am a member of.

int tokenNew;
double timeMark;
TimeMark of the current data, which is necessary for interface of two domains. This may

become a private member in future versions of Ptolemy.

5.3 Class ToEventHorizon

A ToEventHorizon is responsible for converting from a domain-specific representation to a
universal representation. It is derived from EventHorizon.

ToEventHorizon(PortHole* P);
The constructor simply calls the base class constructor, passing along its argument.

void initialize();
The initialize function prepares the object for execution.

void getData();
This protected member transfers data from the outside to the universal event horizon

U. C. Berkeley Department of EECS

The Almagest 5-5

(myself).

void transferData();
This protected member transfers data from myself to my peer FromEventHorizon (the
ghostPort).

5.4 Class FromEventHorizon

A FromEventHorizon is responsible for converting from a universal representation to a do-
main-specific representation. It is derived from EventHorizon.

FromEventHorizon(PortHole* p);
The constructor simply calls the EventHorizon constructor.

void initialize();
The initialize function prepares the object for execution.

void putData();
This protected member transfers data from Universal EventHorizon to outside.

void transferData();
This protected member transfers data from peer event horizon to me.

virtual int ready();
This is a protected member. By default, it always retiRi$E(1). Derived classes have it
returnTRUE if the event horizon is ready (there is enough data for execution to proceed),
andFALSE otherwise.

5.5 Class WormMultiPort

The class WormMultiPort, which is derived from MultiPortHole , exists to handle the case
where a galaxy with a multiporthole is embedded in a wormholee®ort function cor-

rectly creates a pair of EventHorizon objects when a new port is created in the multiporthole.
Instances of this object are createdvisgrmhole::buildEventHorizons when the inner
galaxy has one or more MultiPortHole objectsné&Connection method always callsew-

Port.

Ptolemy Last updated: 10/9/97

5-6 Interfacing domains — wormholes and related class-

U. C. Berkeley Department of EECS

The Almagest 6-1

Chapter 6. Classes for connections
between blocks

Authors: Joseph T. Buck

Other Contributors: Tom Lane
Yuhong Xiong

This chapter describes the classes that implement connections between blocks. For simulation
domains, these classes are responsible for moving objects called Particles from one Block to
another. For code generation domains, the Particles typically only move during scheduling and
these objects merely provide information on the topology. Currently, class PortHole is also re-
sponsible for the type resolution algorithm that assigns specific typ&sioy PEportholes. It

would probably be better to put that function in Geodesic, which would make it simpler to pro-
vide domain-specific type resolution rules. This improvement must await a redesign of the
PortHole/Geodesic structure.

6.1 Class GenericPort

The class GenericPort is a base class that provides common elements between class PortHole
and class MultiPortHole. Any GenericPort object can be assumed to be either one or the other;
we recommend avoiding deriving any new objects directly from GenericPort. GenericPort is
derived from class NamedObj . GenericPort provides several basic facilities: aliases, which
specify that another GenericPort should be used in place of this port, types, which specify the
type of data to be moved by the port, and typePort, which specifies that this port has the same
type as another port. When a GenericPort is destroyed, any alias or typePort pointers are auto-
matically cleaned up, so that other GenericPorts are never left with dangling pointers. The
type() andtypePort() functions belong to GenericPort, not PortHole, because multiport-
holes have a declared type and can be type-equivalenced to other portholes. However, type res-
olution is strictly a PortHole notion. Multiportholes need no resolved type because they do not
themselves transport particles, and indeed the concept would be ambiguous since the member
ports of a multiporthole might have different resolved types. The declared type of a multiport-
hole is automatically assigned to its children, and its children are automatically brought into
any type equivalence set the multiporthole is made part of. Thereafter, type resolution consid-
ers only the member portholes and not the multiporthole itself.

6.1.1 GenericPort query functions

virtual int isltinput () const;
virtual int isltOutput () const;
virtual int isltMulti () const;
Each of the above functions retumRUE(1) orFALSE (0).

StringList print (int verbose =0)const ;

Ptolemy Last updated: 10/9/97

6-2 Classes for connections between blocks

Print human-readable information on the GenericPort.

DataType type () const;
Return my DataType. This may be one of the DataType values associated with Particle

classes, or the special tyge\'YTYPE which indicates that the type must be resolved dur-
ing setup. Note thaype() returns the port’s declared type, as suppliesktBort()

This is not necessarily the datatype that will be chosen to pass through the port at runtime.
That type is available from theortHole::resolvedType() function.

GenericPort* alias() const;
Return my alias, or a null pointer if | have no alias. Generally, Galaxy portholes have
aliases and Star portholes do not, but this is not a strict requirement.

GenericPort* aliasFrom() const;
Return the porthole that | am the alias for (a null pointer if none). It is guaranteedythat if
is a pointer to GenericPort andyji->alias() is non-null, then the boolean expression
gp->alias()->aliasFrom() == gp
is always true.

bitWord attributes() const;
Return my attributes. Attributes are a series of bits.

GenericPort& realPort();
const GenericPort& realPort() const;

Return the real port after resolving any aliases. If | have no alias, then a reference to
myself is returned.

GenericPort* typePort() const;
Return another generic port that is constrained to have the same type as me (0 if none). If a
non-null value is called, successive calls will form a circular linked list that always returns
to its starting point; that is, the loop

void printLoop(GenericPort& g) {

if (9->typePort()) {
GenericPort* gp = g;

while (gp->typePort() = g) {
cout << gp->fullName() << "\back n";

gp = gp->typePort();
}
- } - .
is guaranteed to terminate and not to dereference a null pointer.
inline int hidden(const GenericPort& J9)]

IMPORTANT: hidden is not a member function of GenericPort, but is a “plain function”.
It returnsTRUEIf the port in question has ti@DDENattribute.

U. C. Berkeley Department of EECS

The Almagest 6-3

6.1.2 Other GenericPort public members

virtual PortHole& newConnection();
Return a reference to a porthole to be used for new connections. Class PortHole uses this
one unchanged; MultiPortHole has to create a new member PortHole.

GenericPort& setPort(const char* portName , Block * blk , DataType typ =FLOAT);
Set the basic PortHole parameters: the name, parent, and data type.

void inheritTypeFrom(GenericPort& P);
Link to another port for determining the type ANYTYPEconnections. The "inherit-
ance" relationship is actually a completely symmetric constraint, and so this function
would have been better namsineTypeAs() . Any number of portholes can be tied
together byinheritTypeFrom() calls. Internally this is represented by chaining all the
members of such a type equivalence set into a circular loop, which can be walked via
typePort() calls. If a multiporthole is made part of a type equivalence set, all its current
and future children become part of the set automatically.

virtual void connect(GenericPort& destination ,int numberDelays,
const char* initDelayValues =0);
Connect me with the indicated peer.

bitWord setAttributes(const Attribute& attr);
Set my attributes (some bits are turned on and others are turned off).

void setAlias (GenericPort& ap);
Set gp to be my alias. The aliasFrom pointer of gp is set to point to me.

6.1.3 GenericPort protected members

GenericPort* translateAliases();
The above is a protected function. If this function is called on a port with no alias, the
address of the port itself is returned; otherwagias()->translateAliases() IS
returned.

6.2 Class PortHole

PortHole is the means that Blocks use to talk to each other. It is derived from GenericPort; as
such, it has a type, an optional alias, and is optionally a member of a ring of ports of the same
type connected blypePort pointers. It guarantees thdias() always returns a PortHole.

In addition, a PortHole has a peer (another port that it is connected to, which is returned by
far()), a Geodesic (a path along which particles travel between the PortHole and its peer),
and a Plasma (a pool of particles, all of the same type). In simulation domains, during the exe-
cution of the simulation objects known as Particles traverse a circular path: from an output port-
hole through a Geodesic to an input porthole, and finally to a Plasma, where they are
recirculated back to the input porthole. Like all NamedObj-derived objects, a PortHole has a
parent Block. It may also be a member of a MultiPortHole, which is a logical group of Port-
Holes.

Ptolemy Last updated: 10/9/97

6-4 Classes for connections between blocks

6.2.1 PortHole public members

The constructor sets just about everything to null pointers. The destructor disconnects the Port-
Hole, and if there is a parent Block, removes itself from the parent’s porthole list.

PortHole& setPort(const char* portName , Block* parent ,
DataType type =FLOAT);
This function sets the name of the porthole, its parent, and its type.

void initialize();
This function is responsible for initializing the internal buffers of the porthole in prepara-
tion for a run.

virtual void disconnect(int delGeo =1);
Remove a connection, and optionally attempt to delete the geodesic. The is set to zero
when the geodesic must be preserved for some reason (for example, from the Geodesic’s
destructor). The Geodesic is deleted only if it is “temporary”; we do not delete “persis-
tent” geodesics when we disconnect them.

PortHole* far() const;
Return the PortHole we are connected to.

void setAlias (PortHole& blockPort);
Set my alias t@lockPort.

int atBoundary() const;
ReturnTRUEIf this PortHole is at the wormhole boundary (if its peer is an inter-domain
connection)FALSE otherwise.

virtual EventHorizon* asEH();
Return myself as an EventHorizon, if | am one. The base class returns a null pointer. Even-
tHorizon objects (objects multiply inherited from EventHorizon and some type of Port-
Hole) will redefine this appropriately.

virtual void receiveData();
Used to receive data in derived classes. The default implementation does nothing.

virtual void sendData();
Used to send data in derived classes. The default implementation does nothing.

Particle& operator % (int delay);
This operator returns a reference to a Particle in the PortHole’s buffeta)A value of 0
returns the “newest” particle. In dataflow domains, the argument represents the delay asso-
ciated with that particular particle.

DataType resolvedType () const;
Return the data type computed by ‘PortHole::initialize’ to resolve type conversions. For
example, if anNT output porthole is connected t&BOATInput porthole, the resolved
type (the type of the Particles that travel between the ports) WALGAT Two connected

U. C. Berkeley Department of EECS

The Almagest 6-5

portholes will always return the same resolvedType. A null pointer will be returned if the
type has not yet been resolved, e.g. before initialization.

DataType preferredType () const;
Return the "preferred” type of the porthole. This is the same as the declaredeype (
icPort::type()) if the declared type is neINYTYPEIf the declared type BNYTYPE
the preferredType is the type of the connected porthole or type equivalence set from which
the ANYTYPES true type was determined. (If preferredType and resolvedType are not the
same, the need for a run-time type conversion is indicated. Code generation domains may
choose to splice in type conversion stars to ensure that preferredType and resolvedType
are the same at all ports.) A null pointer will be returned if the type has not yet been
resolved, e.g. before initialization.

int numXfer() const;
Returns the nominal number of tokens transferred per execution of the PortHole. It returns

the value of the protected memipe@mberTokens.

int numTokens() const;
Returns the number of particles on my Geodesic.

int numinitDelays() const;
Returns the number of initial delays on my Geodesic (the initial tokens, strictly speaking,
are only delays in dataflow domains).

Geodesic* geo();
Return a pointer to my Geodesic.

int index() const;
Return the index value. This is a mechanism for assigning all the portholes in a universe a
unique integer index, for use in table-driven schedulers.

MultiPortHole* getMyMultiPortHole() const;
Return the MultiPortHole that spawned this PortHoleNGEL if there is no such Multi-
PortHole.

virtual void setDelay (int newDelayValue);
Set the delay value for the connection.

virtual Geodesic* allocateGeodesic();
Allocate a return a Geodesic compatible with this type of PortHole. This may become a
protected member in future Ptolemy releases.

void enableLocking(const PtGate& master);
Enable locking on access to the Geodesic and Plasma. This is appropriate for connections
that cross thread boundaries. Assumptiitialize() has been called.

void disableLocking();
The converse.

Ptolemy Last updated: 10/9/97

6-6 Classes for connections between blocks

int isLockEnabled() const;
Returns the lock status.

6.2.2 PortHole protected members

Geodesic* myGeodesic;
My geodesic, which connects to my peer. Initializetth L.

PortHole* farSidePort;
The port on the far side of the connectintLL for disconnected ports.

Plasma* myPlasma;
Pointer to the Plasma where we get our Particles or replace unused Particles. Initialized to
NULL

CircularBuffer* myBuffer;
Buffer where the Particles are stored. This is actually a buffer of pointers to Particles, not
to Particles themselves.

int bufferSize;
This gives the size of the CircularBuffer to allocate.

int numberTokens;
Number of Particles stored in the buffer each time the Geodesic is accessed. Normally this
is one except for dataflow-type stars, where it is the number of Particles consumed or gen-
erated.

void getParticle();
GetnumberTokens particles from the Geodesic and move them into my CircularBuffer.
Actually, only Particles move. The same number of existing Particles are returned to their
Plasma, so that the total number of Particles contained in the buffer remains constant.

void putParticle();
Move numberTokens particles from my CircularBuffer to the Geodesic. Replace them
with the same number of Particles from the Plasma.

void clearParticle();
ClearnumberTokens particles in the CircularBuffer. Leave the buffer position pointing
to the last one.

virtual int allocatePlasmay);
Allocate Plasma (default method uses global Plasma).

int allocateLocalPlasma();
Alternate function allocates a local Plasma (for use in derived classes).

void deletePlasmay);
Delete Plasma if local; detach other end of connection from Plasma as well.

U. C. Berkeley Department of EECS

The Almagest 6-7

void allocateBuffer();
Allocate new buffer.

DataType SetPreferredType();
Function to determine preferred types during initialization. Returns the preferred type of
this porthole, or O on failure. Protected, not private, so that subclasses that oeerride s
ResolvedType() can call it.

6.2.3 CircularBuffer — a class used to implement PortHole

This class is misnamed,; it is not a general circular buffer but rather an array of pointers to Par-
ticle that is accessed in a circular manner. It has a pointer representing the current position. This
pointer can be advanced or backed up; it wraps around the end when this is done. The class also
has a facility for keeping track of error conditions. The constructor takes an integer argument,
the size of the buffer. It creates an array of pointers of that size and sets them all to null. The
destructor returns any Particles in the buffer to their Plasma and then deletes the buffer.

void reset();
Set the access pointer to the beginning of the buffer.

void initialize();
Zero out the contents of the buffer.

Particle** here() const;
Return the access pointer. Note the double indirection; since the buffer contains pointers to
Particles, the buffer pointer points to a pointer.

Particle** next();
Advance the pointer one position (circularly) and return the new value.

Particle** last();
Back up the pointer one position (circularly) and return the new value.

void advance(int ny;
Advance the buffer pointer bypositions. This will not work correctly # is larger than
the buffer sizen is assumed positive.

void backup(int ny;
Back up the buffer pointer by positions. This will not work correctly i is larger than
the buffer sizen is assumed positive.

Particle** previous(int offset) const;
Find the position in the bufferffset positions in the past relative to the current position.
The current position is unchangedfset must not be negative, and must be less than
the buffer size, or a null pointer is returned an an appropriate error message is set; this
message can be accessed bythdsg function.

int size() const;
Return the size of the buffer.

Ptolemy Last updated: 10/9/97

6-8 Classes for connections between blocks

static const char* errMsg();
Return the last error message (currently, @ndyious() sets error messages).

6.3 Class MultiPortHole

A MultiPortHole is an organized connection of related PortHoles. Any number of PortHoles
can be created within the PortHole; their names have therbptmame#1, mphname#2, etc.,
wheremphnameis replaced by the name of the MultiPortHole. When a PortHole is added to
the MultiPortHole, it is also added to the porthole list of the Block that contains the MultiPort-
Hole. As a result, a Block that contains a MultiPortHole has, in effect, a configurable number
of portholes. A pair of MultiPortHoles can be connected by a “bus connection”. This technique
createsr PortHoles in each MultiPortHole and connects them all “in parallel”. The MultiPort-
Hole constructor sets the “peer MPH” to 0. The destructor deletes any constituent PortHoles.

6.3.1 MultiPortHole public members
void initialize();
Does nothing.

void busConnect (MultiPortHole& peer , int width , int delay =0);
Makes a bus connection with another multiporthpéer, with width width and delay
delay. If there is an existing bus connection, it is changed as necessary; an existing bus
connection may be widened, or, if connected to a different peer, all constituent portholes
are deleted and a bus is made from scratch.

int isltMulti() const;

ReturnsTRUE
MultiPortHole& setPort(const char* portName
Block* parent ,DataType type = FLOAT);

int numberPorts() const;
Return the number of PortHoles in the MultiPortHole.

virtual PortHole& newPort();
Add a new physical port to the MultiPortHole list.

MultiPortHole& realPort();
Return the real MultiPortHole associated with me, translating any aliases.

void setAlias (MultiPortHole & blockPort);
Set my alias t@lockPort.

virtual PortHole& newConnection();
Return a new port for connections. If there is an unconnected porthole, return the first one;
otherwise make a new one.

6.3.2 MultiPortHole protected members

PortList ports;
The list of portholes (should be protected).

U. C. Berkeley Department of EECS

The Almagest 6-9

const char* newName();
This function generates names to be used for contained PortHoles. They are saved in the
hash table provided by tieshstring function .

PortHole& installPort(PortHole& p);
This function adds a newly created port to the multiporthole. Derived MultiPortHole
classes typically redefimewPort to create a porthole of the appropriate type, and then
use this function to register it and install it.

void delPorts();
This function deletes all contained portholes.

6.4 AutoFork and AutoForkNode

AutoForks are a method for implementing netlist-style connections. An AutoForkNode is a
type of Geodesic built on top of AutoFork. The classes are separate to allow a “mixin ap-
proach”, so that if a domain requires special actions in its Geodesics, these special actions can
be written only once and be implemented in both temporary and permanent connections. The
implementation technique used is to automatically insert a Fork star to allow the n-way con-
nection; this Fork star is created by invokikgownBlock::makeNew("Fork"), which

works only for domains that have a fork star.

6.4.1 Class AutoFork

An AutoFork object has an associated Geodesic and possibly an associated Fork star (which it
creates and deletes as needed). It is normally used in a multiply inherited object, inherited from

AutoFork and some kind of Geodesic; hence the associated Geodesic is the object itself. The
constructor for class AutoFork takes a single argument, a reference to the Geodesic. It sets the
pointer to the fork star to be null. The destructor removes the fork star, if one was created. There
are two public member functionsstSource andsetDest.

PortHole* setSource(GenericPort& port ,int delay =0);
If there is already an originating port for the geodesic, this method returns an error. Other-
wise it connects it to the node.

PortHole* setDest(GenericPort& port , int alwaysFork = 0);
This function may be used to add any number of destinations to the port. Normally, when
there is more than one output, a Fork star is created and inserted to support the multi-way
connection, but if there is only one output, a direct connection is used. However, if
alwaysFork is true, a Fork is inserted even for the first output. When the fork star is cre-
ated, it is inserted in the block list for the parent galaxy (the parent of the geodesic).

6.4.2 Class AutoForkNode

Class AutoForkNode is multiply inherited from Geodesic and AutoFork. This class redefines
isltPersistent to returnTRUE and redefines thsetSourcePort and setDestPort

functions to call theetSource andsetDest functions of AutoFork. The exact same form

could be used to generate other types of auto-forking nodes (that is, this class could have been
done with a template).

Ptolemy Last updated: 10/9/97

6-10 Classes for connections between blocks

6.5 Class ParticleStack

ParticleStack is an efficient base class for the implementation of structures that organize Parti-
cles. As Particles have a link field, ParticleStack is simply implemented as a linked list of Par-

ticles. Strictly speaking, a dequeue is implemented; particles can be inserted from either end.
ParticleStack has some odd attributes; it is designed for very efficient implementation of Geo-

desic and Plasma to move around large numbers of Particle objects very efficiently.

ParticleStack(Particle* hy;
The constructor takes a Particle pointer. If it is a null pointer an empty ParticleStack is cre-
ated. Otherwise the stack has one particle. Adding a Particle to a ParticleStack modifies
that Particle’s link field; therefore a Particle can belong to only one ParticleStack at a time.

~ParticleStack();
The destructor deletes all Particles EXCEPT for the last one; we do not delete the last one
because it is the “reference” particle (for Plasma) and is normally not dynamically created
(this code may be moved in a future release to the Plasma destructor, as this behavior is
needed for Plasma and not for other types of ParticleStack).

void put(Particle* p);
Pushp onto the top (or head) of the ParticleStack.

Particle* get();
Pop the particle off the top (or head) of the ParticleStack.

void putTail(Particle* P);
Add p at the bottom (or tail) of the ParticleStack.

int empty() const;
ReturnTRUE(1) if the ParticleStack is empty, otherwise 0.

int moreThanOne() const;
ReturnTRUE(1) if the ParticleStack has two or more particles, otherwise 0. This is pro-
vided to speed up the derived class Plasma a bit.

void freeup();
Returns all Particles on the stack to their Plasma (the allocation pool for that particle type).

Particle* head() const;
Return pointer to head.

Particle* tail() const;
Return pointer to tail.
6.6 Class Geodesic

A Geodesic implements the connection between a pair, or a larger collection, of PortHoles. A
Geodesic may be temporary, in which case it is deleted when the connection it implements is
broken, or it can be permanent, in which case it can live in disconnected form. As a rule, tem-

U. C. Berkeley Department of EECS

The Almagest 6-11

porary geodesics are used for point-to-point connections and permanent geodesics are used for
netlist connections. In the latter case, the Geodesic has a name and is a member of a galaxy;
hence, Geodesic is derived from NamedObj . The base class Geodesic, which is temporary, suf-
fices for most simulation and code generation domains. In fact, in a number of these domains
it contains unused features, so it is perhaps too “heavyweight” an object. A Geodesic contains
a ParticleStack member which is used as a queue for movement of Particles between two port-
holes; it also has an originating port and a destination port. A Geodesic can be asked to have a
specific number of initial particles. When initialized, it creates that number of particles in its
ParticleStack; these particles are obtained from the Plasma of the originating port (so they will
be of the correct type). A severe limitation of the current Geodesic class is that it is designed
around point-to-point connections, ie, a single source port to a single destination port. This is
a problem for domains that wish to support one-to-many geodesics (single source to multiple
receivers) or many-to-many geodesics (such as multiple in/out ports connected to a common
bus). Geodesic ought to be redesigned as a base class that supports any number of connected
ports, with the restriction to point-to-point being a specialized subclass. This would also allow

a cleaner treatment of autofork (autoforking geodesics could just be a subclass of Geodesic). It
would be necessary to remove PortHole’s belief that there is a unique far-side porthole, and
that would require rethinking the porthole type resolution algorithm; probably type resolution
should become a Geodesic function, not a PortHole function. This area will be addressed in
some future version of Ptolemy.

6.6.1 Geodesic public members

virtual PortHole* setSourcePort (GenericPort & src ,int delay =0);
Set the source port and the number of initial particles. The actual source port is determined
by callingnewConnection onsrc; thus ifsrc is a MultiPortHole, the connection will
be made to some port within that MultiPortHole, and aliases will be resolved. The return
value is the “real porthole” used. In the default implementation, if there is already a desti-
nation port, any preexisting connection is broken and a new connection is completed.

virtual PortHole* setDestPort (GenericPort & ap);
Set the destination port ip.newConnection() . The return value is the “real porthole”
used. In the default implementation, if there is already a source port, any preexisting con-
nection is broken and a new connection is completed.

virtual int disconnect (PortHole & p);
In the default implementation, gfis either the source port or the destination port, both the
source port and destination port are set to null. This is not enough to break a connection;
as a ruledisconnect should be called on the porthole, and that method will call this one
as part of its work.

virtual void setDelay (int newDelay);
Modify the delay (number of initial tokens) of a connection. The default implementation
simply changes a count.

virtual int isltPersistent() const;

ReturnTRUEIf the Geodesic is persistent (may exist in a disconnected statEpBRH
otherwise. The default implementation returA4. SE

Ptolemy Last updated: 10/9/97

6-12 Classes for connections between blocks

PortHole* sourcePort () const;
PortHole* destPort () const;

Return my source and destination ports, respectively.

virtual void initialize();
In the default implementation, this function initializes the number of Particles to that given
by the numinitialParticles field (the value returnechbminit(); these Particles are
obtained from the Plasma (allocation pool) for the source port. The particles will have zero
value for numeric particles, and will hold the “empty message” for message Particles.

void put(Particle* p);
Put a particle into the Geodesic (using a FIFO discipline).

Particle* get();
Retrieve a particle from the Geodesic (using a FIFO discipline). Return a null pointer if
the Geodesic is empty.

void pushBack(Particle* p);
Push a Particle back into the Geodesic (onto the front of the queue, instead of onto the
back of the queue asmit does).

int size() const;
Return the number of Particles on the Geodesic at the current time.

int numinit() const;
Return the number of initial particles. This call is valid at any time. Immediately after
initialize, size andnuminit return the same value (and this should be true for any
derived Geodesic as well), but this will not be true during execution (whetait
stays the same asite changes).

StringList print(int verbose = 0) const;
Print information on the Geodesic, overrides NamedObj function.

virtual void incCount(int);

virtual void decCount(int);
These methods are available for schedulers such as the SDF scheduler to simulate a run
and keep track of the number of particles on the geodesimunt increases the count,
decCount decreases it, They are virtual to allow additional bookkeeping in derived
classes.

int maxNumParticles() const;
Return maximum number of particles.

virtual void makeLock(const PtGate& master);
Create a lock for the Geodesic.

virtual void delLock();
Delete lock for the Geodesic.

U. C. Berkeley Department of EECS

The Almagest 6-13

int isLockEnabled() const;
Return lock status.

const char * initDelayValues();
Return thanitValuesstring.

6.6.2 Geodesic protected members

void portHoleConnect();
This function completes a connection if the originating and destination ports are set up.

virtual Particle* slowGet();
virtual void slowPut(Particle*);

The “slow” versions ofet() andput()

PortHole *originatingPort;
PortHole *destinationPort;

These protected members point to my neighbors.

6.7 Class Plasma

Class Plasma is a pool for particles. It is derived from ParticleStack . Rather than allocating
Particles as needed witkw and freeing them witlelete, we instead provide an allocation

pool for each type of particle, so that very little dynamic memory allocation activity will take
place during simulation runs. All Plasma objects known to the system are linked together. As
a rule, there is one Plasma for each type of particle; however, each of these objects is of type
Plasma, not a derived type. At all times, a Plasma has at least one Particle in it; that Particle’s
virtual functions are used to clone other particles as needed, determine the type, etc. The con-
structor takes one argument, a reference to a Particle. It creates a one-element ParticleStack,
and links the Plasma into a linked list of all Plasma objects plihgunction (for putting a

particle into the Plasma) adds a particle to the Plasma’s ParticleStack. As a rule, it should not
be used directly; the Particlad®e method will automatically add it to the right Plasma (future
releases may protect this method to prevent its general use).

Particle* get();
This function gets a Particle from the Plasma, creating a new one if the Plasma has only
one Particle on it (we never give away the last Particle).

int isLocal() const;
ReturndocalFlag.

static Plasma* getPlasma (DataType t);
Get the appropriate global Plasma object given a type.

static Plasma* makeNew (DataType t);
Create a local Plasma object given a type.

void makelLock(const PtGate& master);
Create a lock for the Plasma.

Ptolemy Last updated: 10/9/97

6-14 Classes for connections between blocks

void delLock();
Delete lock for the Plasma. No effect on global plasmas.

short incCount();
Increase reference count, when adding reference from PortHole to a local Plasma. New
count is returned. Global Plasmas pretend their count is always 1.

short decCount();
Decrease reference count, when removing reference from PortHole to a local Plasma.
New count is returned. Idea is we can delete it if it drops to zero. Global Plasmas pretend
their count is always 1.

DataType type();
Returns the type of the particles on the list (obtained by asking the head Particle).

static Plasma* getPlasma(DataType type);
Searches the list of Plasmas for one whose type matches the argument, and returns a
pointer to it. A null pointer is returned if there is no match.

6.8 Class ParticleQueue

Class ParticleQueue implements a queue of Particles. It uses a member of class ParticleStack
to store the particles; it is not implemented by deriving from ParticleStack. It can implement a
gueue with finite or unlimited capacity. Rather than placing user-supplied Particles on the
gueue and removing them directly, it takes over the responsibility for memory management by
allocating its own Patrticles from the Plasma and returning them as needed. When a user puts a
Particle into the queue, the value of the Particle is copied (with the Pakiiode method);
similarly, when a user gets a Particle from the queue, he or she supplies a Particle to received
the copied value. The advantage of this is that the user need not worry about lifetimes of Par-
ticles — when to create them, when it is safe to return them to the Plasma or delete them. The
ParticleQueue default constructor forms an empty, unlimited capacity queue. There is also a
constructor of the form

ParticleQueue(unsigned int cap);
This creates a queue that can hold at rgstparticles. The destructor returns all Parti-
cles in the queue to their Plasma.

int empty() const;
ReturnTRUEIf the queue is empty, elSALSE

int full() const;
ReturnTRUEIf the length equals the capacity, eigd. SE

unsigned int capacity() const;
Return the queue’s capacity. If unlimited, the largest possible unsigned int on the machine
will be returned.

unsigned int length() const;

U. C. Berkeley Department of EECS

The Almagest 6-15

Return the number of particles in the queue.

int putq(Particle& P);
Put a copy of particlg into the queue, if there is room. Retulf@JEoON success;ALSE
if the queue is already at capacity.

int getq(Particle& P);
Get a particle from the queue, and copy it into the user-supplied partidleis returns
TRUEON succes$ALSE (andp is unaltered) if the queue is empty.

void setCapacity(int SZ);
Modify the capacity taz, if sz is positive or zero. If negative, the capacity becomes infi-
nite.

void initialize();
Free up the queue contents. Particles are returned to their pools and the queue becomes
empty.

void initialize(int ny;
Equivalent tanitialize() followed bysetCapacity(n)

6.9 Classes for Galaxy ports

Class GalPort is derived from class PortHole . Class GalMultiPort is derived from class Mul-
tiPortHole . These classes are used by InterpGalaxy , and in other places, to create galaxy ports
and multiports that are aliased to some port of a member block. The constructor for each of
these classes takes one argument, the interior port that is to be the aliagInph&)

andisItOutput() functions are implemented by forwarding the request to the alias.

6.10 The PortHole type resolution algorithm

The type resolution algorithm is concerned with assigning concrete typ&sy@yPEport-

holes and resolving conflicts between the types of connected portholes. The algorithm is some-
what complex since it tries to produce convenient results in an area where the "right" behavior
is not always easy to define. Ptolemy 0.7 introduces a new resolution algorithm that is hoped
to produce more convenient and less surprising results than the method previously used. The
problem of connecting ports of different types is simple to resolve: we say that the input port-
hole determines what particle type to use, and that any necessary type conversion takes place
when the output porthole puts data into a particle (or buffer variable, in the case of codegen
domains). The opposite convention would be about equally defensible, but this is the one that
has historically been used in Ptolemy. It has the advantage that star writers can presume that
the declared type of an input porthole is the data type that will actually be received, whenever
the declared type is nBINYTYPE ResolvingANYTYPEportholes is much more difficult. We

need to handle several fundamental cases:

1. Printer and similar polymorphic stars, which accept any input type. They simply
declare their inputs to bENYTYPE and we need to resolve them to the type of the
connected output. (Introducing any forced particle type conversion would be very

Ptolemy Last updated: 10/9/97

6-16 Classes for connections between blocks

undesirable.)

2. Fork and similar stars, which want to bind multiple outputs to the type of a given
input. Here the input porthole and output portholesAN¥TYPE and are bound
into a type equivalence set liyheritTypeFrom() . If possible we want to
resolve all these portholes to the type of the output porthole connected to the input.

3. Merge and similar stars, which have a single output type-equivalenced to multiple
inputs. If the inputs all receive the same type of data, we should resolve the output
to that type. If there is no common input type, but the input connected to the single
output has determinable type, we can resolve the output porthole to that type (since
the data would ultimately get converted to that type, anyway). If the connected
input iISANYTYPE we must declare error, because we have no good way to choose
a type for the Merge’s output.

We have to recursively propagate type information in order to deal with chainsyafy PE
stars, such as one Fork following another. In some cases the type is really undefined. Consider
this universe (using ptcl syntax):

star f Fork; star p Printer
connect f output f input 1
connect f output p input

There are no types anywhere in the system. We have little choice but to declare an error. Thus,
the fact that we will sometimes fail to assign a type is not an implementation shortcoming but
an unavoidable property of the problem. These considerations lead to the following algorithm.
We first perform a recursive scan to resolnYTYPEportholes, the results of which are rep-
resented by a "preferred” type assigned to each porthole. (A porthole aANiYan-PEdeclared

type always has that type as its preferred type; so preferred type assignment is only interesting
for ANYTYPEportholes.) Then, the "resolved" type of each connected pair of input and output
portholes is the preferred type of the input porthole. This is the type that will be used for actual
data transported between those portholes. It is useful to explicitly store the preferred type, so
that codegen domains can detect type mismatches just by looking at individual output port-
holes. A type conversion star can be spliced in wherever an output is found thet-has
ferredType !=resolvedType . Assignment of preferred types proceeds in two passes. Pass

1 is "feed forward" from outputs to inputs. Pass 2 is "feed back" from inputs to outputs; it is the
dual of Pass 1. Pass 2 is invoked only if Pass 1 is unable to choose a type for a porthole. The
details are:

Pass 1:

Non-ANYTYPEportholes are simply assigned their declared type as preferred type. If an
ANYTYPEporthole is not a member of an equivalence group, but is an input porthole and is
connected to a porthole of pass-1-assignable type, that porthole’s type becomes its pre-
ferred type. When aANYTYPEporthole is a member of an equivalence group, the group is
scanned to see if it includes any naRYTYPEportholes; if so, they must all agree in type,

and that type becomes the preferred type of all members of the group. But usually, all the
members of an equivalence set will&AdYTYPE Then, pass 1 scans all the input portholes

of the group to see whether their connected portholes have pass-1-assignable type. If at
least one does, and all of the assignable ones have the same preferred type, then that com-

U. C. Berkeley Department of EECS

The Almagest 6-17

mon type becomes the preferred type of all the members of the equivalence group.

Pass 2:

If an unassignedNYTYPEporthole is not a member of an equivalence group, but is con-
nected to a porthole of type assignable by either pass 1 or pass 2, that porthole’s type
becomes its preferred type. Whensy TYPEporthole is a member of an equivalence

group, all the output portholes of the group are scanned to see whether their connected
portholes have type assignable by either pass 1 or pass 2. If at least one does, and all of the
assignable ones have the same preferred type, then that common type becomes the pre-
ferred type of all the members of the equivalence group.

Pass 1 handles Fork-like stars as well as Merge stars whose inputs all have the same type. Pass
2 does something reasonable with Merge stars that have inputs of different types: if the merge
output is going to a port of knowable type, we may as well just output particles of that type. An
error is declared if a porthole’s type remains unassigned after both passes. This occurs if a
Merge-like star has inputs of nonidentical types and an output connected to an (unresolvable)
ANYTYPEHEnNput. The user must insert type conversion stars to coerce the Merge inputs to a com-
mon type, so that the system can figure out what type to use for the Merge output. Notice that
each pass will resolve an equivalence set if alemgnableconnected portholes agree on a

type; it is not required that all the connected portholes be assignable. This rule is needed to al-
low resolution of schematics that contain type-free loops. Here is an example:

star imp Impulse; star f Fork; star d Delay; star p Printer
connect imp output f input#1

connect f output d input

connect d output f input#2

connect f output p input

This schematic will work if we resolve all the port$=tdAT (the output type of Impulse). But

if we insist on both Fork inputs being resolved before we assign a type to the Fork output, we
will be unable to resolve the schematic. So, once Pass 1 has recursively traversed the schematic
and concluded that it can’t yet assign a type to Famkigt#2 , it uses th&LOATtype found
atinput#l to resolve the type of the Fork portholes. Further recursion then propagates this
result around the schematic. This rather baroque-looking algorithm does have some simple
properties. In particular, all members of an equivalence set are guaranteed to be assigned the
same preferred type; an error will be reported if this is not possible. In some domains it is im-
portant that members of an equivalence set have the same resolved type, not just the same pre-
ferred type. (For example, the CGC Fork star fails if this is not so, because its various portholes
are all just aliases for a single variable.) The domain can check this by seeing whether preferred
type equals resolved type for all portholes. If the types are not the same, it can either report an
error or splice in a type-conversion star to make them the same.

Note:

It might be better to cause this to happen on a per-star-type basis, not a per-domain basis,
since one can imagine that some CG blocks would need strict type equality of portholes
while others would not. This improvement is not currently implemented. The porthole

type resolution algorithm is dependent on the notion that every porthole is connected to

Ptolemy Last updated: 10/9/97

6-18 Classes for connections between blocks

just one other porthole. If class Geodesic is ever redesigned to support multiple connec-
tions directly, some work would be needed. A likely tactic is to move some or all of the
resolution work into Geodesic. A one-to-one Geodesic could enforce the same behavior
described above, but one-to-many or many-to-many Geodesics would need different, pos-
sibly domain-dependent behavior.

6.11 Changes since Ptolemy0.6

Ptolemy 0.7 introduces several changes related to porthole type resolution. Older versions used
a much simpleANYTYPEresolution algorithm, which essentially amounted to just pass 2
("feed back™) of the present method. That had the serious deficiency that it couldn’t decide
what to do with fork stars feeding inputs of multiple types. For example, a fork star receiving
INT and outputting toNT andFLOAT portholes would lead to a type resolution error. In es-
sence, the old code insisted on being able to push type conversions back across a fork, and
would fail if it couldn’t assign the same type to all the fork outputs. The new algorithm solves
this problem by delaying type conversions until after a fork. Occasionally this will introduce
some inefficiency. For example, if a fork receigs and feeds tw&LOATS, the new method

leads to a type conversion being done separately on each fork output, whereas the old method
would have generated only one conversion at the fork input. The improved ease of use of the
new method is judged well worth this loss.

Formerly, the member ports of a multiporthole were always constrained to have the same re-
solved type. This is no longer true, since it gets in the way for polymorphic stars. But if a mul-
tiporthole is tied to another porthole deritTypeFrom , then each member porthole will

still be constrained to match the type of that other porthole, at least in terms of preferred type.
Formerly, the HOF stars acted during the galaxy "setup” phase, in which each block within the
galaxy receives its setup call. This proved inadequate because porthole type resolution is done
during setup; by the time a HOF star acted, the types of the portholes connected to it would
already have been resolved. For example, a HOFNop star formerly constrained all the particles
passing through it to be of the same type, because the porthole resolver insisted on being able
to choose a unique type for the HOFNop’s output porthole, even though that porthole is just a
dummy that won’t even exist at runtime. In Ptolemy 0.7, a "preinitialize” phase has been added
so that HOF stars can rewire the galaxy and remove themselves before any block setup or port-
hole type resolution occurs. The constraints on porthole types are then only those resulting
from the rewired schematic.

U. C. Berkeley Department of EECS

The Almagest 7-1

Chapter 7. Particles and Messages

Authors: Joseph T. Buck

7.1 Class Patrticle

A Particle is a little package that contains data; they represent the principal communication
technique that blocks use to pass results around. They move through PortHoles and Geodesics;
they are allocated in pools called Plasmas. The class Particle is an abstract base class; all real
Particle objects are really of some derived type. All Particles contain a link field that allows
gueues and stacks of Particles to be manipulated efficiently (class ParticleStack is a base class
for everything that does this). Particles also contain virtual operators for loading and accessing
the data in various forms; these functions permit automatic type conversion to be easily per-
formed.

7.2 Particle public members

virtual DataType type() const = 0O;
Return the type of the particle. DataType is actually just a typedediier char*, but
when we use DataType, we treat it as an abstract type. Furthermore, two DataType values
are considered the same if they compare equal, which means that we must assure that the
same string is always used to represent a given type.

virtual operator int () const = 0;
virtual operator float () const = 0;
virtual operator double () const = 0;
virtual operator Complex () const = 0;

These are the virtual casting functions, which convert the data in the Patrticle into the
desired form. The arithmetic Particles support all these functions cleanly. Message parti-
cles may return errors for some of these functions (they must return a value, but may also
call Error::abortRun.

virtual StringList print () const = 0;
Return a printable representation of the Particle’s data.

virtual void initialize() = 0;
This function zeros the Particle (where this makes sense), or initializes it to some default
value.

virtual void operator << (int arg)=0;
virtual void operator << (double arg)=0;
virtual void operator << (const Complex& arg)=0;

These functions are, in a sense, the inverses of the virtual casting operators. They load the
particle with data fronarg, performing the appropriate type conversion.

virtual Particle& operator = (const Particle& arg)=0;

Ptolemy Last updated: 10/9/97

7-2 Particles and Messages

Copy a Particle. In general, we permit this only for Particles of the same type, and other-
wise assert an error. But the arithmetic particle types invoke type conversion, via the vir-
tual casting operators, so as to allow assignment from other arithmetic particle types.
Without this exception, useful cases such as forking an INT output to INT and FLOAT
inputs would fail in the simulation domains (because the fork stars use particle assign-
ment).

virtual int operator == (const Particle&) = 0;
Compare two particles. As a rule, Particles will be equal only if they have the same type,
and, in a sense that is separately determined for each type, the same value.

virtual Particle* clone() const = 0;
Produce a second, identical particle (as a rule, one is obtained from the Plasma for the par-
ticle if possible).

virtual Particle* useNew() const = 0;
This is similar taclone, except that the particle is allocated from the heap rather than
from the Plasma.

virtual void die() = 0;
Return the Particle to its Plasma.

virtual void getMessage (Envelope&);
virtual void accessMessage (Envelope&) const;
virtual void operator << (const Envelope&);

These functions are used to implement the Message interface. The default implementation
returns errors for them; it is only if the Particle is really a MessageParticle that they suc-
cessfully send or receive a Message from the Patrticle.

7.3 Arithmetic Particle classes

There are three standard arithmetic Particle classes: IntParticle, FloatParticle, and Complex-
Particle. As their names suggest, each class adds to Particle a private data member of type int,
double (not float!), and class Complex, respectively. When a casting operator or “<<” operator
is used on a patrticle of one of these types, a type conversion may take place. If the type of the
argument of cast matches the type of the particle’s data, the data is simply copied. If the re-
guested operation involves a “widening” conversion (int to float, double, or Complex; float to
double or Complex; double to Complex), the “obvious” thing happens. Conversion from dou-
ble to int rounds to the nearest integer; conversion from Complex to double returns the absolute
value (not the real part!), and Complex to int returns the absolute value, rounded to the nearest
integer.initialize for each of these classes sets the data value to zero (for the appropriate
domain). The DataTypes returned by these Particle types are the global symbols INT, FLOAT,
and COMPLEX, respectively. They have the string values “INT”, “FLOAT”, and “COM-
PLEX".

7.4 The Heterogeneous Message Interface

The heterogeneous message interface is a mechanism to permit messages of arbitrary type (ob-

U. C. Berkeley Department of EECS

The Almagest 7-3

jects of some derived type of class Message) to be transmitted by blocks. Because these mes-
sages may be very large, facilities are provided to permit many references to the same Message,;
Message objects are “held” in another class called Envelope. As the name suggests, Messages
are transferred in Envelopes. When Envelopes are copied, both Envelopes refer to the same
Message. A Message will be deleted when the last reference to it disappears; this means that
Messages must always be on the heap. So that Messages may be transmitted by portholes, there
is a class MessageParticle whose data field is an Envelope. This permits it to hold a Message
just like any other Envelope object.

7.4.1 Class Envelope

class Envelope has two constructors. The default constructor constructs an “empty” Envelope
(in reality, the envelope is not empty but contains a special “dummy message” — more on this
later). There is also a constructor of the form

Envelope(Message& data);
This constructor creates an Envelope that contains the Magstage which MUST have
been allocated withew. Message objects have reference counts; at any time, the refer-
ence count equals the number of Envelope objects that contain (refer to) the Message
object. When the reference count drops to zero (because of execution of a destructor or
assignment operator on an Envelope object), the Message will be deleted. Class Envelope
defines an assignment operator, copy constructor, and destructor. The main work of these
functions is to manipulate reference counts. When one Envelope is copied to another, both
Envelopes refer to the same message.

int empty() const;
Return TRUE if the Envelope is “empty” (points to the dummy message), FALSE other-
wise.

const Message* myData() const;
Return a pointer to the contained Message. This pointer must not be used to modify the
Message object, since other Envelopes may refer to the same message.

Message* writableCopy();
This method produces a writable copy of the contained Message, and also zeros the Enve-
lope (sets it to the empty message). If this Envelope is the only Envelope that refers to the
message, the return value is simply the contained message. If there are multiple references
to the message, tltone method is called on the Message, making a duplicate, and the
duplicate is returned. The user is now responsible for memory management of the result-
ing Message. If it is put into another Envelope, that Envelope will take over the responsi-
bility, deleting the message when there is no more need for it. If it is not put into another
Envelope, the user must make sure it is deleted somehow, or else there will be a memory
leak.

int typeCheck(const char* type) const;
This member function asks the question “is the contained Message ajpkassor
derived fromtype” ? It is implemented by callingA on the Message. Either TRUE or
FALSE is returned.

Ptolemy Last updated: 10/9/97

7-4 Particles and Messages

const char* typeError(const char* expected) const;
This member function may be used to format error messages for when one type of Mes-
sage was expected and another was received. The return value points to a static buffer that
is wiped out by subsequent calls.

const char* dataType() const;

int asint() const;

double asFloat() const;

Complex asComplex() const;

StringList print() const;
All these methods are “passthrough methods”; the return value is the result of calling the
identically named function on the contained Message object.

7.4.2 Class Message

Message objects can be used to carry data between blocks. Unlike Particles, which must all be
of the same type on a given connection, connections that pass Message objects may mix mes-
sage objects of many types on a given connection. The tradeoff is that blocks that receive Mes-
sage objects must, as a rule, type-check the received objects. The base class for all messages,
named Message, contains no data, only a reference count (accordingly, all derived classes have
a reference count and a standard interface). The reference count counts how many Envelope
objects refer to the same Message object. The constructor for Message creates a reference count
that lives on the heap. This means that the reference count is non-const even when the Message
object itself is const. The copy constructor for Message ignores its argument and creates a new
Message with a new reference count. This is necessary so that no two messages will share the
same reference count. The destructor, which is virtual, deletes the reference count. The follow-
ing Message functions must be overridden appropriately in any derived class:

virtual const char* dataType() const;
This function returns the type of the Message. The default implementation returns
“‘DUMMY™.

virtual Message* clone() const;
This function produces a duplicate of the object it is called on. The duplicate must be
“good enough” so that applications work the same way whether the original Message or
one produced bgione() is received. A typical strategy is to define the copy constructor
for each derived Message class and write something like

Message* MyMessage::clone() const { return new MyMessage(*this);}
virtual int isA(const char*) const;

TheisA function returns true if given the name of the class or the name of any base class.
Exception: the base class function returns FALSE to everything (as it has no data at all). A
macrolSA_FUNC s defined to automate the generation of implementations of derived
classisA functions; it is the same one as that used for the NamedObj class. The following
methods may optionally be redefined.

virtual StringList print() const;

This method returns a printable representation of the Message. The default implementa-
tion returns a message like

U. C. Berkeley Department of EECS

The Almagest 7-5

Message class < type >: no print method
wheretype is the message type as returned bydtheType function.

virtual int asint() const;
virtual double asFloat() const;
virtual Complex asComplex() const;

These functions represent conversions of the Message data to an integer, a floating point
value, and a complex number, respectively. Usually such conversions do not make sense;
accordingly, the default implementations generate an error message (using the protected
member functiorerrorConvert) and return a zero of the appropriate type. If a conver-

sion does make sense, they may be overridden by a method that does the appropriate con-
version. These methods will be used by the MessageParticle class when an attempt is
made to read a MessageParticle in a numeric context. One protected member function is
provided:

int errorConvert(const char* cvitype) const;
This function invokegrror::abortRun with a message of the form

Message class < msgtype >: invalid conversion tevitype
wheremsgtype is the type of the Message, andtype is the argument.

7.4.3 Class MessageParticle

MessageParticle is a derived type of Particle whose data field is an Envelope; accordingly, it
can transport Message objects. MessageParticle defines no new methods of its own; it only pro-
vides behaviors for the virtual functions defined in class Particle. The most important such be-
haviors are as follows:

void operator << (const Envelope& env);
This method loads the Message containeghininto the Envelope contained in the Mes-
sageParticle. Since the Envelope assignment operator is used, after execution of this
method bottenv and the MessageParticle refer to the message, so its reference count is at
least 2.

void getMessage(const Envelope& env);
This method loads the message contained in the MessageParticle into the Esrwelope
and removes the message from the MessageParticle (so that it now contains the dummy
message). lénv previously contained the only reference to some other Message, that pre-
viously contained Message will be deleted.

void accessMessage(const Envelope& env);
accessMessage is the same agetMessage except that the message is not removed
from the MessageParticle. It can be used in situations where the same Particle will be read
again. We recommend thggtMessage be used where possible, especially for very large
message objects, so that they are deleted as soon as possible.

7.5 Example Message types

The kernel provides two simple sample message types for transferring arrays of data. They are

Ptolemy Last updated: 10/9/97

7-6 Particles and Messages

almost identical except that one holds an array of integers and the other holds an array of single
precision floating point data. The array contents live on the heap. Each is derived from class
Message. Each provides a public data member that points to the data. As a rule, we recommend
against public data members for classes, but an exception was made in this case, perhaps un-
wisely. This section will describe the interface of the FloatVecData class. The interface for In-
tVecData is almost identical. Three constructors are provided:

FloatVecData(int len);
This form creates an uninitialized array of lenfgthh in the FloatVecData object. Since
the pointer to the data is public the array may easily be filled in.

FloatVecData(int len ,const float srcData),
This form creates an array of lendgh and initializes it withen elements fronsrc-
Data.

FloatVecData(int len ,const double srcData);
This form is the same, except that the source data is double precision (it is converted to
single precision). This is the only function for which an analogous function does not exist
in IntVecData (an IntVecData can only be initialized from an integer array). An appropri-
ate copy constructor, assignment operator, and destructor are defined.

int length() const;
Return the length of the array.

float *data;
Public data member; points to the array. It is permissible to read or assigm take-
ments starting atata; the effect of altering théata pointer itself is undefined.

const char* dataType() const;
Returns the stringFloatVecData".

int isA(const char* type) const;
TRUE for type equal to'FloatVecData", otherwise false.

StringList print() const;
Returns a comma-separated list of elements enclosed in curly braces.

Message* clone() const;
Creates an identical copy witlew.

U. C. Berkeley Department of EECS

The Almagest 8-1

Chapter 8. The incremental linker

Authors: Joseph T. Buck
Christopher Hylands

The incremental linker permits user written code to be added to the system at runtime. Two dif-
ferent mechanisms are provided, called a temporary link and a permanent link. With either a
temporary link or a permanent link, code is linked using the incremental linking facilities of the
Unix linker, the new code is read into the Ptolemy executable, and symbols corresponding to
C++ global constructors are located and called. This means that such code is expected to reg-
ister objects on Ptolemy’s known lists (e.g. KnownBlock, KnownState, or KnownTarget) so
that new classes become usablarning: if the executable containing the Linker class is
stripped, the incremental linker will not work!

8.1 Id -A style linking vs. dlopen() style linking
There are two ways incremental linking is implemented: “Id -A” and “dlopen()” style linking.

The first type of implementation uses a BSD Sun-style loader with the -A flag to load in .o
files. Usually, binaries that are to be dynamically linked must be built with the -N option. This
is the older style of linking present in Ptolemy0.5 and earlier.

The second type of implementation uses the System V Reladisped() call to load in
shared objects (.so files). SunOS4.1.x, Solaris2.x and Irix5.x support this style of dynamic
linking. In PtolemyO0.6, only the sol2, sol2.cfront, and hppa architectures support dynamic
linking of shared objects.

The interface to both styles of linking is very similar, though there are differences.

8.2 Temporary vs. Permanent Incremental Linking

Code that is linked in by the “temporary link” technique does not alter the symbol table in use.
For that reason, subsequent incremental links, whether temporary or permanent, cannot “see”
any code that was linked in by previous temporary links. The advantage is that the same sym-
bols (for example, a Ptolemy star definition) may be redefined, which is useful in code devel-
opment, as buggy star definitions can be replaced by valid ones without exiting Ptolemy. Code
that is linked in by the “permanent link” method has the same status as code that was linked
into the original executable. With “Id -A” style incremental linking, a permanent link creates
or replaces thept_symtable file in the directory in which Ptolemy was started. This file
contains the current symbol table for use by subsequent links, temporary or permanent. This
file is deleted when the Ptolemy process exits normally. It is left around when the process
crashes, as it is useful for debugging (as it contains symbols for object files that were incremen-
tally linked using the permanent method as well as those in the original executable). With
dlopen() style incremental linking, we keep track of all the files that have been permanently
linked in. After a file has been permanently linked in, each successive link (permanent or not)
includes all the permanently linking in files. That is, if we permanently link in foo.o, then when

Ptolemy Last updated: 10/9/97

8-2 The incremental linker

we link in bar.o, we will generate a shared object file that includes both foo.o and bar.o, and
then calldlopen() on that shared object file. Note that withpen() style linking it is pos-

sible to relink in stars that have been permanently linked. When a file is to be linked in, we
check against the list of permanently linked in file names and remove any duplicates. This
method of checking will fail if one permanently links in a file, and then links in the same file
as a different name, perhaps through the use of symbolic links. That is, if we permanently link
in ./foo.o and./bar.o is a link to./foo.o, when we link in./bar.o, we will have
multiple symbols defined, and we will get an error. In other words, we only check for duplicate
file names, we do not check for duplicate symbols in any files, the loader does this for us. Cur-
rently eachdlopen() style link generates a temporary shared objgohim If you are doing

a large number adlopen() style permanent links, you will have many filestinp. We

hope to resolve this potential problem in a later release. Eventually, it would be nice if the code
read the value of an optional environment variable, sugiva®IR.

8.3 Linker public members

static void init(const char* execName),
This function initializes the linker module by telling it where the executable for this pro-
gram is. For most purposes, passing it the valaegef0] passed to thmain function
will suffice.

static int linkObj(const char* objName);
Link in a single object module using the temporary link mechanism (this entry point is
provided for backward compatibility).

static int multiLink(const char* args , int permanent),

static int multiLink(int argc , char**argv);
Both of these functions give access to the main function for doing an incremental link.
They permit either a temporary or a permanent link of multiple files; flags to the Unix
linker such asl to specify a library ofL to specify a search directory for libraries are
permitted. For the first fornargs are passed as part of a linker command that is
expanded by the Unix shell. A permanent link is performeeérihanent is true (non-
zero); otherwise a temporary link is performed. The second form is provided for ease of
interfacing to the Tcl interpreter, which likes to pass arguments to commands in this style.
In this case,argv/0] indicates the type of link: if it begins with the charagtera per-
manent link is performed; otherwise a temporary link is performed. The remaining argu-
ments are concatenated (separated by spaces) and appear in the argument to the Unix
linker.

static int isActive();
This function returns TRUE if the linker is currently active (so objects can be marked as
dynamically linked by the known list classes). Actually the flag it returns is set while con-
structors or other functions that have just been linked are being run.

static int enabled();

Returns true if the linker is enabled (it is enabled by callinker::init if that func-
tion returns successfully). On platforms that do not support dynamic linking, this function

U. C. Berkeley Department of EECS

The Almagest 8-3

always returns false (zero).

static const char* imageFileName();
Return the fully-expanded name of the executable image file (s@tkay::init).

static void setDefaultOpts(const char* newValue);

static const char* defaultOpts();
These functions set or return the linker’s default options, a set of flags appended to the end
of the command line by all links.

8.4 Linker implementation

For each port of Ptolemy to a particular release, the Linker is implemented in one of two styles:
“Id -A” style or “dlopen()” style. We discuss each style below.

8.4.1 Shared Objects and dlopen() style linking

If a Ptolemy release on a platform suppditeen style dynamic linking, then the ptéik
command can be called with eithepafile or a.so file. If thelink ptcl command is passed
a.o file, then aso file will be generated. If link ptcl command is passesba file, then the

.so file will be loaded. If theso file does not exist, then an error message will be produced
and the link will return. There are several ways to specify the path to a shared object.

1. Using just a file namiink foo.so will not work unless LD _LIBRARY_PATH
includes the directory wheffeo.so resides. The man pages tbopen() and
Id discuss LD_LIBRARY_PATH Interestingly, usingutenv() to set
LD_LIBRARY_PATH from within ptcl has no effect on the runtime loader.

2. 2If the file name begins with , then the current directory is searchied ./
foo.so should work, as willink ./mydir/foo.so

3. If the file name is an absolute path name, then the shared object will be loaded.
link /tmp/foo.so should work.

4. Dynamic programs can have a run path specified at link time. The run path is the
path searched at runtime for shared object. (Under Solaris2-R thgtion told
controls the run path. Under Irix5.2, th@ath option told controls the run
path). If ptcl or pigiRpc has been compiled with a run path built in, and the shared
object is in that path, then the shared object will be found. The Sun Linker Manual
says: “To locate the shared object foo.s0.1, the runtime linker will use any
LD_LIBRARY_PATH definition presently in effect, followed by any runpath spec-
ified during the link-edit of prog and finally, the default location /usr/lib. If the file
name had been specified ./foo.so0.1, then the runtime linker would have searched
for the file only in the present working directory.”

8.4.2 Porting the Dynamic Linking capability

This section is intended to assist those that attempt to port the Linker module to other platforms.
The Linker class is implemented in three filegiker.h, specifying the class interface,
Linker.cc, specifying the implementation, ahithker.sysdep.h, specifying all the ma-

Ptolemy Last updated: 10/9/97

8-4 The incremental linker

chine dependent parts of the implementation. To turn on debugging, caimipglecc with
the DEBUG flag defined. One way to do this would be:

cd $PTOLEMY/obj.$PTARCH/kernel; rm -f Linker.o; make OPTIMIZER=-DDEBUG

The Linker class currently uses “Id -A” style dynamic linking on the Sun4 (Sparc) run-
ning Sun0S4.1 angk+, the Sun4 (Sparc) running SunOS4.1 and Sefrost port, DEC-
Stations running Ultrix, HP-PA runnirgg-+ or HP’scfront port. The Linker class currently
uses “dlopen()” style dynamic linking on the Sun4 (Sparc) running Solaris2 g+andthe
Sun4 (Sparc) running Solaris2 and Suiffent port (SunCC-3.0), the Sun4 (Sparc) run-
ning Solaris2 and Sun’s native C++ comp@&-4.0, and SGI Indigos running IRIX-5.2 and
g++. The intent is to structure the code in such a way thattifuefs appear in
Linker.cc; they should all be ihinker.sysdep.h.

8.4.3 Id -A Style Dynamic Linking

The linker reads all new code into a pre-existing large array, rather than creating blocks of the
right size withnew, because the right size is not known in advance but a starting location must,
as a rule, be passed to the loader in advance. This means that there is a wired-in limit to how
much code can be linked in. The symbiNK_MEMORY which is set to one megabyte by de-

fault, is easily changed if required. Here are the steps taken by the linker to do its work:

1. Align the memory as required.

2. Form the command line and execute the Unix linker. Only certain flags in the com-
mand line will be system-dependent.

3. Read in the object file. This is heavily system-dependent.

4. Make the read-in text executable. On most systems this is a do-nothing step. On
some platforms (such as HP) it is necessary to flush the instruction cache and that
would be done at this point.

5. Invoke constructors in the newly read in code. Constructors are found by use of the
nm program; the output is parsed to search for constructor symbols, whose form
depends on the compiler used.

6. If this is a permanent link, copy the linker output to .fitesymtable; other-
wise delete it.

8.4.4 dlopen() Style Dynamic Linking
Here’s how we link in an object usinigppen() style linking.

1. Generate a list of files to be linked in. If we have not yet done a permanent link,
then the list of files to be linked in will consist of only the files in this link or mul-
tilink command. If the link is a permanent link, then we save the object name. For
each successive link, we check the name of the object to be linked in against the
list of objects permanently linked for duplicate file names. For each link after a
permanent link, we include the names of all the unique permanently linked in
objects in the generation of a temporary shared object file.

U. C. Berkeley Department of EECS

The Almagest 8-5

2. Generate a shared objesti file from all the objects to be linked in. Tlwe file

Ptolemy

is created in /tmp.
Do adlopen() on the shared object.

Most architectures usento search for constructors, which are then invoked. Cur-
rently, sol2.cfront does not need to search for, or invoke constructors. gcc-2.5.8 has
patches that allow similar functionality, but apparently these patches are not in
gcc-2.6.0. Shared libraries in the SVR4 implementation contain optioimtl

and__fini functions, called when the library is first connected to (at startup or
dlopen()) and when the library is disconnected fromd{elbse() or program

exit), respectively. Some C++ implementations can arrange for these and

__fini functions to contain calls to all the global constructors or destructors. On
platforms where this happens, such as sol2.cfront, there is no need for the Linker
class to explicitly call the constructors, as this will happen automatically.

Last updated: 10/9/97

8-6 The incremental linker

U. C. Berkeley Department of EECS

The Almagest 9-1

Chapter 9. Parameters and States

Authors: Joseph T. Buck
Other Contributors: Neil Smyth

A State is a data structure associated with a block, used to remember data values from one in-
vocation to the next. For example, the gain of an automatic gain controller is a state. A state
need not be dynamic; for instance, the gain of fixed amplifier is a state. A parameter is the ini-
tial value of a state. A State actually has two values: the initial value, which is always a char-
acter string, and a current value, whose type is different for each derived class of State: integer
for IntState, an array of real values for FloatArrayState, etc. In addition, states have attributes,
which represent logical properties the state either has or does not have.

9.1 Class State

Class State is derived from class NamedObj. The State base class is an abstract class; you can-
not create a plain State. The base class contains the initial value, which is abways a

char* ; the derived classes are expected to provide current values of appropriate type. The con-
structor for class State sets the initial value to a null pointer, and sets the state’s attributes to a
value determined by the constant AB_ DEFAULT, which is defined in “State.h” to be the bit-
wise or of AB_CONST and AB_SETTABLE. The destructor does nothing extra.

9.1.1 State public members
State& setState(const char* stateName |, Block* parent
const char* initValue ,constcharr desc =NULLD;
This function sets the name, parent, initial value, and optionally the descriptor for a state.
The character strings representing the initial value and descriptor must outlive the State.

State& setState(const char* stateName |, Block* parent
const char* initvalue ,constchar* desc,
Attribute attr);

This function is the same as the otbetState, but it also sets attributes for the state.
The Attribute object represents a set of attribute bits to turn on or off.

void setInitValue(const char* valueString);
This function sets the initial value t@alueString. This string must outlive the State.

const char* initValue () const;
Return the initial value.

virtual const char* type() const = 0;
Return the type name (for use in user interfaces, for example). When states are created
dynamically (by th&KnownState orlinterpGalaxy class), it is this name that is used to
specify the type.

Ptolemy Last updated: 10/9/97

9-2 Parameters and States

virtual int size() const;
Return the size (number of distinct values) in the state. The default implementation returns
1. Array state types will return the number of elements.

virtual int isArray() const;
Return TRUE if this state is an array, false otherwise. The default implementation returns
false.

virtual void initialize() = 0;
Initialize the state. Thimitialize function for a state is responsible for parsing the ini-
tial value string and setting the current value appropriately; errors are signaled using the
Error::abortRun mechanism.

virtual StringList currentValue() const = 0;
Return a string representation of the current value.

void setCurrentValue(const char* newval);
Modify the current value, in a type-independent way. Notice that this function is not vir-
tual. It exploits the semantics ioftialize to set the current value using other func-
tions; the initial value is not modified (it is saved and restored).

virtual State* clone() const = 0;
Derived state classes override this method to create an identical object to the one the
method is called on.

StringList print(int verbose) const;
Output all info. This is NOT redefined for each type of state.

bitWord attributes() const;
Return my attribute bits.

bitWord setAttributes(const Attribute& attr);
bitWord clearAttributes(const Attribute& attr);
Set or clear attributes.

const State* lookup(const char* name, Block* b);
This method searches for a state namsedein Block b or one of its ancestors, and either
returns it or a null pointer if not found.

int isA(const char*) const;
This function returns true when given the name of the class or the name of any baseclass

9.1.2 The State parser and protected members

Most of the protected interface in the State class consists of a simple recursive-descent parser
for parsing integer and floating expressions that appear in the initial value string. The ParseTo-

ken class represents tokens for this parser. It contains a token type (an integer code) and a token
value, which is a union that represents either a character value, a string value, an integer value,

U. C. Berkeley Department of EECS

The Almagest 9-3

a double value, a Complex value, or a State value (for use when the initializer references an-
other state). Token types are equal to the ASCII character value for single-character tokens.
Other possible token values are:

e T_EOFfor end of file,
T_ERROFKor error,

T_Float for a floating value,

T_Int for an integer value,

T _ID for a reference to a state, and
e T_STRINGfor a string value.

For most of these, the token value holds the appropriate value. Most derived State classes use
this parser to provide uniformity of syntax and error reporting; however, it is not a requirement

to use it. Derivedtate classes are expected to associdiskanizer object with their initial

value string. The functions provided here can then be used to parse expressions appearing in
that string.

ParseToken getParseToken(Tokenizer& tok , int stateType =T _Floa t);
This function obtains the next token from the input stream associated with the Tokenizer.
If there is a pushback token, that token is returned instead. If it receives a '<’ token, then it
assumes that the next string delimited by white space is a file name. It substitutes refer-
ences to other parameters in the filename and then uses the Tokenizer’s include file capa-
bility to insert the contents of the file into the input stream. If it receives a '’ token, then it
assumes that that the next string delimited by white space is a command to be evaluated by
an external interpreter. It substitutes references to other parameters in the command, sends
the resulting string to the interpreter defined by interp member described above for evalua-
tion, and inserts the result into the input stream. The information both read from an exter-
nal file and returned from an external interpreter is also parsed by this function. Therefore,
the external interpreter can perform both numeric and symbolic computations. When the
parser hits the end of the input stream, it returns T_EOF.

The characters in the ggt*-/()" are considered to be special and the lexical value is
eqgual to the character value. Integer and floating values are recognized and evaluated to
produce either T_Int or T_Float tokens. However, the decision is based on the value of
stateType; ifitis T_Float, all numeric values are returned as T_Float; if itis T_Int, all
numeric values are returned as T_Int. Names that take the form of a C or C++ identifier are
assumed to be names of states defined at a higher level (states belonging to the parent gal-
axy or some ancestor galaxy). They are searched forlosiag; if not found, an error

is reported usingarseError and an error token is returned. If a State is found, a token

of type T_ID is returned if it is an array state or COMPLEX; otherwise the state’s current
value is substituted and reparsed as a token. This means, for example, that a name of an
IntState will be replaced with a T_Int token with the correct value.

void parseError (const char* partl , const char* part2 =";

This method produces an appropriately formatted error message with the name of the state
and the arguments and cafisor::abortRun.

Ptolemy Last updated: 10/9/97

9-4 Parameters and States

static ParseToken pushback();
static void setPushback(const ParseTokeng&);
static void clearPushback();

These functions manipulate the pushback token, for use in parsing. The first function
returns the current pushback token, the second sets it to be a copy of the argument, the
third clears it. There is only one such token, so the state parser is not reentrant.

ParseToken evallntExpression(Tokenizer& lexer);
ParseToken evallntTerm(Tokenizer& lexer);
ParseToken evallntFactor(Tokenizer& lexer);
ParseToken evallntAtom(Tokenizer& lexer);

These four functions implement a simple recursive-descent expression parser. An expres-
sion is either a term or a series of terms with intervening '+’ or ’-’ signs. A term is either a
factor or a series of factors with interventing '*' or ’/’ signs. A factor is either an atom or a
series of atoms with intervening signs for exponentiation. (Note, C farrseans expo-
nentiation, not exclusive-or!). An atom is any number of optional unary minus signs, fol-
lowed either by a parenthesized expression or a T_Int token. If any of these methods reads
too far, the pushback token is used. gdtParseToken calls usestateType T_lInt, so

any floating values in the expression are truncated to integer. The token types returned
from each of these methods will be one of T_Int, T_EOF, or T_ERROR.

ParseToken evalFloatExpression(Tokenizer& lexer);
ParseToken evalFloatTerm(Tokenizer& lexer);
ParseToken evalFloatFactor(Tokenizer& lexer);
ParseToken evalFloatAtom(Tokenizer& lexer);

These functions have the identical structure as the corresponding Int functions. The token
types returned from each of these methods will be one of T_Float, T_EOF, or T_ERROR.

Invokelnterp interp;
An external interpreter for evaluating commands in a parameter definition preceded by the
I character and surrounded in quotes. By default, no interpreter is defined. If the interpreter
were defined as the Tcl interpreter, théaxpr abs(cos(1.0))" would compute 0.540302.
Other parameters can be referenced as usual by using curly brace&x@g.
abs(cos({gain}))".

StringList parseFileName(const char*);
This method parses filenames that have been inherited from state values enclosed in curly
braces.

StringList parseNestedExpression(const char* expression);
This method parses nested sub-expressions appearingexpthsesion , e.g. {{{Filter-
TapFile}/{File}}}, that might be passed off to another interpreter for evaluation, e.g. Tcl.

Int mergeFileContents(Tokenizer& lexer , char* token);
This method treats the next token on My@r as a filename.

Int sendTolnterpreter(Tokenizer& lexer , char* token);
This method sends the next token on/éxer to be evaluated by an external interpreter.

U. C. Berkeley Department of EECS

The Almagest 9-5

Int getParameterName(Tokenizer& lexer , char* token);
This method looks for parameters of the fgmame}.

9.2 Types of states

9.2.1 Class IntState and class FloatState

Class htState , derived fronState , has an integer current value.ittisialize() func-

tion uses thevallntExpression function to read an integer expression from the initial val-

ue string. If successful, it attempts to read another token from the string; if there is another
token, it reports the error “extra text after valid expression”. An assignment operator is provid-
ed that accepts an integer value and loads it into the current value. A cast to integer is also de-
fined for accessing the current value. The virtual functiomentValue is overloaded to

return a printed version of the current value. In addition tos¢iteitValue from class

State, a second form is provided that takes an integer argument. Standard overisdes for
className, andclone are provided. ClasddatState is almost identical to class IntState
except that its data field is a double precision value; where IntState functions have an argument
or return value oint, FloatState has a corresponding argument or return vahioie.

Both are generated from the same pseudo-template filesygefe function for IntState re-
turns"INT". For FloatState'FLOAT" is returned. For both implementations, a prototype ob-
ject is added to the KnownState list.

9.2.2 Class ComplexState

ComplexState is much like FloatState and IntState, except in the expressions it accepts for ini-
tial values. Its data member is Complex and it accordingly defines an assignment operator that
takes a complex value and a conversion operator that returns one. The initial value string for a
ComplexState takes one of three forms: it may be the name of a galaxy ComplexState, a float-
ing expression (of the form accepted $yte::evalFloatExpression), or a string of

the form(floatexp1 , floatexp2) where bothfloatexpl andfloatexp2 are float-

ing expressions. For the second form, the imaginary part will always be zero. For the third
form, the first expression gives the real part and the second gives the imaginary part.

9.2.3 Class StringState

A StringState’s current value is a string (more correctly, of tgpet char). The current

value is created by thitialize() function by scanning the initial value string. This string

is copied literally, except that curly braces are special. If a pair of curly braces surrounds the
name of a galaxy state, the printed representation of that state’s current value (returned by the
currentValue function) is substituted. To get a literal curly brace in the current value, prefix

it with a backslash. Class StringState defines assignment operators so that different string val-
ues can be copied to the current value; the value is copiedaviBtring and deleted by

the destructor.

9.2.4 Numeric array states

Classes IntArrayState and FloatArrayState are produced from the same pseudo-template. Class
ComplexArrayState has a very similar design. All retRWEtoisArray, provide an array
element selection operatapgrator[](int)), and an operator that converts the state into

Ptolemy Last updated: 10/9/97

9-6 Parameters and States

a pointer to the first element of its data (much like arrays in C). The expression parser for Floa-
tArrayState accepts a series of “subarray expressions”, which are concatenated together to get
the current value wheinitialize() is called. Subarray expressions may specify a single
element, some number of copies of a single element, or a galaxy array state of the same type
(another FloatArrayState). A single element specifier may either be a floating point value, a
scalar (integer or floating) galaxy state name, or a general floating expression enclosed in pa-
rentheses. A number of copies of this single element can be specified by appending an integer
expression enclosed in square brackets. The expression parsers for IntArrayState and Com-
plexArrayState differ only that where FloatArrayState wants a floating expression, IntArray-
State wants an integer expression and ComplexArrayState wants a complex expression (an
expression suitable for initializing a ComplexState).

9.2.5 Class StringArrayState

As its name suggests, the current value for a StringArrayState is an array of strings. White
space in the initial value string separates “words”, and Each word is assigiméthlby

ize() into a separate array element. Quotes can be use to permit “words” to have white space.
Current values of galaxy states can be converted into single elements of the StringArrayState
value by surrounding their names with curly braces in the initial value. Galaxy StringArray-
State names will be translated into a series of values. There is currently no provision for mod-
ifying the current value of a StringArrayState other than callingitidlize to parse the
current value string.

U. C. Berkeley Department of EECS

The Almagest 10-1

Chapter 10. Support for known lists
and such

Authors: Joseph T. Buck
Other Contributors: Neil Smyth

Ptolemy is an extensible system, and in quite a few places it must create objects given only the
name of that object. There are therefore several classes that are responsible for maintaining
lists: the list of all known domains, of all known blocks, states, targets, etc. As a general rule,
these classes supportiane or makeNewmethod to create a new object based on its name
(you cannot clone a domain, however).

10.1 Class KnownBlock

The KnownBlock class is responsible for keeping a master list of all known types of Block ob-
jects in the system. All member functions of KnownBlock are static; the only non-static func-
tion of KnownBlock is the constructor. The KnownBlock constructor has the form

KnownBlock(Block& block , const char* name;
The only reason for constructing a KnownBlock object is for the side effects; the side
effect is to adalock to the known block list for its domain under the namame, using
addEntry. The reason for using a constructor for this purpose is that constructors for
global objects are called before execution of the main program; constructors therefore
serve as a mechanism for execution of arbitrary initialization code for a module (as used
here, “module” is an object file). Henpttang, the Ptolemy star preprocessor, generates
code like the following for star definitions:

static XXXMyClass proto;
static KnownBlock entry(proto,"MyClass");

This code adds a prototype entry of the class to the known list. Dynamically constructed
block types, such as interpreted galaxies, are added to the known list with a direct call to
KnownBlock::addEntry. These cases should always supply an appropriate definition-
source string so that conflicting block type definitions can be detected. KnownBlock keeps
track of the source of the definition of every known block type. This allows compile.c to
determine whether an Oct facet needs to be recompiled (without the source information,
different facets that have the same base name could be mistaken for each other). This also
allows us to generate some helpful warning messages when a block name is accidentally
re-used. The source location information is currently rather crude for everything except
Oct facets, but that’s good enough to generate a useful warning in nearly all cases. Known-
Block assigns a sequential serial number to each definition or redefinition of a known
block type. This can be used, for example, to determine whether a galaxy has been com-

Ptolemy Last updated: 10/9/97

10-2 Support for known lists and such

piled more recently than any of its constituent blocks.

static void addEntry (Block & block , const char* name, int onHeap, const
char* definitionSource)

This function actually adds the block to the list. Separate lists are maintained for each
domain; the block is added to the list correspondingltak.domain() . If onHeap is
true, the block will be destroyed when the entry is removed or replaced from the list. defi-
nitionSource should beULL for any block type defined by C++ code (this is what is
passed by the KnownBlock constructor). It should be a hashstring’ed path name for a
block defined by an identifiable file (such as an Oct facet), or a special case constant string
for other cases such as the pkefigalaxy command.

static const Block* find (const char* name, const char'dorn);
The find method returns a pointer the appropriate block in the specified domain. A null
pointer is returned if no match is found.

static Block* clone (const char* name, const char'dorn);

static Block* makeNew (const char* name, const char'dorn);
Theclone method takes a string, finds the appropriate block in the specified domain, and
returns a clone of that block (thene method is called on the block. This method, as a
rule, generates a duplicate of the block. iifageNewfunction is similar except thatak-
eNewis called on the found block. As a ruleakeNewreturns an object of the same class,
but with default initializations (for example, with default state values). For either of these,
an error message is generated (WEitlor::abortRun) and a null pointer is returned if
there is no match. To avoid a crash in the event of a self-referential galaxy definition,
recursive clone or makeNew attempts are detected, and are terminated by generating an
error message and returning a null pointer.

static StringList nameList (const char* domain);
Return the names of known blocks in the given domain (second form). Names are sepa-
rated by newline characters.

static const char* defaultDomain ();
Returns the default domain name. This is not used internally for anything; it is just set to
the first domain seen during the building of known lists.

static int setDefaultDomain (const char* newval);
Set the default domain name. RetBALSE if the specified value is not a valid domain.

static int validDomain (const char* newval);
ReturnTRUEIf the given name is a valid domain.

static int isDynamic (const char* type , const char* dom;
Return TRUE if the named block is dynamically linked. There is an iterator associated
with KnownBlock, called KnownBlocklter. It takes as an argument the name of a domain.
The argument may be omitted, in which case the default domain is usestt [tRinction
returns the typeonst Block* ; it steps through the blocks on the known list for that

U. C. Berkeley Department of EECS

The Almagest 10-3

domain.
static int isDefined (const char* type , const char* dom
const char* definitionSource)

If there is a known block of the given name and domain, return TRUE and pass back its
definition source string.

static long serialNumber (const char* name, const char* dony;
Look up a KnownBlock definition by name and domain, and return its serial number.
Returns O iff no matching definition exists.

static long serialNumber (Block& block);
Given a block, find the matching KnownBlock definition, and return its serial number (or
0 if no matching definition exists).

10.2 Class KnownTarget

The KnownTarget class keeps track of targets in much the same way that KnownBlock keeps
track of blocks. There are some differences: there is only a single list of targets, not one per
domain as for blocks. The constructor works exactly the same way that the constructor for
KnownBlock works; the code

static MyTarget proto(args);

static KnownTarget entry(proto,"MyTarget");

adds the prototype instance to the known list with a callidi&ntry.
static void addEntry (Targetarget , const charame, int onHeap);

This function actually adds the Target to the listrifleap is true, the target will be
destroyed when the entry is removed or replaced from the list. There is only one list of
Targets.

static const Target* find (const char* name;
The find method returns a pointer the appropriate target. A null pointer is returned if no
match is found.

static Target* clone (const char* name;
Theclone method takes a string, finds the appropriate target on the known target list, and
returns a clone of that target (itleneTarget method is called on the target). This
method, as a rule, generates a duplicate of the target. An error message is generated (with
Error::abortRun) and a null pointer is returned if there is no match.

static int getList (const Block& b, const char** names, int nMax);
This function returns a list of names of targets that are compatible with the Blddke
return value gives the number of matches. Adrees array can holchMax strings; if
there are more, only the firgsMax are returned.

static int getList (const char* dom const char** names, int nMax);
This function is the same as above, except that it returns names of targets that are compat-

Ptolemy Last updated: 10/9/97

10-4 Support for known lists and such

ible with stars of a particular domain.

static int isDynamic (const char* type);
Return true if there is a target on the known list nameel that is dynamically linked;
otherwise return false.

static const char* defaultName (const char* dom=0);
Return the default target name for a domain (default: current domain). There is an iterator
associated with KnownTarget, called KnownTargetlter. Since there is only one known tar-
get list, it is unusual for an iterator in that it takes no argument for its constructextlts
function returns the typepnst Target * ; it steps through the targets on the known list.

10.3 Class Domain

The Domain class represents the information that Ptolemy needs to know about a particular do-
main so that it can create galaxies, wormholes, nodes, event horizons, and such for that domain.
For each domain, the designer creates a derived class of Domain and one prototype object.
Thus the Domain class has two main parts: a static interface, which manages access to the list
of Domain objects, and a set of virtual functions, which provides the standard interface for each
domain to describe its requirements.

10.3.1 Domain virtual functions

virtual Star& newWorm (Galaxy& innerGal , Target* innerTarget =0);
This function creates a new wormhole with the given inner galaxy and inner target. The
default implementation returns an error. XXXDomain might override this as follows:

Star& XXXDomain::newWorm(Galaxy& innerGal, Target* innerTar-

get) {
LOG_NEW,; return *new XXXWormhole(innerGal,innerTarget);
}

virtual EventHorizon& newFrom();

virtual EventHorizon& newTo();
These functions create event horizon objects to represent the XXXfromUniversal and
XXXtoUniversal functions. The default implementations return an error. XXXDomain

might override these as

EventHorizon& XXXDomain::newFrom() {
LOG_NEW,; return *new XXXfromUniversal,

}

EventHorizon& XXXDomain::newTo() {
LOG_NEW,; return *new XXXtoUniversal,

}

virtual Geodesic& newGeo(int multi =FALSE);
This function creates a new geodesic for point-to-point connection or a “node” suitable for
multi-point connections.

virtual int isGalWorm();
This function return§ALSE by default. If overridden by a function that retui®UE a

U. C. Berkeley Department of EECS

The Almagest 10-5

wormhole will be created around every galaxy for this domain.

virtual const char* requiredTarget();
If non-null, this method returns requirement for targets for use with this domain.

10.4 Class KnownState

KnownState manages two lists of states, one to represent the types of states known to the sys-
tem (integer, string, complex, array of floating, etc.), and one to represent certain predeclared
global states. It is very much like KnownBlock in internal structure. Since it manages two lists,
there are two kinds of constructors.

KnownState (State &state , const char* name);
This constructor adds an entry to the state type list. For example,

static IntState proto;
static KnownState entry(proto,"INT");

permits IntStates to be produced by cloning. #ijse argument must be in upper case,
because of the weind works (see below). The second type of constructor takes three
arguments:

KnownState (State &state , const char* name, const char* value);
This constructor permits names to be added to the global state symbol list, for use in state
expressions. For example, we have

static FloatState pi;
KnownState k_pi(pi,"PI","3.14159265358979323846");

static const State* find (const char* type);
Thefind method returns a pointer the appropriate prototype state in the state type list.
The argument is always changed to upper case. A null pointer is returned if there is no
match.

static const State* lookup (const char* name;
The lookup method returns a pointer to the appropriate state in the global state list, or null
if there is no match.

static State* clone (const char* type);
The clone method takes a string, finds the appropriate statefinding and returns a
clone of that block. A null pointer is returned if there is no match Eamat:error 5
also called.

static StringList nameList();
Return the names of all the known state types, separated by newlines.

static int nKnown();
Return the number of known states.

Ptolemy Last updated: 10/9/97

10-6 Support for known lists and such

U. C. Berkeley Department of EECS

The Almagest 11-1

Chapter 11. 1/O classes

Authors: Joseph T. Buck
Other Contributors: Bilung Lee

11.1 StringList, a kind of String class

ClasssStringList provides a mechanism for organizing a list of strings. It can also be used
to construct strings of unbounded size, but the ¢tiéS8ing is preferred for this. It is pri-
vately derived fromSequentialList . Its internal implementation is as a list dfar*

strings, each on the heap SfingList object can be treated either as a single string or as a
list of strings; the individual substrings retain their separate identity until the conversion oper-
ator to typeconst char* is invoked. There are also operators that add numeric values to the
StringList ; there is only one format available for such additions. WARNING: if a function
or expression returnsSaringList ~ , and that value is not assigned ®t@ngList variable

or reference, and thieonst char*) cast is used, it is possible (likely under g++) that the
StringList temporary will be destroyed too soon, leavingddrest char* pointer point-

ing to garbage. Always assign a temporatryhgList to aStringList variable or refer-

ence before using tleenst char* conversion. Thus, instead of

function_name(xxx ,(const char*) functionReturningStringList 0, vwy);
one should use

StringList temp_name = (const char*) functionReturningStringList 0;
function_name(xxx, temp_name, yyy);
This includes code like

strepy(destBuf , functionReturningStringList 0);
which uses theonst char* conversion implicitly.

11.1.1 StringList constructors and assignment operators

The default constructor makes an emptyngList . There is also a copy constructor and

five single-argument constructors that can function as conversions from other types to type
StringList ; they take arguments of the typear, const char * , int, double, and
unsigned int . There are also six assignment operators corresponding to these constructors:
one that takes eonst StringList& argument and also one for each of the five standard
types:char, const char * , int, double, andunsigned int . The resulting object has

one piece, unless initialized from anotse&tingList in which case it has the same number

of pieces.

11.1.2 Adding to StringLists

There are six functions that can add a printed representation of an argunemninty. st
one each for arguments of typenst StringList& , Char, const char * , int, dou-

Ptolemy Last updated: 10/9/97

11-2 I/O classes

ble, andunsignedint . In each case, the function can be accessed in either of two equiva-
lent ways:

StringList& operator += (type arg);

StringList& operator << (type arg);

The second “stream form” is considered preferable; the “+=" form is there for backward
compatibility. If aStringList object is added, each piece of the adsigidgList is

added separately (boundaries between pieces are preserved); for the other five forms, a
single piece is added.

11.1.3 StringList information functions

const char* head() const;
Return the first substring on the list (the first “piece”). A null pointer is returned if there
are none.

int length() const;
Return the length in characters.

int numPieces() const;
Return the number of substrings in BtengList

11.1.4 StringList conversion to const char *

operator const char* ();
This function joins all the substrings in tB&ingList into a single piece, so that after-
wardsnumPieces will return 1. A null pointer is always returned if there are no charac-
ters. Warning: if this function is called on a temporgtryngList , it is possible that the
compiler will delete thétringList object before the last use of the returpeast
char* pointer. The result is that the pointer may wind up pointing to garbage. The best
way to work around such problems is to make sure thas@ingList object “has a
name” before this conversion is applied to it; e.g., assign the results of functions returning
StringList objects to locastringList variables or references before trying to con-
vert them.

char* newCopy() const;
This function makes a copy of tB&ringList ’s text in a single piece aschar* in
dynamic memory. The object itself is not modified. The caller is responsible for deletion
of the returned text.

11.1.5 StringList destruction and zeroing

void initialize();
This function deallocates all pieces of BtengList and changes it to an empty
StringList

~StringList();
The destructor calls thnitialize function.

U. C. Berkeley Department of EECS

The Almagest 11-3

11.1.6 Class StringListlter

ClassStringListlter is a standard iterator that operatesSmngLists . Its next()

function returns a pointer of typenst char* to the next substring of tf&ringList . It

is important to know that the operation of convertirggrangList to aconstchar* string

joins all the substrings into a single string, so that operation should be avoided if extensive use
of StringListlter is planned.

11.2 InfString, a class supporting unbounded strings

ClassinfString provides a mechanism for building strings of unbounded size. It provides a
subset of the functions in a typical C++ String class. Strings can be built up piece by piece. As
segments are added, they are copied, so the caller need not keep the segments around. Upon
casting tolchar*), the strings are collapsed into one continuous string, and a pointer to that
string is returned. The calling function can treat this as an ordinary pointer to an ordinary array
of characters, and can modify the characters. But the length of the string should not be changed,
nor should the string be deleted. ThiString destructor is responsible for freeing the allo-
cated memorylInfString is publically derived fronstringList , adding only the cast

char* . Its internal implementation is as a listobar* strings, each on the heap. The individ-

ual substrings retain their separate identity until the conversion cast htype is invoked,
although if access to the individual strings is needed,ShremyList should be used. There

are also operators that add numeric values t8tiirgiList ; there is only one format avail-

able for each such addition. WARNING: if a function or expression returig&tring

and that value is not assigned tdmString variable or reference, and tfohar*) castis

used, it is possible (likely under g++) that théString temporary will be destroyed too

soon, leaving thehar* pointer pointing to garbage. Always assign tempoirgString to

InfString ~ variables or references before usingdha&* conversion. Thus, instead of

function_name(xxx ,(char*) functionReturninglnfString 0, wy);
one should use

InfString temp_name = (char*) functionReturningInfString 0;
function_name(xxx, temp_name, yyy);
This includes code like

strepy(destBuf , functionReturninglnfString 0);
which uses thehar* conversion implicitly.

11.2.1 InfString constructors and assignment operators

The default constructor makes an emipt@tring . There is also a copy constructor and six
single-argument constructors that can function as conversions from other typesitd- type
String ; they take arguments of the typéar, const char* , int, double, unsigned

int , andconst StringList& . There are also seven assignment operators corresponding to
these constructors: one that takesmst InfString& argument and also one for each of
the six standard typeshar, const char* , int, double, unsigned int , andconst
StringList&

Ptolemy Last updated: 10/9/97

11-4 I/O classes

11.2.2 Adding to InfStrings

There are seven functions that can add a printed representation of an argument to a InfString:

one each for arguments of tyganst InfString& , char, const char* ,int, double,
unsignedint , andconst StringList& . In each case, the function can be accessed in ei-
ther of two equivalent ways:

InfString& operator += (type arg);

InfString& operator << (type arg);

The second “stream form” is considered preferable; the “+=" form is there for backward
compatibility. If alnfString object is added, each piece of the addéstring is

added separately (boundaries between pieces are preserved); for the other five forms, a
single piece is added.

11.2.3 InfString information functions

int length() const;
Return the length in characters.

11.2.4 InfString conversion to char *

operator char* ();
This function joins all the substrings in timString into a single piece, a returns a
pointer to the resulting string. A null pointer is always returned if there are no characters.
Warning: as pointed out above, if this function is called on a tempmif&tying , itis
possible that the compiler will delete tinéString object before the last use of the
returnedchar* pointer. The result is that the pointer may wind up pointing to garbage.
The best work-around for such problems is to make sure thatf&mng object “has
a name” before this conversion is applied to it; e.g. assign the results of functions returning
InfString objects to localnfString variables or references before trying to convert
them.

char* newCopy() const;
This function makes a copy of th€String ’s text in a single piece ashar* in
dynamic memory. ThanfString object itself is not modified. This is useful when the
caller wishes to be responsible for deletion of the returned text.

11.2.5 InfString destruction and zeroing

void initialize();
This function deallocates all pieces of thiString and changes it to an empiy-
String

~InfString();
The destructor calls thitialize function.
11.2.6 Class InfStringlter

ClassinfStringlter Is a standard iterator that operatesntBtrings . However, thén-
fString class is not intended for use when access to the individual components of the string
is desired. Us6tringList for this.

U. C. Berkeley Department of EECS

The Almagest 11-5

11.3 Tokenizer, a simple lexical analyzer class

TheTokenizer class is designed to accept input for a string or file and break it up into tokens.

It is similar to the standard istream class in this regard, but it has some additional facilities. It
permits character classes to be defined to specify that certain characters are white space and
others are “special” and should be returned as single-character tokens; it permits quoted strings
to override this, and it has a file inclusion facility. In short, it is a simple, reconfigurable lexical
analyzerTokenizer has a public const data member nanfefivhite that contains the de-

fault white space characters: space, newline, and tab. It is possible to change the definition of
white space for a particular constructor.

11.3.1 Initializing Tokenizer objects
Tokenizer provides three different constructors:

Tokenizer();
The default constructor create¥a@kenizer that reads from the standard input stream,
cin. Its special characters are simply \key (and \key).

Tokenizer(istream& input ,const char* spec,
const char* w= defWhite);
This constructor createsTakenizer that reads from the stream namedrput. The

other arguments specify the special characters and the white space characters.

Tokenizer(const char* buffer ,const char* spec,
const char* w= defWhite);
This constructor createsTakenizer that reads from the null-terminated string in
buffer. Tokenizer ’s destructor closes any include files associated with the constructor
and deletes associated internal storage. The following operations change the definition of
white space and of special characters, respectively:

const char* setWhite(const char* w;

const char* setSpecial(const char* S);
In each case, the old value is returned. By default, the line comment charaCtéefor
izer is#. It can be changed by

char setCommentChar(char ny;
Use an argument of O to disable the feature. The old comment character is returned.

11.3.2 Reading from Tokenizers
The next operation is the basic mechanism for reading tokens frorkégzer

Tokenizer& operator >> (char* pBuffer);
HerepBuffer points to a character buffer that reads the token. There is a design flaw:
there isn’t a way to give a maximum buffer length, so overflow is a risk. By analogy with
streams, the following operation is provided:

operator void*();
It returns null ifEOFhas already been reached and non-null otherwise. This permits loops

Ptolemy Last updated: 10/9/97

11-6 I/O classes

like

Tokenizer tin;
while (tin) { ... do stuff ... }
int eof() const;

Returns true if the end of file or end of input has been reached dokiveézer . It is
possible that there is nothing left in the input but write space, so in many sitsatpns
white should be called before making this test.

void skipwhite();
Skip white space in the input.

void flush();
If in an include file, the file is closed. If at the top level, discard the rest of the current line.

11.3.3 Tokenizer include files

Tokenizer can use include files, and can nest them to any depth. It maintains a stack of in-
clude files, and aBOFis reached in each file, it is closed and popped off of the stack. The meth-
od

int fromFile(const char* name;
opens a new file and thekenizer will then read from that. When that file ends,
Tokenizer will continue reading from the current point in the current file.

const char* current_file() const;
int current_line() const;

These methods report on the file name and line number Wbleseizer is currently
reading from. This information is maintained for include files. At the top level,
current_file returns a null pointer, batrrent_line returns one more than the
number of line feeds seen so far.

int readingFromFile() const;
Returns true (1) if th&okenizer is reading from an include file, false (0) if not.

11.4 pt_ifstream and pt_ofstream: augmented fstream classes

The classest_ifstream andpt_ofstream are derived from the standard stream classes
ifstream andofstream , respectively. They are defined in the headeipfiléstream.h.

They add the following features: First, certain special “filenames” are recognized. If the file-
name used in the constructor orauen call iscin>, cout>, cerr>, orclog> (the angle
brackets must be part of the string), then the corresponding standard stream of the same name
is used for inputgt_ifstream) or output pt_ofstream). In addition, C standard 1/O fans

can specifystdin>, stdout>, or stderr> as well. Second, the PtolemypandPath-

Nameis applied to the filename before it is opened, permitting it to startuvitr or $VAR.

Finally, if a failure occurs when the file is open&dpor::abortRun is called with an ap-
propriate error message, including the Unix error condition. Otherwise these classes are iden-
tical to the standard ifstream and ofstream classes and can be used as replacements.

U. C. Berkeley Department of EECS

The Almagest 11-7

11.5 XGraph, an interface to the xgraph program

TheXGraph class provides an interface for ttygaph program for plotting data on an X win-
dow system display. The modifiedraph program provided with the Ptolemy distribution
should be used, not the contributed version from the X11R5 tape. The construg@rafar
does not completely initialize the object; initialization is completed bynitialize()

method:

void initialize(Block* parent ,int noGraphs ,
const char* options , const char* title
const char* saveFile =0,int ignore = 0);
Theparent argument is the name oBéock that is associated with théGraph object;
thisBlock is used irError::abortRun messages to report erroneGraphs specifies
the number of data sets that the graph will contain. Each data set is a separate stream and
is plotted in a different color (a different line style for B/W displagg}ions is a series
of command line options that will be passed unmodified tagleph program. It is sub-
ject to expansion by the Unix sheitle is the title for the graph; it can contain special
characters (it imot subjected to expansion by the Unix shedveFile is the name of a
file to save the graph data into, in ASCII form. If it is not given, the data are not saved, and
a faster binary format is usednore specifies the number of initial points to ignore from
each data set.

void setlgnore(int ny;
Reset the “ignore” parameter Ao

void addPoint(float)
Add a single point to the first data set whose X value is automatically generated (0, 1, 2,
3... on successive calls) and whose Y valye is

void addPoint(float X, float)
Add the point £, y) to the first data set.

void addPoint(int dataSet float X,float)
Add the point ¢, y) to the data set indicated bgitaSet. Data sets start with 1.

void newTrace(int dataSet =1);
Start a new trace for the nth dataset. This means that there will be no connecting line
between the last point plotted and the next point plotted.

void terminate();
This function flushes the data out to disk, closes the files, and invokegahle pro-
gram. If the destructor is called befogeminate, it will close and delete the temporary
files.

11.6 Histogram classes

The Histogram class accepts a stream of data and accumulates a histograxHistoe
gram class uses Histogram to collect the data and &Graph to display it.

Ptolemy Last updated: 10/9/97

11-8 I/O classes

11.6.1 Class Histogram
TheHistogram class accumulates data in a histogram. Its constructor is as follows:

Histogram(double width =1.0, int maxBins = HISTO_MAX_BINS);
The default maximum number of bins is 1000. The bin centers will be at integer multiples
of the specified bin width. The total width of the histogram depends on the data; however,
there will always be a bin that includes the first point.

void add(double X);
Add the pointx to the histogram.

int numCounts() const;
double mean() const;
double variance() const;
Return the number of counts, the mean, and the variance of the data in the histogram.

int getData(int binno ,int& count ,double& binCenter);
Get counts and bin centers by bin number, where 0 indicates the smallest binTRE&Irn
if this is a valid bin. Thus the entire histogram data can be retrieved by stepping from O to
the first failure.

11.6.2 Class XHistogram

An XHistogram object has a privatéGraph member and a privattistogram member. The
functions

int numCounts() const;
double mean() const;
double variance();

simply pass through to théistogram object, and

void addPoint(float V)
adds a point to the histogram and does other bookkeeping. There are two remaining meth-
ods:

void initialize(Block* parent ,double binWidth ,
const char* options , const char* title
const char* saveFile ,int maxBins = HISTO_MAX_BINS

This method initializes the graph and histogram obpegent is the parenBlock , used

for error messagesinWidth andmaxBins initialize theHistogram object.options

is a string that is included in the command line toxtitaph program; other options,
including-bar -nl -brw value are passed as wellle is the graph title, and
saveFile, if non-null, gives a file in which the histogram data is saved (this data is the
histogram counts, not the data that was input adttPoint).

void terminate();

This method completes the histogram, flushes out the temporary files, and executes
xgraph .

U. C. Berkeley Department of EECS

The Almagest 12-1

Chapter 12. Miscellaneous classes

Authors: Joseph T. Buck
Other Contributors: Yuhong Xiong
This section includes classes that did not fit elsewhere.

12.1 Mathematical classes

12.1.1 Class Complex

Class Complex is a simple subset of functions provided in the Gnu and AT&T complex classes.
The standard arithmetic operators are implemented, as are the assignment arithmetic operators
+=,-=,*=, and/=, and equality and inequality operatersand!=. There is alsoeal()

andimag() methods for accessing real and imaginary parts. It was originally written when
libg++ was subject to the GPL. The current licensing for libg++ does not prevent us from using

it and still distributing Ptolemy the way we want, but having it makes ports to other compilers
(e.g. cfront) easier. The following non-member functions take Complex arguments:

Complex conj(const Complex& arg);
double real(const Complex& arg);
double imag(const Complex& arg);
double abs(const Complex& arg);

Return the conjugate, real part, imaginary part, or absolute value, respectively.

double arg(const Complex& arg);
Return the angle between the X axis and the vector made by the argument. The expression
abs(z)*exp(Complex(0.,1.)*arg(z))
is in theory always equal to z.

double norm(const Complex& arg);
return the absolute value squared.

Complex sin(const Complex& arg);
Complex cos(const Complex& arg);
Complex exp(const Complex& arg);
Complex log(const Complex& arg);
Complex sqgrt(const Complex& arg);

Standard mathematical functiohsg returns the principal logarithm.
Complex pow(double base ,const Complex& expon);

xpon);
Raise base to expon power. There is also an operator to print a Complex on an ostream.

Ptolemy Last updated: 10/9/97

12-2 Miscellaneous classes

12.1.2 class Fraction

Class Fraction represents fractions. The hefadetion.h also provides declarations for the
lcm (least common multiple) argtd (greatest common divisor) functions, as these functions
are needed for Fraction but are generally useful.

Fraction ();

Fraction (int num int den=1);
The default constructor produces a fraction with numerator 0 and denominator 1. The
other constructor allows the numerator and denominator to be specified arbitrarily.

int num() const;
int den() const;
Return the numerator or denominator.

operator double() const;
Return the value of the fraction as a double. Class Fraction implements the basic binary
math operators, -, *, /; the assignment operators+=, -=, *=, and/=, and the
equality test operators= and!=. The method

Fraction& simplify();
reduces the fraction to lowest terms, and returns a reference to the fraction. There is also
an operator to print a Fraction on an ostream.

12.2 Class IntervalList

The IntervalList class represents a set of unsigned integers, represented as a series of intervals
of integers that belong to the set. It is built on top of a class Interval that represents a single
interval. There is also a text representation for IntervalLists. This representation can be used to
read or write IntervalList objects to streams, and also can be used in the IntervalList construc-
tor. This text representation looks exactly like the format the “rn” newsreader uses to record
which articles have been read in a Usenet newsgroup (which is where we got it from; thank
you, Larry Wall). In the text representation, an IntervalList is specified as one or more Inter-
vals, separated by commas. An Interval is either an unsigned integer or two unsigned intervals
with an intervening minus sign. Here is one possible IntervalList specification: 1-
1003,1006,1008-1030,1050 White space is not permitted in this representation. IntervalList
specifiers do not have to be in increasing order, but if they are not, they are changed to "canon-
ical form", in which any overlapping intervals are merged and the intervals are sorted to appear
in increasing order. An IntervalList is best thought of as a set of unsigned integers. Its methods
in many cases perform set operations: forming the union, intersection, or set difference of two
IntervallLists.

12.2.1 class Interval and methods

The Interval class is in some ways simply an implementation detail of class IntervalList, but
since its existence is exposed by public methods, it is documented here. An Intervairhas an
igin and alength, and represents the setiefgth unsigned integers beginning with

igin. It also has a pointer that can point to another Interval. The constructor

Interval(unsigned origin =0,unsigned length =0,

U. C. Berkeley Department of EECS

The Almagest 12-3

Interval* nxt =0);
permits all these members to be set. The copy constructor copies the origin and length val-
ues but always sets the next pointer to null. A third constructor

Interval(const Interval& i1 ,Interval* nxt);
permits a combination of a copy and a next-pointer initialization. The members

unsigned origin() const;
unsigned length() const;
return the origin and length values.

unsigned end() const;
Theend function returns the last unsigned integer that is a member of the Interval; 0 is
returned for empty Intervals. There are a number of queries that are valuable for building a
set class out of Intervals:

int isAfter(const Interval & i1) const;
isAfter returns true if this Interval begins after the end of inteival

int endsBefore(const Interval & i1) const;
endsBefore returns true if this Interval ends strictly before the origin of interval il.

int completelyBefore(const Interval & i1) const;
completelyBefore returns true iendsBefore is true and there is space between the
intervals (they cannot be merged).

int mergeableWith(const Interval& i1) const;
mergeableWith returns true if two intervals overlap or are adjacent, so that their union is
also an interval.

int intersects(const Interval& i1) const;
intersects returns true if two intervals have a non-null intersection.

int subsetOf(const Interval& i1) const;
subsetOf returns true if the argument is a subset of this interval.

void merge(const Interval& i1);
merge alters the interval to the result of merging it with It is assumed thamerge-
ablewith is true.

Interval& operator&=(const Interval& i1);
This Interval is changed to the intersection of itself and.of

12.2.2 IntervalList public members

IntervalList();
The default constructor produces the empty IntervalList.

IntervalList(unsigned origin ,unsigned length);

Ptolemy Last updated: 10/9/97

12-4 Miscellaneous classes

This constructor creates an IntervalList containamgth integers starting witlori-
gin.

IntervalList(const char* definition)
This constructor takes a definition of the IntervalList from the striragfinition,
parses it, and creates the list of intervals accordingly. There is also a copy constructor, an
assignment operator, and a destructor.

int contains(const Interval& i1) const;
Thecontains method returns 0 if no part éf is in the IntervallList, 1 if is com-
pletely contained in the IntervalList, and -11f is partially contained (has a non-null
intersection).

IntervalList& operator|=(const Interval& src);
Add a new interval to the interval list.

IntervalList& operator|=(const IntervalList& src));
Sets the IntervalList to the union of itself asid.

IntervalList operator&(const IntervalList& arg) const;
The binary& operator returns the intersection of its arguments, which are not changed.

IntervalList& subtract(const Interval& i1);
IntervalList& operator-=(const Interval& i1);
Subtract the Interval from the list. That is, any intersection is removed from the set.

Both thesubtract and-= forms are equivalent.

IntervalList& operator-=(const Intervallist & arg);
This one subtracts the argumang from the list (removes any intersection).

int empty() const;
ReturnTRUE(1) for an empty IntervalList, otherwiSALSE (0).

12.2.3 IntervalList iterator classes.

There are two iterator classes associated with IntervalList, IntervalListiter and CintervalListl-
ter. The only difference is that the latter iterator can be used with const IntervallList objects and
returns pointers to const Interval objects; the former requires a non-const IntervallList and re-
turns pointers to Interval. These objects obey the standard iterator interfawxtthe or ++
function returns a pointer to the next contained Intereakt goes back to the beginning.

12.3 Classes for interacting with the system clock

These classes provide simple means of interacting with the operating system’s clock — sleeping
until a specified time, timing events, etc. They may be replaced with something more general.
Class TimeVal represents a time interval to microsecond precision. There are two constructors:

TimeVal();
TimeVal(double seconds);

U. C. Berkeley Department of EECS

The Almagest 12-5

The first represents a time interval of zero. In the second casecthels argument is
rounded to the nearest microsecond. These classes rely on features found in BSD-based
Unix systems and newer System V Unix systems. Older System V systems tend not to
provide the ability to sleep for a time specified more accurately than a second.

operator double() const;
This returns the interval value as a double.

TimeVal operator +(const TimeVal& arg) const;
TimeVal operator -(const TimeVal& arg) const;
TimeVal& operator +=(const TimeVal& arg);
TimeVal& operator -=(const TimeVal& arg);

These operators do simple addition and subtraction of TimeVals.

int operator >(const TimeVal& arg) const;
int operator <(const TimeVal& arg) const;

These operators do simple comparisons of TimeVals.

Class Clock provides a simple interface to the system clock for measurement of actual elapsed
time. It has an internal TimeVal field that represents the starting time of a time interval.

Clock();
The constructor creates a Clock with starting time equal to the time at which the construc-
tor is executed.

void reset();
This method resets the start time to “now”.

TimeVal elapsedTime() const;
This method returns the elapsed time since thedast or the call to the constructor.

int sleepUntil(const TimeVal& howlLong) const;
This method causes the process to sleep hiLong after the start time.

Ptolemy Last updated: 10/9/97

12-6 Miscellaneous classes

U. C. Berkeley Department of EECS

The Almagest 13-1

Chapter 13. Overview of Parallel
Code Generation

Authors: Soonhoi Ha

This chapter describes the overall procedure of parallel code generation in Ptolemy. We start
with an SDF program graph and a multiprocessor target description. In the target definition, we
specify the number of processors and some information about the processors with target pa-
rameters. If the number of processor is given 1, it is classified as a sequential code generation
problem: a chosen SDF scheduler schedules the graph and code is generated based on the
scheduling result. Parallel code generation is a bit more complicated.

If the number of processor is greater than 1, we create an APEG (acyclic precedence
expanded graph) associated with the SDF program graph. The APEG graph displays all prece-
dence relations between invocations of the SDF stars. All parallel schedulers take this APEG
graph as an input graph and generate the schedule. In Ptolemy, we can have many scheduling
algorithms (currently 3), and choose one by setting the appropriate target parameters. There is
a common framework all parallel scheduling algorithm should be fit into . The scheduling
result indicates the assignment and the ordering of star invocations in the processors. The next
step is to generate code for each processor based on the scheduling result.

We create an SD&ub-universdor each processor. The sub-universe consists of stars
assigned to the processor and some other automatically inserted stars, for example send and
receive stars for interprocessor communication. We apply the sequential code generation rou-
tine for each processor with the associated sub-universe.

We may generate parallel code inside a wormhole so that the main workstation can
communicate with the target multiprocessor system. Then, the wormhole interface code
should be added to the generated code.

The following chapter will explain each steps in significant detail with code segments.

Ptolemy Last updated: 10/9/97

13-2 Overview of Parallel Code Generation

U. C. Berkeley Department of EECS

The Almagest 14-1

Chapter 14. APEG generation

Authors: Soonhoi Ha

Since all code generation domains depends on the SDF domain, and the same routine is needed
by a specialized loop scheduler in the SDF domain ($PTOLEMY/src/domains/sdf/loopSched-
uler), the source of APEG generation is placed in $PTOLEMY/src/domains/sdf/kernel.

An APEG graph (an ExpandedGraph class) consists of EGNodes and EGGates. Class
EGNode represents an object corresponding to an invocation of a DataFlowStar (DataFlow-
Star is a base class of SDFStar class). An EGNode has a list of EGGates. EGGate class is sim-
ilar to PortHole class in the respect that it is an object for connection between EGNodes.
Between two EGGates, there exists an EGArc object. All connections in an APEG graph is
homogeneous. If there is a sample rate change on an arc in the SDF program graph, the arc is
mapped to several homogeneous arcs. APEG generation routines are defined as member
methods of the ExpandedGraph class.

Refer to “Class ExpandedGraph” on page 14-5, for he main discussion of APEG gen-
eration.

14.1 Class EGArc

Class EGArc contains the information of (1) sample rate of the arc and (2) the initial delay on
the arc.

EGArc(int arc_samples ,intarc_delay);
The constructor requires two arguments for sample rate and the number of initial delays
on the arc.

int samples();

int delay();
These functions return the sample rate of the arc, and the initial delay on the arc. We can
increase the sample rate of the arc using the following method

void addSamples(int increments),
There is no protected members in Class EGArc.

14.2 Class EGGate

Class EGGate is a terminal in an EGNode for connection with other EGNodes. A list of EGG-
ates will become a member of EGNode, calleckstors ordescendants based on the di-
rection of connection.

14.2.1 EGGate public members

EGGate(EGNode* parent , PortHole*pPort);
Is a constructor. The first argument is the EGNode that this EGGate belongs to, and the

Ptolemy Last updated: 10/9/97

14-2 APEG generation

second argument is the corresponding porthole of the original SDF graph.

const PortHole* aliasedPort();

const char* name() const;
The above methods returns the corresponding porthole of the original SDF graph, the
name of the porthole.

int isltinput();
Returns TRUE or FALSE based on whether the corresponding porthole is an input or not.

void allocateArc(EGGate* dest ,intno_samples ,intno_delay);
The method creates a connection between this EGGate and the first argument by allocat-
ing an arc with information from the second and the third arguments. It should be called
once per connection.

int samples();
int delay();
void addSamples(int increments),

These methods call the corresponding methods of the EGArc class if an arc was already
allocated byallocateArc.

EGGate* farGate();

EGNode* farEndNode();

DataFlowStar* farEndMaster();

int farEndInvocation();
The above methods query information about the other side of the connection: EGGate,
EGNode, the original DataFlowStar that the EGNode points to, and the invocation number

of the EGNode.

StringList printMe();
It prints the information of the arc allocated: the sample rate and the initial delay.

void setProperty(PortHole* pPort , intindex);
This method sets the pointer to the corresponding porthole of the original SDF graph and
the index of the EGGate. Since multiple EGGates in an EGNode may be mapped to the
same porthole in the original SDF graph, we order the EGGates by indices.

void setLink(EGGateLink* p);

EGGateLink* getLink();
Since the list of EGGates is maintained as a derived class of DoubleLinkList, an EGGate
is assigned an EGGateLink that is derived from the DoubleLink class. These methods set
and get the assigned EGGateLink.

void hideMe(int flag);
If the initial delay is greater than or equal to the sample rate in an EGArc, the precedence
relationship between the source and the destination of the arc disappears while not remov-
ing the arc from the APEG. This method removes this EGGate from the access list of
EGGatesdncestors ordescendants), and stores it in the list of hidden EGGates

U. C. Berkeley Department of EECS

The Almagest 14-3

(hiddenGates) of the parent EGNode . If the argument flag is NULL, it calls the same
method for the EGGate of the other side of connection. By default, the flag is NULL.

virtual ~EGGate();
Is a virtual destructor that deletes the allocated arc, removes itself from the list of EGG-
ates.

14.2.2 Class EGGateList

This class, derived from DoubleLinkList, contains a list of EGGates. An EGGate is assigned
to an EGGateLink and the EGGatelList class accesses an EGGate through the assigned EGG-
ateLink.

The following ordering is maintained in the precedence list: entries for the same far-
end EGNode occur together (one after another), and they occur in order of increasing invoca-
tion number. Entries for the same invocation occur in increasing order of the number of delays
on the arc.

class EGGateLink

EGGateLink(EGGate* e);
The constructor has an argument for an EGGate.

EGGate* gate();
EGGateLink* nextLink();
These methods return the corresponding EGGate and the next link in the parent list.

void removeMeFromList();
Removes this link from the parent list.

EGGateList public members

Class EGGatelList has a default constructor.

void initialize();
This method deletes all EGGates in the list and initialize the list. It is called inside the
destructor.

DoubleLink* createLink(EGGate* e);
Creates an EGGateLink for the argument EGGate.

void insertGate(EGGate* e, intupdate);
This method insert a new EGGate into the proper position in the precedence list. The
update parameter indicates whether or not to update the arc data if an EGGate with the
same far-end EGNode and delay, already existpddte is 0, the argument EGGate will
be deleted if redundant. If 1, the arc information of the existing EGGate will be updated
(sample rate will be increased). When we insert an EGGate tie¢bendants list of
the parent EGNode, we sgidate to be 1. If the EGGate will be added to Hmees-
tors, the variable is set 0.

Ptolemy Last updated: 10/9/97

14-4 APEG generation

StringList printMe();
Prints the list of EGGates.

Iterator for EGGateList

Class EGGateLinklter is derived from class DoubleLinklter. The constructor has an argument
of the reference to a constant EGGatelL.ist object. It returns EGGates. This class has a special
method to return the next EGGate connected to afa®ndMaster that is different from

the argument DataFlowStar.

EGGate* nextMaster(DataFlowStar* master);

14.3 Class EGNode

Class EGNode is a node in an APEG, corresponding to an invocation of a DataFlowStar in the
original SDF graph. The constructor has two arguments: the first argument is the pointer to the
original Star of which it is an invocation, and the second argument represents the invocation
number. The default value for the invocation number is 1. It has a virtual destructor that does
nothing in this class.

An EGNode maintains three public lists of EGGatesestors, descendants,
andhiddenGates
14.3.1 Other EGNode public members
Invocations of the same DataFlowStar are linked together.

void setNextInvoc(EGNode* next);
EGNode* getNextinvoc();

EGNode* getlnvocation(int i)
void setlnvocationNumber(int i)

int invocationNumber();
The first two methods sets and gets the next invocation EGNode. The third method
searches through the linked list starting from the current EGNode to return the invocation
with the argument invocation number. If the argument is less than the invocation number
of the current EGNode, returns 0. The other methods sets and gets the invocation number
of the current EGNode.

void deletelnvocChain();
Deletes all EGNodes linked together starting from the current EGNode. This method is
usually called at the EGNode of the first invocation.

StringList printMe();

StringList printShort();
These methods print the name and the invocation number. In the first methodetie
tors anddescendants lists are also printed.

DataFlowStar* myMaster();
Returns the original DataFlowStar of which the current EGNode is an invocation.

int root();

U. C. Berkeley Department of EECS

The Almagest 14-5

This method returns TRUE or FALSE, based on whether this node is a root of the APEG.
A node is a root if it either has no ancestors, or if each arc in the ancestor list has enough
delay on it.

EGGate* makeArc(EGNode* dest , int samples , intdelay);
Create a connection from this node to the first argument node. A pair of EGGates and an
EGArc are allocated in this method. This EGNode is assumed to be the source of the con-
nection.

void resetVisit();

void beingVisited();

int alreadyVisited();
The above methods manipulates a flag for traversal algorithms: resets to 0, sets to 1, or
queries the flag.

void claimSticky();

int sticky();
These methods manipulates another flag to indicate that the invocations of the same Data-
FlowStar may not be scheduled into different processors since there is a strong interdepen-
dency between them. The first method sets the flag and the second queries the flag.

14.3.2 EGNodelList

Class EGNodelList is derived from class DoubleLinkList.

void append(EGNode* node);
void insert(EGNode* node);

These methods appends or inserts the argument EGNode to the list.

EGNode* takeFromFront();
EGNode* headNode();

The above methods both returns the first EGNode in the list. The first method removes the
node from the list while the second method does not.

There is a iterator class for the EGNodelList class, called EGNodelListlter. It returns the
EGNodes.

14.4 Class ExpandedGraph

Class ExpandedGraph has a constructor with no argument and a virtual destructor that deletes
all EGNodes in the graph.

The major method to generate an APEG is
virtual int createMe(Galaxy& galaxy ,intselfLoopFlag);
The first argument is the original SDF galaxy of which the pointer will be stored in a pro-
tected membemnyGal. The second argument enforces to make arcs between invocations
of the same star regardless of the dependency. The procedure of APEG generation is as
follows.

5. Initialize the APEG graph.

Ptolemy Last updated: 10/9/97

14-6 APEG generation

virtual void initialize();
Does nothing here, but will be redefined in the derived class if necessary.

6. Allocate all invocations (EGNodes) of the blocks in the original SDF graph. Keep
the list of the first invocations of all blocks in the protected memisters.

virtual EGNode *newNode(DataFlowStar* star ,intinvoc_index);

Is used to create an invocation of a DataFlowStar given as the first argument. The
second argument is the invocation number of the node. This method is virtual since
the derived ExpandedGraph class may have derived classes from the EGNode
class.

7. For each star in the original SDF graph,

(3-1) Make connections between invocations of the star if any one of the condi-
tions is met:selfLoopFlag is set in the second argument, the star has internal
states, the star accesses past values on its portholes, or the star is a wormhole. The
connection made in this stage does not indicate the flow path of samples, but the
precedence relation of two EGNodes. Therefore, EGGates associated with this
connection are not associated with portholes in the original SDF graph. If the con-
nections are made, tleimSticky ~ method of EGNode class is called for each
invocation EGNode. If any such connection is made, the APEG is said not-paral-
lelizable as a whole: A protected memiparallelizable, is set FALSE.

(3-2) For each input porthole, get the far-side output porthole and make connec-
tions between invocations of two DataFlowStars. A connection in the original SDF
graph may be mapped to several connections in the APEG since the APEG is
homogeneous.

8. Find the root nodes in the APEG and stored in its protected memibess.
void insertSource(EGNode* node);

Inserts the argument EGNode into the sourceskisirces, of the graph.
All protected members are explained above.

14.4.1 Other ExpandedGraph public members

int numNodes();
This method returns the number of total nodes in the APEG.

virtual StringList display();
Displays all EGNodes by callingintMe method of EGNode class.

virtual void removeArcsWithDelay();
This method hide all connections that have delays on them. When an APEG is created, the
number of initial delays on an arc, if exists, is always greater than or equal to the sample
rate of the arc. Therefore, this method is used to make the APEG actually acyclic.

U. C. Berkeley Department of EECS

The Almagest 14-7

14.4.2 lterators for ExpandedGraph

There are three types of iterators associated with an ExpandedGraph: EGMasterlter, EGSour-
celter, and EGlter. As its name suggests, EGMasterlter returns the EGNodaseis list

of the graph. EGSourcelter returns the EGNodasurces list of the graph. Finally, EGlter
returns all EGNodes of the ExpandedGraph.

EGMasterlter and EGSourcelter are derived from EGNodelListlter. EGlter, however, is
not derived from any class. Instead, EGlter uses EGMasterlter to get the first invocation of
each DataFlowStar in the original SDF graph and traverse the linked list of invocations. Thus
invocations are traversed master by master.

Ptolemy Last updated: 10/9/97

14-8 APEG generation

U. C. Berkeley Department of EECS

The Almagest 15-1

Chapter 15. Parallel Schedulers

Authors: Soonhoi Ha

Base classes for parallel schedulers can be fours#®TIOLEMY/src/domains/cg/par-

Scheduler . All parallel schedulers use an APEG as the input. The APEG for parallel sched-
ulers is called ParGraph, which is derived from class ExpandedGraph. Class ParNode, derived
from class EGNode, is a node in a ParGraph.

The base scheduler object is ParScheduler. Since it is derived from class SDFSched-
uler, it inherits many methods and members from the SDFScheduler class. The ParScheduler
class has a ParProcessors class that has member methods to implement the main scheduling
algorithm. The ParProcessors class has an array of UniProcessor classes. The UniProcessor
class, privately derived from class DoubleLinkList, is mapped to a processing element in the
target architecture.

Note that all parallel scheduling algorithms are retargettable: they do not assume any
specific topology while they take the effect of topology into account to estimate the interpro-
cessor communication overhead.

Refer to class ParScheduler, to see the overall procedure of parallel scheduling. Refer
to class UniProcessor, to see the procedure of sub-universe generations.

15.1 ParNode

This class represents a node in the APEG for parallel schedulers, thus contains additional mem-
bers for parallel scheduling besides what are inherited from class EGNode. It has the same two-
argument constructor as class EGNode.

ParNode(DataFlowStar* Mas, int invoc_no);
Initializes data members. If the argument star is at the wormhole boundary, we do not par-
allelize the invocations. Therefore, we create precedence relations between invocations by
callingclaimSticky ~ of EGNode class in the constructor. If this constructor is called, the
type protected member is set O.

The ParNode class has another constructor with one argument.
ParNode(int type);
The scheduling result is stored in UniProcessor class as a list of ParNodes. This construc-
tor is to model idle timetype = 1), or communication timeype = -1 for sending time,
type = -2 for receiving time) as a ParNodk initializes data members.

15.1.1 ParNode protected members

int StaticLevel;
Is set to the longest execution path to a termination node in the APEG. It defines the static
level (or priority) of the node in Hu's scheduling algorithm. Initially it is set to O.

Ptolemy Last updated: 10/9/97

15-2 Parallel Schedulers

int procld
Is the processor index on which this ParNode is scheduled. Initially it is set to O.

int scheduledTime;
int finishTime;
Indicate when the node is scheduled and finished, respectively.

int exTime;
Is the execution time of the node. If it is a regular nagee(= 0), it is set to the execu-
tion time of the original DataFlowStar. Otherwise, it is set to 0.

int waitNum;
Indicates the number of ancestors to be scheduled before scheduling this node. during the
scheduling procedure. Initially it is set to 0. At a certain point of scheduling procedure, we
can schedule a ParNode only when all ancestors are already assigvetNwn is O.

EGNodelList tempAnNcs;

EGNodelList tempDescs;
These list members are copies of the ancestors and descendants of the node. While EGG-
ateLists,ancestors anddescendants, may not be modified during scheduling proce-
dure, these lists can be modified.

15.1.2 Other ParNode public members

void assignSL(int SL);

int getSL();

virtual int getLevel();
The first two methods set and get SieaticLevel member. The last one returns the pri-
ority of the node, which is justaticLevel by default. In the derived classes, this
method can be redefined, for example in Dynamic Level Scheduling, to return the
dynamic level of the node.

int getType();
Returns the type of the node.

void setProcld(int i);
int getProcld();
These two methods set and getiiheeld member.

void setScheduledTime(int i);

int getScheduledTime();

void setFinishTime(int i);

int getFinishTime();
These methods are used to set or get the time when the node is scheduled first and fin-
ished.

void setExTime(int i);
int getExTime();
These methods are used to set and get the execution time of the node.

U. C. Berkeley Department of EECS

The Almagest 15-3

void resetWaitNum();
void incWaitNum();
Resets thevaitNum variable to the number of ancestors, and increases it by 1.

int fireable();
This method decrease&itNum by one, and returfRUEor FALSE, based on whether
waitNum reaches zero or not. If it reaches 0, the node is declared "fireable".

void copyAncDesc(ParGraph* g, intflag);
void removeDescs(ParNode* ny;

void removeAncs(ParNode* ny;

void connectedTo(ParNode* to);

The first method initializes the lists of temporary ancestors and descenelaptscs
andtempDescs, fromancestors anddescendants that are inherited members from
EGNode class. LigempAncs is sorted smallestaticLevel first while listtemp-

Descs is sorted largestaticLevel first. The first argument is necessary to call the
sorting routine which is defined in the ParGraph class . By virtue of sorting, we can
traverse descendant with larggaticLevel first. If the second argument is not 0, we
switch the lists: copgncestors totempDescs anddescendants totempAncs.

The second and the third methods remove the argument node from the temporary
descendant list or from the temporary ancestor list. In the latter case, we deaitdase by
one.

The last method above is to make a temporary connection between the node as the
source and the argument node as the destination. The temporary descendant list of the current
node is added the argument node while the temporary ancestor list of the argument node is
added the current node (also increas@Num of the argument node by 1).

CGStar* myStar();
Returns the original DataFlowStar after casting the type to CGStar, star class type of the
CG domain.

int amiBig();
ReturnsTRUEoOr FALSE, based on whethenyStar is a wormhole or not. Before the
scheduling is performed in the top-level graph, the wormhole executes scheduling the
inside galaxy and stores the scheduling results in the Profile object . The ParNode keeps
the pointer to the Profile object if it is an invocation of the wormhole. In the general con-
text, the node will be considered "Big" if the master star can be scheduled onto more than
one processors. Then, the star is supposed to keep the Profile object to store the schedules
on the processors. A wormhole is a special case of those masters.

void setOSOPflag(int i);

int isOSOP();
After scheduling is performed, we set a flag to indicate whether all invocations of a star
are assigned to the same processor or not, using the first method. The second method que-
ries the flag. Note that only tHiest invocation has the valid information.

Ptolemy Last updated: 10/9/97

15-4 Parallel Schedulers

void setCopyStar(DataFlowStar* S, ParNode* prevN);
DataFlowStar* getCopyStar();

ParNode* getNextNode();

ParNode* getFirstNode();

int numAssigned();

The above methods are used to create sub-universes . When we create a sub-universe, we
make a copy of the master star if some invocations are assigned to the processor. Then,
these invocations keep the pointer to the cloned star. Since all invocations may not be
assigned to the same processor, we maintain the list of invocations assigned to the given
processor. The first and second methods set and get the pointer to the cloned star. The first
method also make a chain of the invocations assigned to the same processor. The third
method returns the next invocation chained from the current node, while the fourth method
returns the starting invocation of the chain. The last method returns the total number of
invocations in the chain. It should be called at the starting invocation of the chain.

void setOrigin(EGGate* 9);

EGGate* getOrigin();

void setPartner(ParNode* ny;

ParNode* getPartner();
These methods manipulate the connection information of communication nodes. If two
adjacent nodes in an APEG are assigned to two different processors, we insert communi-
cation nodes between them: Send and Receive nodes. As explained earlier, a communica-
tion node is created by one-argument constructor. The first two methods are related to
which EGGate the communication node is connected. The last two methods concern the
other communication node inserted.

15.1.3 lterators for ParNode

There are two types of iterators associated with ParNode class: ParAncestorlter, ParDescen-
dantlter. As their names suggest, ParAncestorlter class returns the ParNodes in the temporary
ancestor listttmpAncs), and ParDescendantlter class returns the ParNodes in the temporary
descendant listémpDescs).

15.2 Class ParGraph

Class ParGraph, derived from class ExpandedGraph, is an APEG graph for parallel schedulers.
It has a constructor with no argument.

int createMe(Galaxy& g, int selfLoopFlag = 0);
Is the main routine to create and initialize the APEG of the argument Galaxy.ddsing
ateMe method of the ExpandedGraph class, it creates an APEG. After that, it resets the
busy flags of the ParNodes, and calls

virtual int initializeGraph();
This is a protected method. It performs 4 main tasks as follows. (1) Call a protected
methodremoveArcsWithDelay ~ to remove the arcs with delays, and to store the source
and the destination nodes of each removed arc into the list of NodePairs . The list is a pro-
tected member, nameddePairs of SequentialList class.

U. C. Berkeley Department of EECS

The Almagest 15-5

void removeArcsWithDelay();
SequentialList nodePairs;

(2) For each node, compute the static leS<{cLevel) by calling a protected method
SetNodeSL.

int SetNodeSL(ParNode* ny;
(3) Sum the execution times of all nodes and save the total execution time to a protected
memberExecTotal.

int ExecTotal;
(4) Assign the larger static level than any other nodes to the nodes at the wormhole bound-
ary. This let the parallel scheduler schedules the nodes at the wormhole boundary first.

15.2.1 Other ParGraph protected members

EGNode* newNode(DataFlowStar*, int);
Redefines the virtual method to create a ParNode associated with the given invocation of
the argument star.

ostream* logstrm;
This is a stream object for logging information.

15.2.2 Other ParGraph public members

EGNodelList runnableNodes;

void findRunnableNodes();
The list of runnable (or fireable) nodes are storedrinableNodes. The above method
is to initialize the list with all root ParNodes.

int getExecTotal();
Galaxy* myGalaxy();

Returns the total execution time of the graph and the original graph.

void setlLog(ostream* 1);
Sets the stream objdotystrm.

void replenish(int flag);
This method initialize the temporary ancestor list and descendant list of all ParNodes in
the graph.

void sortedinsert(EGNodeList& |, ParNode™n, int flag);
Insert a ParNode, into the EGNodeList, in sorted order. It sorts nodes of highest
StaticLevel firstif flag =1, or lowesStaticLevel firstif flag =0.

void restoreHiddenGates();
This method restores the hidden EGGates frmnoveArcsWithDelay method to the
initial list, eitherancestors ordescendants of the parent node.

int pairDistance();

After scheduling is completed, it is supposed to return the maximum scheduling distance

Ptolemy Last updated: 10/9/97

15-6 Parallel Schedulers

between node pairs modePairs list. Currently, however, it just returns -1, indicating
the information is not available.

~ParGraph();
The destructor initializes thedePairs list.

15.2.3 Class NodePair
Class NodePair saves the source and the destination ParNodes of an arc.

NodePair(ParNode* src , ParNode*dest);

ParNode* getStart();

ParNode* getDest();
The constructor requires two arguments of the source and the destination nodes, while the
next two methods return the node.

15.3 Class ParScheduler

Class ParScheduler is derived from class SDFScheduler, thus inherits the mostsparnts of
method. They include initialization of galaxy and computation of the repetition counters of all
stars in the SDF graph. It redefines the scheduling part of the set-upcstagetéSched-

ule).

int computeSchedule(Galaxy& 9);
Is a protected method to schedule the graph with given number of processors. The proce-
dureis

(1) Let the target class do preparation steps if necessary before scheduling begins.

(2) Check whether the number of processors is 1 or not. Ifitis 1, we use the single pro-
cessor schedulingsSDFScheduler :: computeSchedule). After we set the target pointer of
each star, return.

(3) Form the APEG of the argument galaxy, and set the total execution time of the
graph to a protected memhetalWork.

(4) Set the target pointer of each UniProcessor class .
void mapTargets(IntArrayarray = 0);

If no argument is given, assign the child targets to the UniProcessors sequentially. If
the IntArray argument maps the child targets to the UniProcessors. If array[1] = 2, UniProces-
sor 1 is assigned Target 2.

(5) Before the main scheduling begins, complete the profile information of worm-
holes. Since we may want to perform more tasks before scheduling, make this protected
method virtual. Be default, retuffRUEto indicate no error occurs.

virtual int preSchedule();
(6) Perform scheduling by callingainSchedule.

int mainSchedule();
This public method first checks whether manual assignment is requested or not. If it is, do

U. C. Berkeley Department of EECS

The Almagest 15-7

manual assignment. Otherwise, call an automatic scheduling routine which will be rede-
fined in each derived class, actual scheduling class. After scheduling is performed, set the
procld parameter of the stars in the original galaxy if all invocations are enforced to be
assigned to the same processor .

int assignManually();
Is a protected method to returRUEIf manual assignment is requested, or reRADSE
otherwise.

virtual int scheduleManually();
Is a public virtual method. This method first checks whether all stars are assigned to pro-
cessorsfrocld parameter of a star should be non-negative and smaller than the number
of processors). If there is any star unassigned, reALBE. All invocations of a star is set
the samerocld parameter. Based on that assignment, perform the list scheduling . The
procld of a Fork star is determined by its ancestor. If the ancestor is a wormhole, the
procld of the Fork should be given explicitly as other stars.

virtual int schedulelt();
Is a public virtual method for automatic scheduling. Refer to the derived schedulers. By
default, it does nothing and retlfALSE to indicate that the actual scheduling is not done
in this class.

int OSOPreq();
Is a protected method to returRUEor FALSE, based on whether all invocations are
enforced to be scheduled on the same processor.

Now, all methods necessary for step (5) are explained. Go back to the next step.

(7) As the final step, we schedule the inside of wormholes based on the main schedul-
ing result if automatic scheduling option is taken. In the main scheduling routine, we will
determine how many processors will be assigned to a wormhole.

int finalSchedule();
If scheduling of wormholes succeeds, retiRUE Otherwise, returRALSE

15.3.1 compileRun method

void compileRun();
Is a redefined public method of SDFScheduler class. It first checks the number of proces-
sors. If the number is 0, it just ca®FScheduler :: compileRun. This case occurs
inside a wormhole. Otherwise,

(1) Set the target pointer of UniProcessors.

(2) Create sub-universes for each processors.
int createSubGals(Galaxy& 9);
Is a public method. It first checks whether all invocations of stars are scheduled on the
same processor, and set the flag if it is the case. After restoring all hidden EGGates of the
APEG, create sub-universes.

Ptolemy Last updated: 10/9/97

15-8 Parallel Schedulers

(3) Prepare each processor (or UniProcessor class) for code generation. It includes
sub-universe initialization, and simulation of the schedule on the processor obtained from the
parallel scheduling.

(4) Let the target do something necessary, if any, before generating code.
(5) Generate code for all processors.

15.3.2 Other ParScheduler protected members

const char* logFile;

pt_ofstream logstrm_real;

ostream* logstrm;
These are for logging informatiolegFile indicates where to store the logging informa-
tion.

MultiTarget* mtarget;
Is the pointer to the target object, which is MultiTarget type.

int numProcs;
Is the total number of processors.

ParGraph *exGraph
Is the pointer to the APEG used as the input graph to the scheduler.

ParProcessors* parProcs;
This member points the actual scheduler object. It will be set up srtbipProcs
method of the derived class.

IntArray avalil;
This array is to monitor the pattern of processor availability during scheduling.

int inUniv;
This flag is seTRUEwhen it is the scheduler of a universe, not a wormhole. In the latter
case, it is sefALSE. By default, it is SeTRUE

int withParallelStar();
This method returnSRUEOr FALSE, based on whether the galaxy contains any wormhole
or data-parallel star, or not.

int overrideSchedule();
If the user wants to override the scheduling result after automatic scheduling, he can set
theadjustSchedule parameter of the target object. This method pokes the value of that
parameter. This is one of the future feature, not implemented yet in Ptolemy due to limita-
tion of the graphical interface, pigi.

15.3.3 Other ParScheduler public members

ParScheduler(MultiTarget* t, const charfog =0);
virtual ~ParScheduler();
The constructor has two arguments: the target pointer and the name of log file name. The

U. C. Berkeley Department of EECS

The Almagest 15-9

virtual destructor does nothing.

virtual void setUpProcs(int num;
The number of processors is given as an argument to this method. It will initialize the
avail array. In the derived class, this method will create a ParProcessors class (set
Procs member).

ParProcessors* myProcs();
UniProcessor* getProc(int ny;

These methods will return the pointer to the ParProcessors object associated with this
scheduler and the UniProcessor object indexed by the argument. The range of the index is
0 tonumProcs-1.

void ofWorm();
ResetsnUniv flag toFALSE

int getTotalWork();
Returns the total execution time of the graph.

void setProfile(Profile* profile);
Copy the scheduling results to the argument Profile . If the scheduling is inside a worm-
hole, the scheduling results should be passed to the outside of the wormhole by a Profile
object.

15.4 class ParProcessors

Class ParProcessors is the base class for all actual scheduler object. Refer to derived classes to
see how scheduling is performed. This class just provide the set of common members and
methods. Among them, there is a list scheduling routine.

int listSchedule(ParGraph* graph);
This method performs the list scheduling with the input argument APEG. It should be
called after all nodes are assigned to the processors. It is the last routine to be called for all
parallel schedulers. It adds communication nodes to the AREIGgmmNodes) and
schedule them with the regular ParNodes. It returns the makespan of the schedule.

void findCommNodes(ParGraph* graph);
This method puts a pair of communication ParNodes, a send node and a receive node, on
the arc between two nodes assigned to the different processors. Note thateae use
pAncs andtempDescs list of ParNode class to insert these nodes instead of modifying
the APEG. We store the newly created communication ParNo&inmNodes. The
procedure consists of two stages. In the first stage, all regular arcs in the APEG are consid-
ered. ThestaticLevel of the send node is assigned to that of the source node plus one
to ensure that the send node is scheduled right after the source node. The static level of the
receive node is assigned to the same value as the destination node. In the second stage, all
hidden arcs are considered. In this caseSthticLevel of communication nodes are
assigned to 1, the minimum value since they may be scheduled at the end of the schedule.
The number of interprocessor requirements are saved in a protected neember,

Ptolemy Last updated: 10/9/97

15-10 Parallel Schedulers

mCount.

int getMakespan();
Returns the longest scheduled time among all UniProcessors.

15.4.1 Other ParProcessors protected members

int numProcs;
MultiTarget* mtarget;
EGNodeList SCommNodes;
These members specify the number of processors, the pointer to the multiprocessor target

class, and the list of communication nodes added dlisiSghedule.

IntArray pindex;
Is used to access the processors in the order of available time.

void scheduleParNode(ParNode* node);
This method schedules a parallel node (a wormhole or a data-parallel star) inside the
listSchedule method. Note that the processors are already assigned for the node.

virtual ParNode* createCommNode(int i);
Is a virtual method to create a ParNode with type given as an argument. It is virtual since
the derived scheduler may want to create a node of derived class of ParNode.

void removeCommNodes();
Clears thesCommNodedist.

void sortWithAvailTime(int guard);
Sort the processors with their available times unless no node is assigned to the processor.
All idle processors are appended after the processors that are avaitalide/atime and
before the processor busygatard time. Store the results ppndex array.

int OSOPreq();
ReturnsTRUEoOr FALSE, based on whether all invocations of a star are enforced to be
scheduled on the same processor or not.

15.4.2 Other ParProcessors public members

ParProcessors(int , MultiTarget®);

virtual ~ParProcessors();
The constructor has two arguments: the number of processors and the target pointer. It cre-
atespindex array and initialize other data structures. The destructor G€aramN-
odes.

void mapTargets(IntArray* array);
void prepareCodeGen();
void createSubGals();
void generateCode();
The above methods perform the actual action defined in the ParScheduler class. For

description, refer to class ParScheduler. The last method deliver the generate code from

U. C. Berkeley Department of EECS

The Almagest 15-11

each processor to the target class.

int size();
returns the number of processors.

virtual UniProcessor* getProc(int num;
This method returns the UniProcessor with a given index. It is virtual since the derived
class wants to return it own specific class derived from UniProcessor class.

void initialize();
Initializespindex, SCommNodes, and processors.

StringList display(NamedObj* gal);

StringList displaySubUnivs();
These methods return the StringList contains the scheduling result and the sub-universe
description.

ParNode* matchCommNodes(DataFlowStar*, EGGate*, PortHole);
This method is used in sub-universe generation. The first argument is a communication
star, either a send star or a receive star, that the system automatically inserts for interpro-
cessor communication. The second argument is the EGGate that the interprocessor com-
munication (IPC) occurs. If the second argumentUsL, the third argument indicates the
porthole that the IPC occurs. In case all invocations of any star are assigned to the same
processor, the sub-universe creation procedure is greatly simplified: we do not need to
look at the APEG, rather look at the original SDF graph to create the sub-universe. It is the
case when the second argument becaws. This method sets the pointer of the com-
munication star to the corresponding ParNode that are inserted liki8nigedule
method.

15.5 UniProcessor

Class UniProcessor simulates a single processing element, or a processor. It is derived from
class DoubleLinkList to hold the list of ParNodes from parallel scheduling. Class NodeSched-
ule is derived from class DoubleLink to register a ParNode into the DoubleLinkList.

A UniProcessor keeps two target pointers: one for multiprocessor tautgede(),

and the other for the processtardetPtr). They are both protected members.
MultiTarget* mtarget;
CGTarget* targetPtr;

The pointer to the processor can be obtained by a public method:

CGTarget* target();
The pointers to the multiprocessor target and to the ParProcessors class that this UniPro-
cessor belongs to, are set by the following method:

void setTarget(MultiTarget* t, ParProcessory);

Ptolemy Last updated: 10/9/97

15-12 Parallel Schedulers

15.5.1 Class NodeSchedule

A NodeSchedule is an object to link a ParNode to a linked list. It indicates whether the node
represents an idle time slot or not. It also contains the duration of the node. There is no protect-
ed member in this class.

void resetMembers();

void setMembers(ParNode* n, intdur);
These methods set the information for the associated node: the pointer to the node, dura-
tion, and a flag to tell whether it is an idle node or not. In the first method, the idle flag is
SsetFALSE The constructor also resets all internal information of the class.

ParNode getNode();
int getDuration();
int isldleTime();
The above methods return the pointer to the node associated with this class, its duration,

and the flag to sayRUEIf it represents an idle time slot.

NodeSchedule* nextLink();
NodeSchedule* previousLink();
These methods return the next and the previous link in the linked list.

15.5.2 Members for scheduling

Since a list scheduling (with fixed assignment) will be performed as the last stage of all sched-
uling algorithms in Ptolemy , basic methods for list scheduling are defined in the UniProcessor
class. In list scheduling, we need the available time of the processor.

int availTime;
Is a protected member to indicate the time when the processor available. There are public
methods to access this member:

void setAvailTime(int t);
int getAvailTime();
NodeSchedule* curSchedule;
This protected member points to the NodeSchedule appended last to the linked list. There

are two public methods to access a NodeSchedule:

NodeSchedule* getCurSchedule();

NodeSchedule* getNodeSchedule(ParNode* ny;
The first method just returrsrSchedule member while the second one returns the
NodeSchedule associated with the argument ParNode.

When a ParNode is runnable earlier than the available time of the processor, we want to
check whether there is an idle slot befavailTime to fit the ParNode in the middle of
the schedule:

int filledinidleSlot(ParNode*, int Start ,int limit =0);

The first two arguments are the pointer to the ParNode to be scheduled and the earliest
time when the node can be scheduled. Without the third argument given explicitly, this

U. C. Berkeley Department of EECS

The Almagest 15-13

method returns the earliest time that the processor is available to schedule the node. If the
third argument is given, the available time of the processor should be legsithan If

this method could not find an idle slot to schedule the node, it returns -1. Otherwise, it
returns the possible scheduling time of the node.

int schedInMiddle(ParNode* n, int when, int);
Schedule the node, atwhen inside an idle-time slot of the processor. The third argu-
ment indicates the duration of the node. This method returns the completion time of the
schedule if scheduling is succeeded. If it fails to find an idle-time sigieat to accom-
modate the node, it returns -1.

If a node is to be appended at the end of the schedule in a processor,
void appendNode(ParNode* n, int val);
Does that blindly. To schedule a non-idle node, we have to use

int schedAtEnd(ParNode* n, int start ,int leng);
In casestart is larger than the processor available time, this method put an idle time slot
in the processor and callppendNode. And, it sets the schedule information of the
node, and increasesailTime of the processor.

void addNode(ParNode* node, int start);
This method is given a ParNode and its runnable time, and schedule the node either inside
an idle time slot if possible, or at the end of the schedule list. The methods described
above are used in this method.

void scheduleCommNode(ParNode* n, int start);
When we schedule the given communication nadegvailable aktart, we also have
to check the communication resource whether the resources are available or not. For that
purpose, we detect the time slot in this processor to schedule the node, and check whether
the same time slot is available in the communication resources: wehaegaleComm of
the multiprocessor target to check it. If we find a time slot available for this processor and
the communication resources, we schedule the communication node.

int getStartTime();
Returns the earliest time when the processor is busy.

All methods described in this sub-section are public.

15.5.3 Sub-Universe creation

After scheduling is performed, a processor is given a set of assigned ParNodes. Using the

scheduling result, we will generate code for the target processor. To generate code for the as-
signed nodes, we need to allocate resources for the nodes and examine the connectivity of the
nodes in the original graph. These steps are common to the generic routine for single processor
code generation in which a processor target is given a galaxy. Therefore, we want to create a
sub-galaxy that consists of stars of which any invocation is assigned to the processor. Note that
a sub-galaxy is NOT a subgraph of the original SDF graph. Besides the stars in the original pro-

gram graph, we include other stars such as communication stars and spread/collect stars. This

Ptolemy Last updated: 10/9/97

15-14 Parallel Schedulers

subsection will explain some details of sub-universe creation.

void createSubGal();
Is the main public method for sub-universe creation. It first creates a galaxy data structure,

subGal, a private member. Then, it clones stars of at least one of whose invocations is
assigned to the processor. Make a linked list for all assigned invocations (nodes) of each
star in order of increasing invocation number, and set the pointer of cloned star. As for a
wormhole, we create a CGWormStar instead of cloning the wormhole. A CGWormStar
class will replace a wormhole in the sub-universe. If an original star is not supported by
the processor target (for example, with heterogeneous scheduling), we create a star with
the same name as the original star in the target domain.

In the next step, we connect the cloned stars by referring to the original galaxy. If a star
is at the wormhole boundary in the original graph, we connect the cloned star to the same
event horizon; by doing so the wormhole in the original graph is connected to the sub-uni-
verse. If the star at the wormhole boundary is scheduled on more than one processors (or not
all invocations are assigned to the same processor), the wormhole in the original graph will be
connected to the last created sub-universe.

If an arc connects two stars who have some invocations assigned to the same proces-
sor, we examine whether all of the two stars’ invocations are assigned to the same processor. If
they are, we just connect the cloned stars in the sub-universe. If they aren’t, we have a cloned
star of either one star whose invocations are assigned to the current sub-universe. In this case,
we create a send standateSend method of the multiprocessor target) or a receive star
(createReceive of the target), based on whether the cloned star is a source or destination of
the connection . We create a communication star and set the communication star pointer of the
communication nodes in the APEG , lagtchCommNodes method of ParProcessors class. If
the partner communication star was already created in another sub-universe, we pair the send
and receive stars tpairSendReceive method of the multiprocessor target .

The last case is when an arc connects two stars whose invocations are distributed over
more than one processor. If no invocation of the destination star is assigned to this processor,
we call the makeBoundary method.

void makeBoundary(ParNode* src , PortHole* orgP);
The first argument points to the earliest invocation of the star assigned to this processor,
and the second is the pointer to the output porthole in the original SDF graph as the source
of the connection. We examine all assigned invocations to check whether the destination
invocations are assigned to the same processor. If they are, we create one send star and
connect it to the cloned star. Otherwise, we create a Spread star to distribute the output
samples to multiple processors. We connect the cloned star to the Spread star, and the
Spread star to multiple send stars.

Otherwise, we call thmakeConnection method.

void makeConnection(ParNode* dest ,ParNode * src , PortHole * ref , ParNode *
firstS);
The first argument is the pointer to the first assigned invocation of the destination star

U. C. Berkeley Department of EECS

The Almagest 15-15

while the second one is the source node connected to the first argument. The third argu-
ment is the pointer to the destination porthole of the connection in the original graph. The
last argument is the pointer to the first invocation of the source star. Note that the last argu-
ment node may not be assigned to the current processor. This method examines all
assigned invocations of the destination star to identify the sources of the samples to be
consumed by the cloned star in this processor. If the number of sources are more than one,
we create a Collect star and connect the Collect star to the cloned destination star in the
sub-universe. For each source in the other processors, we create a receive star and connect
it to the Collect star. Similarly, we examine all assigned invocations of the source star to
identify the destinations of the samples to be produced by the source star in this processor.
If the number of destinations is more than one, we create a Spread star and connect it to
the source star. For each destination in the other processors, we create a send star and con-
nect it to the Spread star. As a result, it may occur that to connect two stars in the sub-uni-
verse, we need to splice a Spread and a Collect star on that connection.

Spread and Collect stars

A Spread or a Collect star is createdchsateSpread or createCollect method of the
multiprocessor target. The following illustrates when we need to create a Spread or a Collect
star in a sub-universe.

Suppose we have star A connected to star B in original graph. Star A produces two
samples and star B consumes one. Then, one invocation of star A is connected to two invoca-
tions of star B. If one invocation of star A and only one of invocation of star B are assigned to
the current processor. Then, we need to connect the cloned stars of A and B in the sub-uni-
verse. We can not connect stars A and B in the sub-universe directly since among two samples
generated by star A, one sample should be transferred to another processor through a send
star. In this case, we connect a Spread star to star A, and one send star and star B to the Spread
star in the sub-universe. Then, star A produces two samples to the Spread star while the
Spread staspreadthe incoming two samples to the send star and star B one sample each. The
number of output portholes and the sample rate of each porthole are determined during the
sub-universe creation. If there is no initial delay on the connection and neither star A nor B
needs to access the past samples, the Spread star does not imply additional copying of data in
the generated code.

Similarly, we need to connect a Collect star to the destination star if samples to that
star come from more than one sources.

15.5.4 Members for code generation

void prepareCodeGen();
This method performs the following tasks before generating code.

(1) Initialize the sub-universe, which also initialize the cloned stars.

(2) Convert a schedule (or a linked list of ParNodes) obtained from the parallel sched-
uler to a SDFSchedule class format (list of stars). The code generation routine of the processor
target assumes the SDFSchedule class as the schedule output.

(3) Simulate the schedule to compute the maximum number of samples to be collected

Ptolemy Last updated: 10/9/97

15-16 Parallel Schedulers

at runtime if we follow the schedule. This information is used to determine the buffer size to
be allocated to the arcs.
void simRunSchedule();

Performs the step (3). It is a protected member.

StringList& generateCode();
This method generate code for the processor target by callgegPtr->generate-
Code()

int genCodeTo(Target* t);
This method is used to insert the code of the sub-universe to the argument target class. It
performs the almost same stepp@pareCodeGen and then callgrsertGalaxy-
Code of the processor target class insteagevierateCode method.

15.5.5 Other UniProcessor protected members

There are a set of methods to manage NodeSchedule objects to minimize the runtime memory
usage as well as execution time.

void putFree(NodeSchedule* ny;

NodeSchedule* getFree();

void clearFree();
If a NodeSchedule is removed from the list, it is put into a pool of NodeSchedule objects.
When we need a NodeSchedule object, a NodeSchedule in the pool is extracted and ini-

tialized. We deallocate all NodeSchedules in the pool by the third method.

void removeLink(NodeSchedule* X);
Removes the argument NodeSchedule from the scheduled list.

int sumidle;
Indicates the sum of the idle time slots after scheduling is completed. The value is valid
only afterdisplay method is called.

15.5.6 Other UniProcessor public members

There are a constructor with no argument to initialize all data members and a destructor to de-
letesubGal and to delete all NodeSchedule objects associated with this processor.

Galaxy* myGalaxy();

int myld();

DoubleLinkList :: size;

int getSumidle();
The above methods return the pointer to the sub-universe, the index of the current proces-
sor, the number of scheduled nodes, and the sum of idle time after scheduling is completed

(or sumldle).
void initialize();

This method puts all NodeSchedules in the list to the pool of free NodeSchedules and ini-
tialize protected members.

U. C. Berkeley Department of EECS

The Almagest 15-17

void copy(UniProcessor* org);
Copies the schedule from the argument UniProcessor to the current processor.

StringList displaySubUniv();

StringList display(int makespan);
int writeGantt(ostreamé& 0S, const char* universe ,int numProcs , int
span);

The first method display the sub-universe. The second method displays the schedule in the
textual form while the third one forms a string to be used by Gantt-chart display program.

15.5.7 lterator for UniProcessor

Class Processorlter is the iterator for UniProcessor class. A NodeSchedule object is returned
by next and++ operator.

ParNode* nextNode();
Returns the ParNode in the list.

15.6 Dynamic Level Scheduler

Dynamic Level Scheduling is one of the list scheduling algorithms where the priority of a node
is not fixed during the scheduling procedure. The scheduling algorithm is implemented in
$PTOLEMY/src/domains/cg/diScheduler . All classes in that directory are derived from

the base parallel scheduling classes described above in this chapter. For example, DLNode
class is derived from class ParNode, and redefieiegevel method to compute thdynamic

level of the node.

int getLevel();
This method returns the sum of the static node and the worst case communication cost
between its ancestors and this DLNode.

Class DLNode has the same constructors as class ParNode.

The dynamic level scheduler maintains a list of runnable nodes sorted by the
getLevel value of the DLNodes. It fetches a node of highest priority and choose the best
processor that can schedule the node earliest while taking interprocessor communication into
account.

15.7 Class DLGraph

Class DLGraph, derived from class ParGraph, is the input APEG graph to the dynamic level
scheduler. It consists of DLNode objects created by redefining the following method:

EGNode* newNode(DataFlowStar* s,int I);
This method creates a node in the APEG graph. Here, it creates a DLNode.

DLGraph has a protected member maintaining the number of unscheduled nodes.

int unschedNodes;

We may check whether the scheduler is deadlocked or not by examining this variable

Ptolemy Last updated: 10/9/97

15-18 Parallel Schedulers

when the scheduler halts. This can be manipulated by the public methods

void decreaseNodes();
int numUnSchedNodes();
The first method decremenisschedNodes and the second method returns it.

The DLGraph class redefinessetGraph method.
void resetGraph();
This makes the initial list of runnable nodes and sets the variable described above. This
method internally calls the following protected method:

virtual void resetNodes();
This method resets the busy flag andwh@Num member of DLNodes.

There are three other public members.
DLNode* fetchNode();
Fetches a DLNode from the head of the list of runnable nodes.

StringList display();
Displays the APEG and the list of source nodes.

15.8 class DLScheduler

Class DLScheduler is derived from class ParScheduler. It has a constructor with three argu-
ments.

DLScheduler(MultiTarget* t, const char* log ,int i);
The arguments are the pointer to the multiprocessor target, the name of the logging file,
and a flag to indicate whether the communication overhead can be ignored or not. If the
processor target has special hardware for communication separate from the CPU, then
most of the communication can be simultaneous with processor computation. In this case,
we do not reserve the communication time slot in the processor schedule but in the access
schedule of the communication resources only. This mode of operation is selastedt
TRUE This is not implemented since we haven't dealt with that kind of architecture yet.

There is a protected member to point to a ParProcessor class:
DLParProcs* parSched,
This pointer is set in the following redefined method:
void setUpProcs(int num,
This method first performBarScheduler::setUpProcs, and then create a DLPar-
Procs object. While this class defines the overall procedure of the dynamic level schedul-

ing algorithm, the DLParProcs class provides the details of the algorithm .

~DLScheduler();
Deallocate the DLParProcs object.

U. C. Berkeley Department of EECS

The Almagest 15-19

The main procedure of the dynamic level schedule is defined in
int schedulelt();
This method does the following:

(1) Initializes the DLParProcs and resets the DLGraph and the communication
resources of the multiprocessor target.

(2) Fetch a node from the list of runnable nodes until there are no more nodes in the
list.

(2-1) If the node is not a parallel node, calheduleSmall method of the DLPar-
Procs class to schedule the node.

(2-2) If the node is the first invocation of a parallel-star node, we give up. NOTE: We
do not support parallel stars since we haven't had to deal with them yet.

(3) When there are no more runnable nodes, we check whether the graph is dead-
locked. In case of successful completion, we perform an additional list scheduling
(listSchedule of the ParProcessors class), based on the processor assignment determined
by the above procedure.

StringList displaySchedule();
Displays the final schedule results.

15.9 Class DLParProcs

Class DLParProcs, derived from the ParProcessors class, defines a main object to perform the
dynamic level scheduling algorithm. It has a constructor with two arguments:

DLParProcs(int pNumMultiTarget *t);
The arguments are the number of processors and the pointer to the multiprocessor target.
This method creatggVumUniProcessors for processing elements. These UniProcessors
are deallocated in the destruct@LParProcs().

Based on the type of node describeddmedulelt ~ method of the DLScheduler class,
we call one of the following methods to schedule the nexteduleSmall, sched-
uleBig, copyBigSchedule.

virtual void scheduleSmall(DLNode* ny;
This method is a public method to schedule an atomic node that will be scheduled on one
processor. This is virtual since the HuParProcs class redefines this method. The schedul-
ing procedure is as follows:

(1) Obtain the list of processors that can schedule this node. Retando
dateProcs method of the CGMultiTarget class . Here, we examine the resource restriction of
the processor, as well as the types of stars that a processor supports, in case of a heterogeneous
target. If all invocations of a star should be scheduled to the same processor and another invo-
cation of the star is already scheduled, we put only that processor only into the list of candi-
date processors that can schedule this node.

(2) Among all candidate processors, we select the processor that can schedule this
node the earliest. In this stage, we consider all communication overhead if ancestors would be

Ptolemy Last updated: 10/9/97

15-20 Parallel Schedulers

assigned to the different processors.

(3) Assign the node to that processor:
void assignNode(DLNode* n,int destP ,int time);
Is a protected method to assign an atomic nogléq the processor of indefestP at
time. This method also schedules the communication requirements in the communica-
tion resources.

(4) Indicate that the node was fired:
virtual void fireNode(DLNode* node);
It is a virtual and protected method. It fires the argument node and insert its descendants
into the list of runnable nodes if they become runnable after this node is fired.

(5) Finally, we decrease the number of unscheduled nodes and the total remaining
work of the DLGraph class.

The DLNode class has the pointer to the Profile class that determines the inside sched-
ule of the node. We insert idle time slots to the processors to match the pattern of processor
availability with the starting pattern of the profile and append the node at the end of the pro-
cessors. We record the assignment of the profile to the procesassigiedid array of the
Profile class . We also save the scheduling information in the DLNode: when the node is
scheduled and completed, and on which processor it is scheduled. To determine the latter, we
select the processor that the inside scheduler assumes the first processor it is assigned.

After appending the profile at the end of the available processors, we fire the node and
update the variables of the DLGraph.

void initialize(DLGraph* graph);
This method call®arProcessors . initialize and resets thmandidate member to the
index of the first UniProcessor, amyGraph member tggraph argument.

DLGraph* myGraph;
A protected members to store the pointer to the input APEG.

int costAssignedTo(DLNode* node, int destP , int start);
This method is a protected method to compute the earliest time when the processor of
indexdestP could schedule the nodede that is runnable at timstart.

15.10 Hu Level Scheduler

Hu'’s level scheduling algorithm is a simple list scheduling algorithm, in which a node is as-
signed a fixed priority. No communication overhead is considered in the scheduling procedure.
The code lies iISPTOLEMY/src/domains/cg/HuScheduler . All classes, except the HuS-
cheduler class in this directory, are derived from the classes for the dynamic level schedulers.

15.10.1 Class HuNode

Class HuNode represents a node in the APEG for Hu’s level scheduling algorithm. It is derived
from the DLNode class so that it has the same constructors. The level (or priority) of a node
does not depend on the communication overhead.

U. C. Berkeley Department of EECS

The Almagest 15-21

int getLevel();
Just return$taticLevel of the node.

A HuNode has two private variables to indicate the available time of the node (or the
time the node becomes runnable) and the index of the processor on which the node wants to
be assigned. The latter is usually set to the index of the processor that its immediate ancestor is

assigned. There are five public methods to manipulate these private variables.
int availTime();

void setAvailTime(int t);

void setAvailTime();

void setPreferredProc(int i);

The first three methods get and set the available time of the node. If no argument is given
in setAvailTime, the available time is set to the earliest time when all ancestors are
completed. The last two methods get and set the index of the processor on which the node
is preferred to be scheduled.

15.10.2 Class HuGraph

Class HuGraph is the input APEG for Hu's level scheduler. It redefines three virtual methods
of its parent classes.

EGNode* newNode(DataFlowStar* S, intinvoc);
Creates a HuNode as a node in the APEG.

void resetNodes();
This method resets the variables of the HuNodes: visitflaigjum, the available time,
and the index of the preferred processor.

void sortedinsert(EGNodeList& nlist ,ParNode * n,int flag);
In the ParGraph class, this method sorts the nodes in order of decBzatithegvel of
nodes. Now, we redefine it to sort the nodes in order of increasing available time first, and
decreasing the static level next.

15.10.3 Class HuScheduler

Class HuScheduler, derived from the ParScheduler class, is parallel to the DLScheduler class
in its definition.

HuScheduler(MultiTarget* t,constchar *log);
The constructor has two arguments: one for the multiprocessor target and the other for the
log file name.

The HuScheduler class has a pointer to the HuParProcs object that will provide the
details of the Hu’s level scheduling algorithm.
HuParProcs* parSched;
This is the protected member to point to the HuParProcs object. That object is created in
the following method:

void setUpProcs(int num;
This method first call®arScheduler::setUpProcs and next creates a HuParProcs

Ptolemy Last updated: 10/9/97

15-22 Parallel Schedulers

object. The HuParProcs is deallocated in the destructor.

int schedulelt();
The scheduling procedure is exactly same as that of the Dynamic Level Scheduler except
that the actual scheduling routines are provided by a HuParProcs object rather than a
DLParProcs object. Refer to thehedulelt method of class DLScheduler . Also note
that the runnable nodes in this scheduling algorithm are sorted by their available time first.

StringList displaySchedule();
Displays the scheduling result textually.

15.10.4 Class HuParProcs

Class HuParProcs is derived from class DLParProcs so that it has the same constructor. While
many scheduling methods defined in the DLParProcs class are inherited, some virtual methods
are redefined to realize different scheduling decisions. For example, it does not consider the

communication overhead to determine the processor that can schedule a node earliest. And it
does not schedule communication resources. Another big difference is that Hu's level sched-

uling algorithm has a notion of global time clock. No node can be scheduled ahead of the global

time. At each scheduling step, the global time is the same as the available time of the node at
the head of the list of runnable nodes.

void fireNode(DLNode* ny;
This redefined protected method sets the available time and index of the preferred proces-
sor of the descendants, if they are runnable after nagleompleted. This is done before
putting them into the list of runnable nodesr{edinsert method of the HuGraph
class).

void scheduleSmall(DLNode* ny;
When this method is called, the nodes one of the earliest runnable nodes. We examine
a processor that could schedule the node at the same time as the available time of the node.
If the node is at the wormhole boundary, we examine the first processor only. If the node
should be assigned to the same processor on which any earlier invocations were already
assigned, we examine that processor whether it can schedule the node at that time or not.
If no processor is found, we increase the available time of the node to the earliest time
when any processor can schedule it, and put the node back into the list of runnable nodes.
If we find a processor to schedule the node at the available time of the node, we assign and
fire the node, then update the variables of the HuGraph. Recall that no communication
overhead is considered.

15.11 Declustering Scheduler

Declustering scheduler is the most elaborate scheduler developed by Sih . This algorithm only
applies to the homogeneous multiprocessor targets and it does not support wormholes nor par-
allel stars. Since it takes into account the global information of the graph, it may overcome the
weaknesses of list schedulers which consider only local information at each scheduling step. It
turns out that this scheduling algorithm is very costly since it involves recursive executions of
the list scheduler with various assignment, and choosing the best scheduling result. The sched-

U. C. Berkeley Department of EECS

The Almagest 15-23

uling routine was originally written in LISP for the Gabriel system and was translated into C++.
Since the algorithm itself is very complicated, the reader of the code is highly encouraged to
read Sih’s paper on the scheduling algorithm.

Class DeclustScheduler is derived from class ParScheduler. It has a constructor with
two arguments as the ParScheduler class. The subclass of ParProcessors used in
DeclustScheduler is DCParProcs. The DeclustScheduler maintains two kinds of DCParProcs
instances, one to save the best scheduling result so far, and the other is for retrying list sched-
uling whose results will be compared with the best result so far. These two DCParProcs are

created in
void setUpProcs(int num,
They are deleted in the destructor.

StringList displaySchedule();
Displays the best scheduling result obtained so far.

The overall procedure of the declustering algorithm is:

(1) Make elementary clusters of nodes. To make elementary clusters, we examine the
output arcs of all branch nodes (a branch node is a node with more than one output arc) and
the input arcs of all merge nodes (a merge node is a node with more than one input arc). Those
arcs are candidates to be cut to make clusters. An arc is cut if the introduced communication
overhead can be compensated by exploiting parallelism.

(2) We make a hierarchy of clusters starting from elementary clusters up to one cluster
which includes all nodes in the APEG. Clusters with the smallest work-load will be placed at
the bottom level of the hierarchy.

The above two steps are performed in the following protected method:
int preSchedule();
Before making clusters, it first checks whether the APEG has wormholes or parallel stars.
If it finds any, it return§ALSE

(3) We decompose the cluster hierarchy. We examine the hierarchy from the top. We
assign two processors to each branch (son cluster) of the top node at the next level. Then, we
execute list scheduling and save the scheduling result. We choose a son cluster with a larger
work-load. Then, we introduce another processor to schedule two branches of the son cluster.
Execute a different list scheduling to compare the previously best scheduling result, then save
the better result. Repeat this procedure until all processors are consumed. It is likely to stop
traversing the cluster hierarchy since all processors are consumed. At this stage, we compare
the loads of processors and try to balance the loads within a certain ratio by shifting some ele-
mentary clusters from the most heavily loaded processor onto a lightly loaded processor.

(4) In some cases, we can not achieve our load-balancing goals by shifting clusters.
We try to breakdown some elementary clusters in heavily loaded processors to lightly loaded
clusters. This is cluster "breakdown".

(5) In each step of (3) and (4), we execute list scheduling to compare the previously
best scheduling result. This is the reason why the declustering algorithm is computationally
expensive. Finally, we get the best scheduling result. Based on that scheduling result, we make
a final version of the APEG including all communication nodes (irfitlézeGalaxy

Ptolemy Last updated: 10/9/97

15-24 Parallel Schedulers

method of DCParProcs class). Note that we do not call the list scheduling algorithm in the
ParProcessors class after we find out the best scheduling result since we already executed that
routine for that result.

Steps (3), (4), and (5) are performed in the following public method:
int schedulelt();
Many details of the scheduling procedure are hidden with private methods. The remaining
section will describe the classes used for Declustering scheduling one by one.

15.11.1 Class DCNode

Class DCNode, derived from class ParNode, is an APEG node for the declustering scheduler.
It has the same constructors with the ParNode class. This class does not have any protected
members.

int amIMerge();
int amlIBranch();
These methods retufRUEIf this node is a merge node or a branch node.

DCCluster* cluster;
DCCluster* elemDCCluster;

These pointers point to the highest-level cluster and the current elementary cluster owning
this node.

void savelnfo();

int getBestStart();

int getBestFinish();
The first method saves the scheduling information of this node with the best scheduling
result, which includes the processor assignment, the scheduled time, and the completion
time. The next two methods return the scheduled time and the completion time of the cur-
rent node.

int getSamples(DCNode* destN);
Returns the number of samples transferred from the current node to the destination node
destN. If no sample is passed, it returns O with an error message.

DCNode* adjacentNode(DCNodeList& nlist ,intdirection);
DCNodelList is derived from class EGNodelList just to perform type casting. This method
returns an adjacent node of the current node in the given nodedistction is 1,
look at the ancestors, if -1, look at the descendants.

StringList print();
Prints the master star name and the invocation number of the node.

There are three iterators defined for DCNode clBSNodelListiter, DCAnces-

torlter, andDCDescendantlter. As names suggest, they return the DCNode in the list,
in the ancestors of a node, and in the descendants of a node.

U. C. Berkeley Department of EECS

The Almagest 15-25

15.11.2 Classes DCArc and DCArcList

Class DCArc represents an candidate arc in the APEG to be cut in making elementary clusters.
It has a constructor with five arguments.

DCArc(DCNode* src ,DCNode sink ,int first ,int second ,int third);
The first two arguments indicate the source and destination nodes of the arc. The remain-
ing three arguments define a triplet of information used to help find the arcs to be cut. We
call these arcs "cut-arcs". We consider a pair of a branch node and a merge node and two
paths between them to determine if a pair of cut-arcs to parallelize these two paths is ben-
eficial. Thefirst argument is the sum of execution times of nodes preceding this arc,
starting from the branch node. Thecond argument is the communication overhead for
this arc. Thehird argument is the sum of execution times of nodes following from this
arc to the merge node.

The five arguments given to the constructor can be retrieved by the following methods:
DCNode* getSrc();
DCNode* getSink();
int getF();
int getS();
int getT();
They can be printed by

StringList print();
The sink and the source nodes can be reversed, and can be copied from an argument
DCArc by the following methods:

void reverse();
int operator==(DCArc& arc);

There are other public methods as follow:

DCArcList* parentList();
A DCArc will be inserted to a list of DCArcs, call DCArcList. This method returns the
pointer to the list structure.

int betweenSameStarlinvoc();
ReturnsTRUEoOr FALSE, based on whether this arc is between invocations of the same star.

Class DCArclList is derived from class SequentialList to make a list of DCArcs. It has
a constructor with no argument and a copy constructor. The destructor deletes all DCArcs in
the list.
void insert(DCArc* arc);
void append(DCArc* arc);
These methods to patc at the front and the back of the list, respectively.

DCArc* head();
Returns the DCArc at the front of the list.

int remove(DCArc* arc);

Ptolemy Last updated: 10/9/97

15-26 Parallel Schedulers

Removesarc from the list.

int member(DCArc* arc);
ReturnsTRUEIf the given DCArc is a member of the list.

int mySize();
Returns the number of DCArcs in the list.

StringList print();
It prints a list of DCArcs in the list.

There is a iterator for DCArcList, called DCArclter, which returns a DCArc.

15.11.3 Class DCGraph

Class DCGraph, derived from class ParGraph, is an input APEG for DeclustScheduler. It has
no explicit constructor.

EGNode* newNode(DataFlowStar* ,int);
Creates a DCNode as an APEG node for DCGraph.

DCNodelList BranchNodes;
DCNodelList MergeNodes;
These lists store the branch nodes and merge nodes.

int initializeGraph();
This protected method initializes the DCGraph. It sets up the lists of branch nodes and
merge nodesBfanchNodes, MergeNodes), and the list of initially runnable nodes.
We sort these lists by the static levels of the nodes: the branch nodes are sorted by smallest
static level first while the merge nodes are sorted by largest static level first. In this
method, we also initialize the DCNodes, which includes the detection of the merge nodes
that are reachable from the node and the branch nodes reachable to the node.

The remaining methods are all public.
const char* genDCClustName(int type);
Generate a name for the clusteryie = 0, we prefix with "ElemDCClust” to represent
an elementary cluster. Otherwise, we prefix with "MacroDCClust".

StringList display();
Displays the APEG with the lists of initially runnable nodes, the branch nodes, and the
merge nodes.

DCNode* intersectNode(DCNode* dl,DCNode d2,int direction);
This method returns a merge node with the smallest static level, reachable frafa both
andd2 if direction = 1. Ifdirection =0, it returns a branch node with the smallest
static level, that can reach batlh andd2 nodes.

DCArcList* traceArcPath(DCNode* branch ,DCNode src , DCNode dest ,int direc-
tion);

U. C. Berkeley Department of EECS

The Almagest 15-27

This method makes a list of candidate cut-arcs betweemrh anddest nodes, and
returns the pointer to the list. The second argunsent, is an immediate descendant of
thebranch node on the path to tlkest node. Ifdirection =1, we reverse all arcs and
find cut-arcs fromdest to branch nodes.

void addCutArc(DCArc* arc);
This method adds a DCArc to a list of cut-arcs in DCGraph.

void formElemDCClusters(DCClusterList& EClusts);
In this method, we remove all cut-arcs in the APEG and make each connected component
an elementary cluster. The argumegtusts is the list of those elementary clusters. We
connect these clusters at the end.

void computeScore();
In scheduling stage (3) of the DeclustScheduler, we may want to shift clusters from
heavily loaded processors to lightly loaded processors. To prepare this step, we compute
the score of top-level clusters in that scheduling phase. The score of a cluster is the num-
ber of samples passed to other processors minus the number of samples passed inside the
same processor along the cut-arcs within that cluster. The score indicates the cost of shift-
ing a cluster due to communication.

void commProcs(DCCluster* clust ,int* procs);
This method finds processors tletst communicates with. We set the component of
the second argument array to 1 if that processor communicates with the cluster.

void copyInfo();
Used for saving the scheduling information if the most recent scheduling result is better
than the previous ones.

15.11.4 Class DCCluster

Class DCCluster represents a cluster of nodes in the declustering algorithm. There is no pro-
tected member in this class. It consists of two DCClusters, called component clusters, to make
a hierarchy of clusters. An elementary clusterMdsL component clusters. It is constructed

by a one-argument constructor.

DCCluster(DCNodelList* node-list);
Makes the cluster contain all nodes from the list.

To make a macro cluster, we use the following constructor:
DCCluster(DCCluster* clustl ,DCCluster * clust?);
The argument clusters become the component clusters of this higher level cluster. The
cluster-arcs are established from the cluster-arcs of two component clusters by calling the
following method:

void fixArcs(DCCluster* clustl ,DCCluster * clust?);

In this method, arcs put inside this cluster are removed from the arcs of two argument
clusters.

Ptolemy Last updated: 10/9/97

15-28 Parallel Schedulers

In both constructors, we compute the sum of execution times of all nodes in the clus-
ter, which can be obtained by
int getExecTime();
DCCluster* getComp1();
DCCluster* getComp2();
The last two methods above return two component clusters.

void setName(const char* name;
const char* readName();
The above methods set and get the name of the cluster.

void addArc(DCCluster* adj ,int numSample);
This method adds a cluster-arc that is adjacent to the first argument cluster with sample
ratenumSample.

void setDCCluster(DCCluster* clust);
Sets thecluster pointer of the nodes in this cluster to the argument cluster.

void assignP(int procNum);

int getProc();
The first method assigns all nodes in the cluster to a processor. The second returns the
processor that this cluster is assigned to.

void switchwith(DCCluster* clust);
Switches the processor assignment of this cluster with the argument cluster.

DCCluster* pullWhich();
Returns the cluster with the smaller execution time between two component clusters, and
pull it out.

DCCluster* findCombiner();
This method returns the best cluster, in terms of cluster-arc communication cost, to be
combined. We break ties by returning the cluster with smallest execution time.

void broken();

int getintact();
These methods indicate whether the cluster or its subclusters were broken into its compo-
nents in the scheduling stage (3) of DeclustScheduler. The first method indicates that it
happens. The second method queries whether it happens or not.

int getScore();
int setScore(int score);
void resetMember();

These methods get and set the score of the cluster. Refectoniihn@eScore method of
the DCGraph class to see what the score of a cluster is. The last method resets the score to
0.

StringList print();
Prints the name of this cluster and the names of component clusters.

U. C. Berkeley Department of EECS

The Almagest 15-29

~DCCluster();
The destructor deletes the nodes in the cluster and cluster-arcs if it is an elementary clus-
ter.

15.11.5 Class DCClusterList

Class DCClusterList, derived from class DoubleLinkList, keeps a list of clusters. It has no pro-
tected members. It has a default constructor and a copy constructor.

void insert(DCCluster* clust);
void append(DCCluster* clust);
void insertSorted(DCCluster* clust);

These methods putust at the head and the back of the list. The last method inserts the
cluster in order of increasing execution time.

DCClusterLink* firstLink();

DCCluster* firstDCClust();

DCCluster* popHead();
The above methods return the DCClusterLink and DCCluster at the head of the list. The
last method removes and returns the cluster from the list. Class DCClusterLink is derived
from class DoubleLink as a container of DCCluster in the DCClusterList. It has a public
method to access the cluster called

DCCluster* getDCClustp();
DCClusterLink* createLink(DCCluster* clust),
void removeDCClusters();
Create a DCClusterLink and removes all clusters in the list, respectively.

void resetList();

void resetScore();

void setDCClusters();
The first two methods reset the scores of all clusters to 0. The first method also declares
that each cluster is not broken. The third method resets the cluster pointer of the nodes of
the clusters in the list.

int member(DCCluster* clust);
ReturnsTRUEoOr FALSE, based on whether the argument cluster is in the list or not.

void findDCClusts(DCNodeList& nlist);
Add to the list clusters that own the nodes of the argument list. If the number of clusters is
1, we break the cluster into two component clusters and put them into the list.

int listSize();
Returns the number of clusters in the list.

StringList print();
Prints the list of clusters.

There is an iterator associated with the DCClusterList called DCClusterListlter that
returns a DCCluster. It can return a DCClusterLink bynthelLink method.

Ptolemy Last updated: 10/9/97

15-30 Parallel Schedulers

15.11.6 Class DCClustArc and class DCClustArcList

Class DCClustArc represents a cluster-arc. It has a constructor with two arguments:

DCClustArc(DCCluster* neighbor ,int nsamples);
The first argument is the pointer to the neighboring cluster while the second argument sets
the sample rate of the connection.

DCCluster* getNeighbor();
void changeNeighbor(DCCluster* clust);
These methods return the neighbor cluster and change to it.

void changeSamples(int newsamps);
void addSamples(int delta);
int getSamples();

The above methods modify, increment, and return the sample rate of the current arc.

StringList print();
Prints the name of the neighbor cluster and the sample rate.

Class DCClustArcList is derived from class SequentialList to make a list of cluster-
arcs. It has four public methods.
DCClustArc* contain(DCCluster* clust);
Returns the DCClustArc that is adjacent to the argument cluster. If no cluster-arc is found
in the list, return 0.

void changeArc(DCCluster* oldC , DCCluster*new();
This method changes the pointer of neighbor clusigt, in all cluster-arcs in the list to
newC.

void removeArcs();
Deletes all cluster-arcs in the list.

StringList print();
Prints the list of DCClustArcs.

There is an iterator associated with the DCClustArcList, called DCClustArcListlter,
which returns a DCClustArc.
15.11.7 Class DCParProcs

Class DCParProcs is derived from class ParProcessors. It has the same constructor and destruc-
tor with the ParProcessors class.

There is one protected method:
ParNode* createCommNode(int i);
Creates a DCNode to represent a communication code. The argument indicates the type of
the node.

The other methods are all public, and support the main scheduling procedure described

U. C. Berkeley Department of EECS

The Almagest 15-31

in the DeclustScheduler class .
int commAmount();
Returns the communication overhead of the current schedule.

void saveBestResult(DCGraph* graph);
This method saves the current scheduling information of the nodes as the best scheduling
result.

void finalizeGalaxy(DCGraph* graph);
After all scheduling is completed, we make a final version of the APEG including all com-
munication loads based on the best scheduling result obtained.

void categorizeLoads(int procs);
This method categorizes each processor as either heavily or lightly loaded. It sets an inte-
ger arraynprocs, 1 for heavy and -1 for light processors. The initial threshold is 50 pro-
cessors are heavily loaded if all processors are loaded beyond a 75 maximum load. We
regard at most one idle processor as lightly loaded.

int findSLP(DCNodelList* nlist);
This method finds the progression of nodes (regular or communication) in the schedule
which prevents the makespan from being any shorter. We call this set of nodebeahd
ule limiting progression: SLRrefer to Sih’s paper). The SLP can span several processors
and can’t contain idle times. If there are several SLPs it will return just one of them.

Ptolemy Last updated: 10/9/97

15-32 Parallel Schedulers

U. C. Berkeley Department of EECS

The Almagest 16-1

Chapter 16. Base Code Generation
Domain and Supporting Classes

Authors: Soonhoi Ha
Other Contributors: Michael C. Williamson

This chapter explains the base classes for code generation, which are found in the
$PTOLEMY/src/domains/cg/kernel directory. Not all classes in that directory are cov-
ered in this document. We instead concentrate on how to generate and organize the code, and
which methods to use. There is a basic code generation domain, designated CG, from which
other code generation domains are derived. The CG domain can be used by itself for the pur-
pose of studying issues in control constructs and scheduling, without needing to generate code
in any particular programming language.

A segment of code is formed in an instance of class CodeStream. Each CGTarget will
have a list of CodeStreams, and will assemble them to generate the final code. A CGStar uses
instances of class CodeBlock to form a code segment, which can be added to a CodeStream of
the CGTarget after some processing.

A set of macros are defined which a star programmer may use in order to refer to vari-
ables without being concerned about resource allocation. For example, we may refer to the
portholes of a star without knowing what physical resources are allocated to them.

16.1 Class CodeStream

Class CodeStream is publicly derived from class StringList, and is used to make a sequential
stream of code. In class CGTarget, a base target class for code generation, there are two Code-
StreamsmyCode andprocedures.

CodeStream myCode;
CodeStream procedures;

These are protected members of class CGTarget. They are the default eotdes in
StringLists , the list of code streams that CGTarget maintains.

CodeStreamList codeStringLists;
This is a protected member of class CGTarget. We can add a CodeStoeds: to
StringLists by using the following method of class CGTarget:

void addStream(const char* name, CodeStream* code);
This is a public method of class CGTarget. The first argument is the name of the Code-
Stream, and the second argument is a pointer to the CodeStream. This method should be
called in the constructor of a target class. If a target attempts to add a CodeStream with an
existing name, an error will be signaled.

Ptolemy Last updated: 10/9/97

16-2 Base Code Generation Domain and Supporting

CodeStream* getStream(const char* name=NULL);
This is a public method of class CGTarget. This method returns a pointer to the Code-
Stream with the given name. If no stream with the given name is found, this method
returnsNULL If name=NULL, a pointer talefaultStream is returned. Class CGStar
has a corresponding method to get the CodeStream with the given name from the CGStar’s
target.

The following method allows CGStars to construct a new CodeStream and add it to the
CGTarget's list of CodeStreams. Some of the possible uses for this method are:

e agroup of CGStars can build a procedure together

e a CGsStar can add control flow constructs at the end afdinéoop code

CodeStream* newStream(const char* name;
This is a public method of class CGTarget. There is a corresponding protected method of
CGStar. This method adds a new CodeStream with the given namesddB&ing-
Lists member of the CGTarget, and returns a pointer to the new CodeStream.

Now we will explain the public methods and members of class CodeStream.

int put(const char* code, const char* name=NULL);
This method puts the given segment of code at the end of the CodeStream. Optionally, the
name of the code segment can be givematte=NULL, we append the code uncondi-
tionally. Otherwise, we check to see if code with the same name has already ben added,
by examining theharedNames member of the CodeStream. If no code segment with
the same name is found, the code segment is appended. This method RitiEihsode
was successfully added to the streaml, SE otherwise.

UniqueStringList sharedNames;
This is a public member of class CodeStream. It is used to store the names of code seg-
ments added by name to the CodeStream. Class UniqueStringList is privately derived
from class StringList.

void initialize();
This is a public method of class CodeStream. It is used to initialize both the code list and
sharedNames.

int isUnique(const char* name;
This is a public method of class UniqueStringList. This method reM0SE if the argu-
ment string already exists in the UniqueStringList. If not, then the method adds the string
to the list and returnBRUE

Class CodeStreamList contains a list of CodeStreams. It is publicly derived from class
NamedList since each CodeStream is assigned a name. There are four public methods in the
CodeStreamList class:

int append(CodeStream* stream , const char* name);
int add(const char* name, CodeStream* stream);
CodeStream* get(const char* name) const;

int remove(const char* name);

U. C. Berkeley Department of EECS

The Almagest 16-3

The first two methods append a CodeStream to the list. They differ from each other in the
order of arguments. The third method returns a CodeStream with the given name while the
last method removes the CodeStream with the given name from the list.

16.1.1 Class NamedList

Class NamedList is privately derived from class SequentialList, and is used to make a list of
objects with names. It has a default constructor. The destructor deletes all objects in the list.
There are no protected members in this class.

int append(Pointer object , const char* name);

void prepend(Pointer object , const char* name);
These methods put an objeabject , with namename at the end and the beginning of
the list, respectively. In the first method, we may not append multiple objects with the
same name. If an object with the same name exists in theAlsSg is returned. On the
other hand, the second method allows multiple objects with the same name to be
prepended. Only the most recently prepended object will be visible.

Pointer get(const char* name=NULL);
This method returns the object with the given name. If no name is given, it returns the
object at the head of the list. If no object is found, it retuoisL.

int remove(const char* name=NULL);
This method removes the object with the given name. If no name is given, it removes the
first object at the head of the list. If no object is found it retBASE, otherwise it
returnsTRUE

There is an iterator class associated with the NamedList class, called NamedListlter. It
returns a pointer to the next object in the list as it iterates through the list.

16.2 Class CodeBlock and Macros

Class CodeBlock stores a pointer to text in its constructor.

CodeBlock(const char* text);
It is up to the programmer to make sure that the argument text lives as long as the code-
block is used.

There are four public methods defined to access the text:
void setText(char* line);
const char* getText();
operator const char*();
void printCode();
The first method sets the text pointer in the CodeBlock. The next two methods return the
text this CodeBlock points to. The last method prints the code to the standard output.

A star programmer uses thedeblock directive in the preprocessor language file to

define a block of text. In a CodeBlock, the programmer uses the following macros in order to
refer to the star ports and variables without needing to be concerned about resource manage-

Ptolemy Last updated: 10/9/97

16-4 Base Code Generation Domain and Supporting

ment or name conflicts:
$val(name)
Value of a state

$size(name)
Buffer size of a state or a porthole

$ref(name)
Reference to a state or a porthole

$ref(name, offset)
Reference with offset

$label(name
Unique label inside a codeblock

$codeblockSymbol(name)
Another name for $label

$starSymbol(name)
Unique label inside a star

$sharedSymbol(list , name)
Unique label for set list, name pair

These macros are resolved into code after resources are allocated or unique symbols
are generated.

A CodeBlock defined in a CGStar is put into a CodeStream of the target by the follow-
ing methods of the CGStar class:

int addCode(const char* code, const char* Sstream =NULL,
const char* name=NULL);
int addProcedure(const char* code, const char* name;

These are protected methods of class CGStar. The first method puts a segment of code,
code, atthe end of the target's CodeStream with nameam . If the name of the Code-
Stream is not given, the method usesnig€ode stream of the target. The second method
uses therocedure CodeStream of the target. The argumembe of both methods is
optionally used to specify the name of the code. If the code is successfully added, the
methods returmRUE otherwise they returRALSE. Before putting the code at the end of

the CodeStream, the code is processed to resolve any macros by the application of the
processCode method:

StringList processCode(CodeBlock& cb);
StringList processCode(const char* code);

These methods are both protected and essentially equivalent since the first method calls
the second method. They scan the code, word by word, and copy it into a StringList. If a
macro is found, the macro is expanded through a caligandMacro before being cop-

ied to the StringList. Testing can be done to check whether a word is a macro or not by

comparing the first character with the result of the following method:

U. C. Berkeley Department of EECS

The Almagest 16-5

virtual char substChar() const;
This method is a virtual protected method of class CGStar. It is used to return the special
character that marks the beginning of a macro in a code block. In the CGStar class, it
returns the dollar sign charactgr,

virtual StringList expandMacro(const char* func ,
const StringList& arglList);
This is a virtual protected method of class CGStar. It is used to expand a macro with the
given naméunc. The argument list must be passed by reference so that the StringList
will not be consolidated. It is virtual so that derived classes can define more macros. A
macro is identified by the following method:

int matchMacro(const char* func , const StringList& arglList
const char* name, int argce);

This protected method of class CGStar retTiRSEIf the first argumenfunc matches
with the third argumemame, and the number of argumentsaigList is the same as
the countargc .

Based on the particular macro being applied, one of the following protected methods
may be used to expand the macro:

virtual StringList expandVal(const char* name),

StringList expandSize(const char* name),

virtual StringList expandRef(const char* name),

virtual StringList expandRef(const char* name, const char* offset);

The first three methods expand the $val, $size, and $ref macros. The fourth method
expands the $ref macro when it has two arguments. These virtual methods should be rede-
fined in derived classes. In particular, the last two methods must be redefined in derived
classes because in class CGStar they generate error messages. The other macros deal with
unique symbols within the scope of a code block, within a star, and within a set of sym-

bols. More will be said about these in the next subsection .

When an error is encountered while expanding macros or processing code blocks, the

following methods should be called to generate an error message:
void macroError(const char* func , const StringList& argList);
void codeblockError(const char* pl, const char* p2="");

The arguments of the second method provide the text of the error message.

16.3 Class SymbolList and Unique Symbol Generation

In order to generate a unique symbol within a scope, a list of symbols should be made for that
scope. For example, the CGStar class has two protected members which are SymbolLists,
starSymbol andcodeblockSymbol.

SymbolList starSymbol;
SymbolList codeblockSymbol;

Class SymbolList is derived from class BaseSymbolList. Class BaseSymbolList is pri-
vately derived from class NamedList. A BaseSymbolList keeps two private members
which are used to create a unique name for each symbol in the list: a separator and a
counter:

Ptolemy Last updated: 10/9/97

16-6 Base Code Generation Domain and Supporting

BaseSymbolList(char sep="_",int* count =NULL);
The first argument of the constructor is used to set the separator, and the second argument
is used to set the pointer of the count variable. These two variables can be set indepen-
dently by invoking the following methods:

void setSeparator(char sep);
void setCounter(int* count);

When we append or insert a new symbol into the list, we create a unique name for that
symbol by appending a separator followed by the counter value to the argument symbol,
and then return the unique name:

const char* append(const char* name;
const char* prepend(const char& name;
const char* get(const char* name=NULL);

This last method returns the unique symbol with the given name. If no name is given, it
returns the first symbol in the list.

int remove(const char* name=NULL);
This method removes the unique symbol with the given name. If no name is given, it
removes the first symbol in the list. It retuf_SE if no symbol is removed.

Symbols in the list are deleted in the destructor, and in the following method:
void initialize();

The public method
Stringlist symbol(const char* string)
makes a unique symbol from the supplied argument by adding the separator and a unique
counter value to the argument string.

Class SymbolList is privately derived from class BaseSymbolList with the same con-
structor and a default destructor. Class SymbolList uncovers only three methods of the base
class:

BaseSymbolList::setSeparator;
BaseSymbolList::setCounter;
BaseSymbolList::initialize;

Class SymbolList adds one additional method:
const char* lookup(const char* name),
If a unique symbol with the given name exists, this method returns that unique symbol.
Otherwise, it creates a unique symbol with that name and puts it into the list.

Recall that the CGStar class has two SymbolLists. The m&codsblockSymbol
$label , and$starSymbol are resolved by theokUp method of theodeblockSymbol
andstarSymbol SymbolLists, based on the scope of the symbol. If the symbol already exists
in the SymbolList, it returns that unique symbol. Otherwise, it creates a unique symbol in the
scope of interest.

U. C. Berkeley Department of EECS

The Almagest 16-7

If we want to generate a unique symbol within the file scope, we use a scoped symbol
list defined in the target class.
ScopedSymbolList sharedSymbol;
It is a protected member of the CGTarget class. Class ScopedSymbolList is privately
derived from class NamedList to store a list of SymbolLists. It has the same constructor as
the base class.

void setSeparator(char set);
void setCounter(int* count);

These methods in class ScopedSymbolList are used to set the separator and the counter
pointer of all SymbolLists in the list.

const char* lookup(const char* scope , const char* name),
In this method, the first argument determines the SymbolList in the list neioyes)
and the second argument determines the unique symbol within that SymbolList. If no
SymbolList is found with the given name, we create a new SymbolList and insert it into
the list.

The SymbolLists in the list are deleted in the destructor and in the following method:
void initialize();

Now we can explain how to expand the last macro defined in the CGStar class:
$sharedSymbol. The first argument of the macro determines the StringList and the second
argument accesses the unique string in that StringList. It is done by calling the following pro-
tected method in the CGStar class:
const char* lookupSharedSymbol(const char* scope , const char* name);

This method calls the corresponding method defined the CGTarget class.

The CGTarget class has another symbol list:
SymbolStack targetNestedSymbol;
It is a protected member used in generating unique nested symbols. Class SymbolStack is
privately derived from class BaseSymbolList. It has the same constructor as the base class
and has a default destructor.

For stack operation, class SymbolStack defines the following two methods:
const char* push(const char* tag ="L");
StringList pop();
These methods push the symbol with given name onto the top of the list and pop the sym-
bol at the top of the list off of the list, respectively.

This class also exposes several methods of the base class:
BaseSymbolList::get;
BaseSymbolList::setSeparator;
BaseSymbolList::setCounter;
BaseSymbolList::initialize;
BaseSymbolList::symbol;

Ptolemy Last updated: 10/9/97

16-8 Base Code Generation Domain and Supporting

In this section, we have explained various symbol lists. The separator and the counter

are usually defined in the CGTarget class:

char separator;

int counter;
The first is a public member in class CGTarget, and is set in the constructor. The second is
a private member in class CGTarget, and is initialized to zero in the constructor. The
counter value is accessed through the following public method:

int* symbolCounter();

16.4 Class CGGeodesic and Resource Management

When we generate assembly code, we have to allocate memory locations to implement the
portholes and states of each star. For high-level language generation, we assign unique identi-
fiers to them. It is rather easy to allocate resources for states since state requirements are visible
from the star definition: type, size and name. In this section, we will focus on how to determine
the buffer size for the porthole connections.

We allocate a buffer for each connection. We do not assume in the base class, however,
that the buffer is owned by the source or by the destination porthole. Instead, we use methods
of the CGGeodesic class. Before determining the buffer sizes, we obtain information about
how many samples are accumulated on each CGGeodesic by simulating the schedule. This is
for the case of synchronous dataflow (SDF) semantics with static scheduling.

The minimum buffer requirement of a connection may be determined by considering
only local information about the connection:
int minNeeded() const;
This method returns that minimum buffer size. It is a protected member of class CGGeo-
desic.

We do not want to allocate buffers for connections when it is unnecessary. For exam-
ple, the output portholes of a Fork star can share the same resource with the Fork star’s input
porthole. A Gain star with unity gain is another trivial example. Therefore, we pay special
attention to stars of type Fork. Without confusion, we refer to a stafak atar if its outputs
can share the same resource with its input. In the CGStar class, we provide the following
methods:
int isltFork();
void isaFork();
virtual void forklnit(CGPortHole& input, MultiCGPortHole& output);
virtual void forkinit(CGPortHole& input, CGPortHole& output);

The first is a public method of class CGStar. The rest are protected methods of class
CGStar. The first method queries whether the star is a Fork star. The second method is
used to declare that the star is a Fork star. If it is, we can call either one of the last two
methods, based on whether the output is a MultiPortHole or not. In those methods, we
shift delays from a Fork’s input port to the output ports, and sébrk&c pointer of

the output ports to point to the Fork’s input port. The Fork’s input port keeps a list of the
output ports in itforkDests member. We apply this procedure recursively in the case of
cascaded Forks.

U. C. Berkeley Department of EECS

The Almagest 16-9

CGPortHole* forkSrc;
SequentialList forkDests;
These are protected members of class CGPortHole. The first one is set by the following

public method:

void setForkSource(CGPortHole* p, int cgPortHoleFlag =TRUE;
The first argument is the input porthole of the Fork star and the port this is being called on
should be an output porthole when we call this method.

int fork() const;
This is a public method of class CGPortHole which retiiRISEIf it is an input porthole
of a Fork star.

Class CGGeodesic provides two methods to return the Fork input port if it is at a Fork

output port. Otherwise these methods reNio.L
CGPortHole* src();
const CGPortHole* src() const;
These two methods are protected and differ from each other in their return type.

Now we will explain more of the methods of class CGGeodesic.
int forkType() const;
This public method of class CGGeodesic indicates the type of the current CGGeodesic. If
it is at a Fork input, it i§_SRC. If it is at a Fork output, it i5_DEST.

int forkDelay() const;
This public method of class CGGeodesic returns the amount of delay from the current
Geodesic up to the fork buffer that this Geodesic refers to. If it is not associated with a fork
buffer, it returns O.

We do not allocate a buffer to a CGGeodesic if iR IDEST.
int localBufSize() const;
int bufSize() const;
The above public methods of class CGGeodesic return the buffer size associated with this
CGGeodesic. While the first method returns 0 if the CGGeodesic is at a Fork output, the
second method returns the size of the fork buffer. The actual computation of the buffer size
is done by applying the following method:

virtual int internalBufSize() const;
This protected method of class CGGeodesic returns 0 with an error message if the sched-
ule has not yet been run. If this CGGeodesicAs$RC, the minimum size is set to the
maximum buffer requirements over all fork destinations. If there are delays or if old values
are used, we may want to use a larger size so that compile-time indexing is supportable.
The buffer size must divide the total number of tokens produced in one execution. To
avoid modulo addressing, we prefer to useLiG# value of the number of samples con-
sumed and produced during one iteration of the schedule. Since this may be wasteful, we
check the extra buffer size required for linear addressing withakeFactor. If the
waste ratio is larger themasteFactor, we give up on linear addressing.

Ptolemy Last updated: 10/9/97

16-10 Base Code Generation Domain and Supporting

virtual double wasteFactor() const;
In the CGGeodesic class, this method returns 2.0. If a derived class wants to enforce linear
addressing as much as possible, it should set the return value to be large. To force the min-
imum buffer memory size to be used, the return value should be set to 1.0.

void initialize();
This public method of class CGGeodesic initializes the CGGeodesic.

Refer to class CGPortHole for more information on resource management.

16.5 Utility Functions

There are several utility functions defined in the CG domain for aiding in code generation.
Here we describe just a few of them:

char* makeLower(const char* name),
int rshSystem(const char* hostname , const char* command
const char* directory =NULL);

The above functions are defined in the file CGUtilities.h. The first method returns a
dynamically allocated string that is a lower-case version of the argument string. The sec-
ond method is used to execute a remote shell commamehand, in thedirectory on

the machinéiostname. We use th&on command instead o$h in order to preserve

any X-Window environment variables.

16.6 Class CGStar

In this section, we will explain additional class CGStar members and methods not described
above in this chapter. Class CGStar has a constructor with no arguments. Class CGStar is de-
rived from class DynDFStar, and not from class SDFStar, so that BDF and DDF code genera-
tion may be supported in the future.

There is an iterator to enumerate the CGPortHoles of a CGStar: class CGStarPortlter.
Thenext() andoperator++ methods return typeGPortHole*

16.6.1 CGStar Protected Methods and Members

Protected members related to CodeStream, SymbolList, and resource management can be
found in earlier sections of this chapter.

virtual void outputComment(const char* msg, const char* Sstream =NULL);
This method adds a commensg to the targestream. If no target stream is specified,
themyCode stream is used.

StringList expandPortName(const char* name;
If the argument specifies the name of a MultiPortHole, the index may be indicated by a
State. In this case, this method gets the value of the State as the index to the MultiPortHole
and returns a valid MultiPortHole name. This method is used ixflandSize method.

void advance();
This method updates the offset variable of all PortHoles of the CGStar by the number of

U. C. Berkeley Department of EECS

The Almagest 16-11

samples consumed or produced. It callsaiiveance method of each PortHole.

IntState procld;
This is an integer state to indicate processor assignment for parallel code generation. By
default, the value is -1 to indicate that the star is not yet assigned.

int dataParallel
This is a flag to be set if this star is a wormhole or a parallel star.

Profile* profile;
This is a pointer to a Profile object, which can be used to indicate the local schedule of a
data parallel star or macro actor. If it is not a parallel star, this pointemNg/set

int deferrable();
When constructing a schedule for a single processor, we can defer the firing of a star as
long as possible in order to reduce the buffer requirements on every output arc. In this
method, we never defer a Fork star, and always defer any non-Fork star that feeds into a
Fork. This prevents the resulting fork buffer from being larger than necessary, because
new tokens are not added until they must be.

16.6.2 CGStar Public Methods

const char* domain() const;

int isA(const char* class);
The first method return€G" . The second method returMRUEIf the argumentiass is
CGStar or a base class of CGStar.

int isSSDF() const;
ReturnsTRUEIf it is a star with SDF semantics (default). For BDF and DDF stars, it will
returnFALSE

virtual void initCode();
This method allows a star to generate code outside the main loop. This method will be
called after the schedule is created and before the schedule is executed. In contrast, the
go() method is called during the execution of the schedule, to form code blocks into a
main loop body.

int run();
In CG domains, this method does not perform any actual data movement, but executes the
go() method followed by thadvance() method.

CGTarget* cgTarget();

int setTarget(Target* t);
These methods get and set the pointer to the target to which this star is assigned. When we
set the target pointer, we also initialize the SymbolLists and the CodeStream pointers. If
this method is successful, it returfBUE otherwise it returnEALSE

virtual int isParallel() const;
virtual Profile* getProfile(int ix =0);

Ptolemy Last updated: 10/9/97

16-12 Base Code Generation Domain and Supporting

The first method returriBRUEIf this star is a wormhole or a parallel star. If it is parallel,
the second method returns the pointer to a Profile, indexed by the argument. A parallel star
stores its internal scheduling results in a Profile object .

int maxComm();
Returns the maximum communication overhead with all ancestors. It cadlsnth&ime
method of the target class to obtain the communication cost.

virtual void setProcld(int i);
virtual int getProcld();
These methods set and get the processor ID to which this star is assigned.

16.7 Class CGPortHole

Class CGPortHole is derived from class DynDFPortHole in order to support non-SDF dataflow
stars as well as SDF stars. Methods related to Fork stars are described in a the section above
on Resource Management .

In this section, we will categorize the members and methods of CGPortHole into four
categories: buffer management, buffer embedding, geodesic switching, and others.

16.7.1 Buffer Management

A CGPortHole is connected to a buffer after resource allocation. A CGPortHole maintains an
offset index into the buffer in order to identify the current position in the buffer where the port-
hole will put or get the next sample:

int offset;
This is a protected member used for indexing into the buffer connected to this port.

The methods described in this subsection are all public:
unsigned bufPos() const;
Returnsoffset , the offset position in the buffer.

virtual int bufSize() const;

virtual int localBufSize() const;
Both methods returns the size of buffer connected to this porthole. In the CGPortHole base
class, they call the corresponding methods of class CGGeodesic. Recall that the second
method returns O when it is a Fork output. If a porthole is at the wormhole boundary, both
return the product of the sample rate and the repetition count of the parent star.

virtual void advance();
This method is called bgGStar::advance() . After the parent star is executed, we
advance the offset by the number of samples produced or consumed. The offset is calcu-
lated modulo the buffer size, so that it is wrapped around if it reaches the boundary of the
buffer.

16.7.2 Buffer Embedding
As a motivating example, let's consider a DownSample star. If we allocate separate buffers to

U. C. Berkeley Department of EECS

The Almagest 16-13

the input and output ports, the buffer size of the input port will be larger than that of the output
port. Also, we will need to perform an unnecessary copy of samples. We can improve this sit-
uation by allocating one buffer at the input site and by indicating that a subset of that buffer is
the image of the output buffer. We call this relationgngbeddingthe larger input buffer is
embeddinghe smaller output buffer, and the smaller output bufferrbeddedn the larger

input buffer. Unlike the Fork buffer, the sizes of input and output embedded buffers are differ-
ent from each other. Therefore, we must specify at which position the embedded buffer begins
in the larger embedding buffer. We use this embedding relationship to implement Spread and
Collect stars in the CGC domain, without increasing the buffer requirements. For example, the
output buffers of a Spread star are embedded in the input buffer of the star, starting from dif-
ferent offsets.

CGPortHole* embeddedPort;

int embeddingFlag;
These are protected members to specify embedding relationships. The first one points to
the embedding port which this PortHole is embedded in. The second member indicates the
starting offset of embedding. The last member indicates whether this porthole is an
embedding port or not.

The following are public methods related to embedding.
CGPortHole* embedded();
int whereEmbedded();
int embedding();
These methods return the protected members described above, respectively.

void embed(CGPortHole& p, int i =-1);
This method establishes an embedding relationship between this port and the argument
portp. This porthole becomes an embedding porthole, and the argument porthole
becomes an embedded porthole. The second argument specifies the starting offset.

void embedHere(int offset);
This method, when called on an embedded porthole, changes the starting offset its embed-

ded buffer in the embedding buffer.

16.7.3 Geodesic Switching

In the specification block diagram, a PortHole is connected to a Geodesic. In code generation
domains, we usually allocate one resource to the Geodesic so that the Geodesic’s source and
destination ports can share the same resource (Note that this is not a strict requirement). After
resource allocation, we may want to alias a porthole to another porthole, and therefore associate
it with a resource other than the allocated resource. To do that, we switch the pointer of the
Geodesic to another Geodesic.

virtual void switchGeo(Geodesic* 9);
virtual void revertGeo(Geodesic* 9);
Both methods set the Geodesic pointer to the argugnenhbere is a flag to indicate
whether this port has switched its Geodesic or not. The first method sets tha BatEto
while the second method resets the flagAbSE Both methods are virtual since in
derived classes we may need to redefine the behavior, perhaps by saving the original Geo-

Ptolemy Last updated: 10/9/97

16-14 Base Code Generation Domain and Supporting

desic, which is not the default behavior. The flag is queried by:

int switched() const;
If the Geodesic is switched in this port, we have to reset the geodesic pointer of this port to
NULL in the destructor in order to prevent attempts to delete the same Geodesic multiple
times. Also, we have to make sure that both ends of a Geodesic do not switch their Geode-
sic, in order to prevent orphaning the geodesic and causing a memory leak.

16.7.4 Other CGPortHole Members

Class CGPortHole has a constructor with no argument which resets the member variables. In
the destructor, we clear th@kDests list and remove the pointer to this porthole from the
forkDests list of theforkSrc port. All members described in the subsection are public.

CGGeodesic& cgGeo() const;
This method returns a reference to the Geodesic after type casting.

void forceSendData();

void forceGrabData();
These methods put and get samples to and from the Geodesic at the wormhole boundary.
They are used when the inside code generation domain communicates by the wormhole
mechanism.

16.7.5 CGPortHole Derived Classes

Class INCGPort and class OutCGPort are publicly derived from class CGPortHole. They are
used to indicate by class type whether a porthole is an input port or an output port.

Class MultiCGPort is derived from class MultiDFPort. It has a protected member
forkSrc to point to the Fork input if its parent star is a Fork star. It has a default destructor.
CGPortHole* forkSrc;

There are two public methods related to this protected member:

void setForkBuf(CGPortHole& p);
void forkProcessing(CGPortHole& p);
The first method setsrkSrc to point to the argument port. The second method sets the

forkSrc pointer of the argument port to point to thekSrc of this MultiCGPort.

Two classes are publicly derived from MultiCGPort: MultiinCGPort and Multi-
OutCGPort. They both have the following public method:
PortHole& newPort();
This method creates an INCGPort or an OutCGPort depending on whether it is an input or
an output MultiCGPort.

U. C. Berkeley Department of EECS

The Almagest 17-1

Chapter 17. Target

Authors: Soonhoi Ha
Other Contributors: John S. Davis Il

Target has a clear meaning in code generation domains, a model of the target machine for
which code will be generated. Class CGTarget is the base class for all code generation targets
whether it is a single processor target or a multiprocessor target. Class MultiTarget, derived
from class CGTarget, serves as the base target for all multiprocessor targets. For single proces-
sor targets, we have AsmTarget and HLLTarget to distinguish assembly code generation tar-
gets and high level language generation targets. If we generate assembly code for a target, the
target will be derived from class AsmTarget. If we generate a high level language code, the tar-
get will be derived from HLLTarget. For detailed discussion for Target hierarchy, refer to [4]

in References .

In this chapter, we will describe class CGTarget and some base multiprocessor targets
since we focus on multiprocessor code generation. Refer to other sources for AsmTarget and
other high level language targets.

17.1 Class CGTarget

Class CGTarget is derived from class Target. It has a four-argument constructor.

CGTarget(const char* name, const char* starclass
const char* desc,char sep);
The first argument is the name of the target and the second argument is the star class that
this target can support. The third argument is the description of this target. The last one is
a separator character for unique symbol generation.

There are two protected states in the CGTarget:

StringState destDirectory;
IntState loopingLevel,

The first state indicates where to put the code file. The second state determines which
scheduler is used in case this target is a single processor target. By (befaink,

gLevel =0 and we do not try looping. MopingLevel = =1, we select Joe’s loop sched-
uler. Otherwise, we use the most complicated loop scheduler.

At the top level, three methods of the Target class are called in segsetnpetun, and
wrapup.

void setup();
In this method, we do the following tasks:

(1) Initialize myCode andprocedure code stream.

Ptolemy Last updated: 10/9/97

17-2 Target

(2) Select a scheduler if no scheduler is selected yet.

At this stage, we check whether the galaxy is assigned or not. In multiprocessor targets, a child
target is not assigned a galaxy until a sub-univers is created. If the galaxy is not assigned, re-
turn.

(3) Reset the symbol lists.

(4) If we are the top-level target, initialize the galaxy (which performs preinitialization and
initialization of the member blocks, including HOF star expansion and porthole type reso-
lution). Then modify the galaxy if necessary by callngdifyGalaxy . The base class
implementation of modifyGalaxy splices in type conversion stars where needed, if the
domain has supplied a table of type conversion stars. (If there is no table, type conversion
is presumed not needed. If there is a table, and a type mismatch is found that the table has
no entry to fix, then an error is reported.) Some derived domains reaeftitfeGalaxy
to perform additional transformations. For example, in AsmTarget we insert some stars
(CircToLin, LinToCirc) at loop boundaries to change the type of buffer addressing in case
a loop scheduling is performed.

virtual int modifyGalaxy();
Is a protected method.

(5) Ifitis a child target, the schedule was already made at this stage from a parallel scheduler
of the parent multiprocessor target. Otherwise, we initialize and schedule the graph.

(6) If it is a child target or it is not inside a wormhole, return. Otherwise, we first adjust the
sample rate of the wormhole portholadj{stSampleRates). Then, we generate and
download codegenerateCode andwormLoadCode.

void adjustSampleRates();

This method is a protected method to be called when this target is inside a wormhole.
After scheduling is performed, we need to multiply the sample rate of wormhole portholes
by the repetition count of the stars inside the wormhole connected to the porthole.

virtual void generateCode();
This method guides the overall procedure to generate code for single processor targets.
The procedure is as follows:

(1) If this target is a child target, caletup to initialize the variables. Copy the symbol
counter §ymbolCounter) of the parent target to the symbol counter of this target to
achieve a unique symbol in the system scope.

(2) We compute buffer sizes, allocate memory, @tecateMemory.

virtual int allocateMemory();
This method is protected. It does nothing and returns TRUE in this base class.

(3) Call the methodenerateCodeStreams(). This method will be described later.
(4) Organize the CodeStreams into a single code stream and save the resufytOote

U. C. Berkeley Department of EECS

The Almagest 17-3

streamiframeCode.
virtual void frameCode();
This method is a protected method. It does nothing in this base class.

(5) If this target is not a child target, write the generated code to artieCode.

virtual void writeCode(const char* name= NULL);
This is a public method to write thheyCode stream to the argument file. If no argument is
given, use "code.output" as the default file name.

(6) If it is a child target, copy the symbol counter to that of the parent target.

The methods described above for code generation are all virtual methods. They will be rede-
fined in the derived targets.

The method

void CGTarget::generateCodeStreams();
does the following things:

(1) Write initial code.

virtual void headerCode();
In this base class, this protected method writes the header commenh{ctue Code-
Stream.

virtual StringList headerComment(const char* begin = NULL,
const char* end ="", const char* cont = NULL);

This method is a public virtual method to generate the header comment in the code. In this
base class, the head comments include the user id, code creation date, target name, and the
galaxy name. The arguments are passed teothement method.

virtual StringList comment(const char* cmt, const char* begin =
NULL, const char* end =", const char* cont = NULL);

This public method generates a comment from a specified stnngWe prependegin
and appene@nd to the string. Ifbegin is NULL, we prepend '# as a shell-stype com-
ment. Ifcont is specified, multi-line comments are supported.

(2) We do initialization for code generation: for example, compute offsets of portholes and

callinitCode methods of stargodeGenlnit
virtual int codeGenlnit();
is a protected method. It does nothing and returns TRUE in this base class.

(3) Generate the code for the main lom@inLoopCode.

virtual void mainLoopCode();
In this method we first compute the number of iterations. If this target is inside a worm-
hole, the number is -1 indicating an infinite loop. OtherwisestthElime of the sched-
uler determines the number of iterations. In this base class, we call the following five
methods sequentiallypeginiteration, worminputCode if inside a wormholegom-

Ptolemy Last updated: 10/9/97

17-4 Target

pileRun, wormOutputCode if inside a wormhole, anehdlteration. In the derived
class, this sequence may be changed .

void beginlteration(int numiter , int depth);
void endlteration(int numiter , int depth);

These public methods form the head or ending of the main loop. The arguments of both
methods are the number of iteration and the depth of the loop. In the main loop, the depth
is set 0.

virtual void wormlnputCode();

virtual void wormOutputCode();

virtual void worminputCode(PortHole& p);
virtual void wormOutputCode(PortHole& p);

The above methods are all public. They generate code at the wormhole boundary if the tar-
get resides in a wormhole. The last two methods generate code for the argument porthole
that is at the wormhole boundary. In this base class, put commentSade CodeStream
indicating that the methods are successfully executed. They should be redefined in the
derived classes to be useful. The first two methods traverse all portholes at the wormhole
boundary to use the last two methods.

virtual void compileRun(SDFScheduler* sched);
This protected method calempileRun of the argument scheduler. By default, this
method callgjo methods of all stars in the scheduled order to generate cog€ate
CodeStream.

(4) Call wrapup methods of stars to generate code after the main loop, but still inside the
main function.

(5) Add more code if necessatgilerCode
virtual void trailerCode();
This protected method does nothing in this base class.

The method

virtual int wormLoadCode();
is protected. It downloads code to the target machine and starts executing it if the target
resides in a wormhole. In this base class, we just display the code.

Now, we discuss thein method.

int run();
If the target is not inside a wormhole, it generates code by cgHimgateCode as
explained above. Otherwise, we do the transfer of data to and from the target since this
method will be called when the wormhole is execuseddWormData andreceive-
WormData in sequence.

virtual int sendWormData();

virtual int receiveWormData();

virtual int sendWormData(PortHole& P);
virtual int receiveWormbData(PortHole& P);

U. C. Berkeley Department of EECS

The Almagest 17-5

The above methods are all protected. They send and receive samples to this target when
run inside a wormhole. The argument is the porthole of the interior star at the wormhole
boundary. If no argument is given, send and receive for all the appropriate portholes. In
this base class, we generate comments to indicate that these methods are successfully
called.

void wrapup();
In derived classes, wrapup will generate code to finalize, download, and run the code. This
CGTarget class just displays the code.

So far, we have explained the three top level methods of the CGTarget class. Methods related
to the CodeStream and unique symbol generations can be found in the previous chapter. We
will describe the remaining members.

17.1.1 Other CGTarget protected members

char* schedFileName;
The name of the log file in case a loop scheduling is taken. By default, the name is set to
"schedule.log "

int noSchedule;
This is a flag to be set to TRUE if scheduling is not needed in the setup stage. This flag
will be set when the schedule is copied fraspySchedule method in parallel code gen-
eration. By default, this flag is set FALSE.

StringList indent(int depth);
This method returns a list of spaces for indenting. The number of spaces is 4 per each
depth.

void switchCodeStream(Block* b, CodeStream* S);
This method is set to the curremgCode pointer of the argument blodkto s Code-
Stream. Ifb is a galaxy, perform this for all component stars.

17.1.2 Other CGTarget public members

static int haltRequested();
Returns TRUE if error is signaled while Ptolemy is running.

int inWormhole();
int isA(const char* class);

Is a standarédA method for type identification.

Returns TRUE or FALSE, based on whether the target is inside a wormhole or not.
Block* makeNew() const;
Create a new, identical CGTarget. Internal variables are not copied.

virtual int incrementalAdd(CGStar* S, int flag =1);
This method is called when we add code for the argumerd starementally. Ifflag is
1 (default), we allocate memory for the star, andssillp, initCode, go, andwra-

Ptolemy Last updated: 10/9/97

17-6 Target

pup of the star. Iflag is 0, we just caljo method of that star. In this base class, generate
an error message.

virtual int insertGalaxyCode(galaxy* g, SDFScheduler* sched);
This method inserts the code for the argument gajargrementally. We have to allocate
resources and generate initialization, main loop, and wrapup code. It is used to generate
code for the galaxy inside a dynamic construct. A dynamic construct is a wormhole in the
code generation domain. When we callghemethod of the wormhole, we generate code
for the inside galaxy.

virtual int compileCode();
virtual int loadCode();
virtual int runCode();
These methods compile and load the code, and run the target. The base class, generates

error messages.

void writeFiring(Star& S, intdepth);
This method generates code for a firing of the argument star. The base class simply exe-
cutesrun of the star.

void genLooplnit(Star& S,intreps);

void genLoopEnd(Star& S);
In case loop scheduling is taken, we may want to perform loop initialization routines for
stars inside each loop. These methodshegjinLoop andendLoop methods of the
argument star.

void copySchedule(SDFSchedule& sched);
If this is a child target, the schedule is inherited from the parallel scheduling of the parent
target. This method copies the argument schedule to the schedule of this target and set
noSchedule flag.

virtual int systemCall(const char* cmd, const char* error = NULL, const
char* host ="localhost");
This method makes a system call usstgsystem utility function. If error is specified

and the system call is unsuccessful, display the error message.

void amlInherited();
This method declares that this target is inherited from other targets.

virtual int support(Star* S);
Returns TRUE if this target allows the argument star; returns FALSE otherwise.

virtual int execTime(DataFlowStar* S, CGTarget* t =0);
We return the execution time of the argument stawrthe argument target In a hetero-
geneous system, execution time of a given star may vary depending on which target exe-
cutes the star. In this base class, we justhegixecTime method of the star.

U. C. Berkeley Department of EECS

The Almagest 17-7

17.1.3 Class HLLTarget

Class HLLTarget, derived from CGTarget class, is a base class of all high level language code
generation targets. There is AsmTarget class for the base target of all assembly code generation
targets. Since we will illustrate the C code generation target, we will explain the HLLTarget
class only in this subsection.

HLLTarget class has a constructor with three arguments as CGTarget class. In this base class,
we provide some methods to generate C++ code. The following three protected methods are
defined to create a C++ identifier, derived from the actual name.

StringList sanitize(const char* s)const ;

StringList sanitizedName(const NamedObj& b) const ;

virtual StringList sanitizedFullName(const NamedObj& b) const ;
The first method takes a string argument and modifies it with a valid C++ identifier. If the
string contains a non-alphanumeric character, it will replace it with ’_". If the string starts
with a number, it prepends "X’ at the beginning. The second method calls the first method
with the name of the argument object. The third method generates an identifier for the
argument object that will be placedsimuct data structure. Therefore, we put '’
between the object name and its parent name.

Some public methods are defined.

void beginlteration(int repetitions , int depth);

void endlteration(int repetitions , int depth);
If the repetitions is negative, we printwahile loop with infinite repetition. Other-
wise, we generatefar loop. The second argumetdpth determines the amount of
indent we put in front of the code.

void wrapup();
Saves the generated code to "code.output” file name.

Since this target is not an actual target, it has a pure virtual methkelNew.

17.2 Multiprocessor Targets

There are two base multiprocessor targets: MultiTarget and CGMultiTarget. Class MultiTar-
get, derived from class CGTarget, serves a base multiprocessor target for CG domain. On the
other hand, CGMultiTarget class is the base multiprocessor target for CG domain, thus derived
from MultiTarget class. Since the MultiTarget class is a pure virtual class, the derived classes
should redefine the pure virtual methods of the class.

Some members only meaningful for CG domain are split to MultiTarget class and the CGMul-
tiTarget class. If they are accessed from the parallel scheduler, some members are placed in
MultiTarget class. Otherwise, they are placed in CGMultiTarget class (Note that this is the or-
ganization issue). Refer to the CGMultiTarget class for detailed descriptions.

Ptolemy Last updated: 10/9/97

17-8 Target

17.2.1 Class MultiTarget
Class MultiTarget, derived from CGTarget, has a constructor with three arguments.

MultiTarget(const char* name, const char* Starclass , const char* desc);
The arguments are the name of the target, the star class it supports, and the description
text. The constructor hidésopingLevel parameter inherited from the CGTarget class
since the parallel scheduler does no looping as of now.

IntState nprocs;
This protected variable (or state) represents the number of processors. We can set this
state, and also change the initial value, via the following public method:

void setTargets(int nuny;
After child targets are created, the number of child targets is stored in the following pro-
tected member:

int nChildrenAlloc;
There are three states, which are all protected, to choose a scheduling option.

IntState manualAssignment;

IntState oneStarOneProc;

IntState adjustSchedule;
If the first state is set to YES, we assign stars manually by setticig state of all stars.
If oneStarOneProc is setto YES, the parallel scheduler puts all invocations of a star into
the same processor. Note that if manual scheduling is chwsStarOneProc is auto-
matically set YES. The last stateljustSchedule, will be used to override the sched-
uling result manually. This feature has not been implemented yet. There are some public
methods related to these states:

int assignManually();
int getOSOPreq();
int overrideSchedule();
void setOSOPreq(int i);
The first three methods query the current value of the states. The last method sets the cur-

rent value of theneStarOneProc state to the argument value.

There are two other states that are protected:

IntState sendTime;

IntState inheritProcessors;
The first state indicates the communication cost to send a unit sample between nearest
neighbor processors.ilheritProcessors is set to YES, we inherit the child targets
from somewhere else by the following method.

int inheritChildTargets(Target* mtarget);
This is a public method to inherit child targets from the argument target. If the number of
processors is greater than the number of child targetsanget, this method returns
FALSE with error message. Otherwise, it copies the pointer to the child targets-of
get as its child targets. If the number of processors is 1, we can use a single processor tar-

U. C. Berkeley Department of EECS

The Almagest 17-9

get as the argument. In this case, the argument target becomes the child target of this
target.

void enforcelnheritance();

int inherited();
The first method sets the initial value of thieeritProcessors state while the second
method gets the current value of the state.

void initState();
Is a redefined public method to initialize the state and implements the precedence relation
between states.

Other MultiTarget public members

virtual DataFlowStar* createSpread() = O;

virtual DataFlowStar* createCollect() = 0;

virtual DataFlowStar* createReceive(int from , int to , int num =0;

virtual DataFlowStar* createSend(int from , int to , int num = 0;
These methods are pure virtual methods to create Spread, Collect, Receive, and Send stars
that are required for sub-universe generation. The last two method need three arguments to
tell the source and the destination processors as well as the sample rate.

virtual void pairSendReceive(DataFlowStar* snd, DataFlowStar* rev);
This method pairs a Senshd, and a Receivegy, stars. In this base class, it does noth-

ing.

virtual IntArray* candidateProcs(ParProcessors* procs , DataFlowStar* S);
This method returns the array of candidate processors which can schedulesh&btar
first argument is the current ParProcessors that tries to schedule the star . This class does
nothing and returns NULL.

virtual Profile* manualSchedule(int count);
This method is used when this target is inside a wormhole. This method determines the
processor assignments of the Profile manually. The argument indicates the number of
invocations of the wormhole.

virtual void saveCommPattern();

virtual void restoreCommPattern();

virtual void clearCommPattern();
These methods are used to manage the communication resources. This base class does
nothing. The first method saves the current resource schedule, while the second method
restores the saved schedule. The last method clears the resource schedule.

virtual int scheduleComm(ParNode* node,int when,int limit =0);
This method schedules the argument communication mode, available atvhen. If
the target can not schedule the node uintit, ~ return -1. If it can, return the schedule
time. In this base class, just return the second argumken, indicating that the node is
scheduled immediately after it is available to model a fully-connected interconnection of
processors.

Ptolemy Last updated: 10/9/97

17-10 Target

virtual ParNode* backComm(ParNode* node);
For a given communication node, find a communication node scheduled just before the
argument node on the same communication resource. In this base class, return NULL.

virtual void prepareSchedule();
virtual void prepareCodeGen();

These two methods are called just before scheduling starts, and just before code genera-
tion starts, to do necessary tasks in the target class. They do nothing in this base class.

17.2.2 Class CGMultiTarget

While class CGMultiTarget is the base multiprocessor target for all code generation domains,
either homogeneous or heterogeneous, it models a fully-connected multiprocessor target. In the
target list in pigi, "FullyConnected" target refers to this target. It is defingOLEMY/src/
domains/cg/targets directory. It has a constructor with three argument like its base class,
MultiTarget.

To specify child targets, this class has the following three states.

StringArrayState childType;
StringArrayState resources;
IntArrayState relTimeScales;

The above states are all protected. The first staitdType, specifies the names of the

child targets as a list of strings separated by a space. If the number of strings is fewer than
the number of processors specifiechpyoc parameter, the last entry dfildType is

extended to the remaining processors. For example, if wpeet equal to 4 and

childType to be "default-CG56[2] default-CG96", then the first two child targets

become "default-CG56" and the next two child targets become "default-CG96".

The second stategsources, specifies special resources for child targets. If we say "0 XXX

; 3YYY", the first child target (index 0) has XXX resource and the fourth child (index 3) has
YYY resource. Here ’;’ is a delimeter. If a child target (index 0) hessaurces state al-

ready, XXX resource is appended to the state at the end. Note that we can not edit the states of
child targets in the current pigi. If a star needs a special resource, the star designer should define
resources StringArrayState in the definition of the star. For example, a star S is created with
resources = YYY. Then, the star will be scheduled to the fourth child. One special resource

is the target index. Hesources state of a star is set to "2", the star is scheduled to the third
target (index 2).

The third state indicates the relative computing speed of the processors. The number of
entries in this state should be equal to the number of entréeddinype. Since we specify
the execution of a star with the number of cycles in the target for which the star is defined, we
have to compensate the relative cycle time of processors in case of a heterogeneous target
environment.

Once we specify the child targets, we select a scheduler with appropriate options.
States inherited from class MultiTarget are used to select the appropriate scheduling options.
In the CGMultiTarget class, we have the following three states, all protected, to choose a

U. C. Berkeley Department of EECS

The Almagest 17-11

scheduler unless the manual scheduling option is taken.

IntState ignorelPC;
IntState overlapComm;
IntState useCluster;

The first state indicates whether we want to ignore communication overhead in scheduling
or not. If it says YES, we select the Hu’s Level Scheduler . If it says NO, we use the next
state,overlapComm. If this state says YES, we use the dynamic level scheduler . If it
says No, we use the last statseCluster. If it says YES, we use the declustering algo-
rithm . If it says NO, we again use the dynamic level scheduler. By default, we use the
dynamic level scheduler by setting all states NO. Currently, we do not allow communica-
tion to be overlapped with computation. If more scheduling algorithms are implemented,
we may need to introduce more parameters to choose those algorithms.

There are other states that are also protected.
StringState filePrefix;
Indicates the prefix of the file name generated for each processor. By default, it is set to
"code_proc", thus creating code_procO, code_procl, etc for code files of child targets.

IntState ganttChart;
If this state says YES (default), we display the Gantt chart of the scheduling result.

StringState logFile;
Specifies the log file.

IntState amortizedComm;
If this state is set to YES, we provide the necessary facilities to packetize samples for com-
munication to reduce the communication overhead. These have not been used nor tested
yet.

Now, we discuss the three basic methadsip, run, wrapup.

void setup();

(1) Based on the states, we create child targets and set therapgpeChildren.
virtual void prepareChildren();
This method is protected. If the children are inherited, it does nothing. Otherwise, it clears
the list of current child targets if they exist. Then, it creates new child targetsabs-
Child method and give them a unique name u§ieBrefix followed by the target
index. This method also adjusts tkeources parameter of child targets with the
resources specified in this targetesourcelnfo. Finally, it initializes all child tar-
gets.

virtual Target* createChild(int index);
This protected method creates a child target, determinehildyypes, by index.

virtual void resourcelnfo();
This method parses thesources state of this class and adjusts té&urces param-

Ptolemy Last updated: 10/9/97

17-12 Target

eter of child targets. If n@esources parameter exists in a child target, it creates one.

(2) Choose a scheduler based on the steitesseScheduler.

virtual void chooseScheduler();
This is a protected method to choose a scheduler based on the states related to scheduling
algorithms.

(3) If it is a heterogeneous target, we flatten the wormhéi&genWorm. To represent a
universe for heterogeneous targets, we manually partition the stars using wormholes:
which stars are assigned to which target.

void flattenWorm();

This method flattens wormholes recursively if the wormholes have a code generation
domain inside.

(4) Set up the scheduler object. ClestCode stream.
(5) Initialize the flattened galaxy, and perform the parallel schedularget::setup.

(6) If the child targets are not inherited, display the Gantt chart if requested:
writeSchedule.

void writeSchedule();
This public method displays a Gantt chart.

(7) If this target is inside a wormhole, it adjusts the sample rate of the wormhole ports
(CGTarget::adjustSampleRates), generates codeydnerateCode), and down-
loads and runs code in the targeGrarget::wormLoadCode).

void generateCode();
This is a redefined public method. If the number or processors is 1, jugtreahte-
Code of the child target and return. Otherwise, we first set the stop time, or the number of
iteration, for child targetsgéginlteration). If the target is inside a wormhole, the
stop time becomes -1 indicating it is an infinite loop. The next step is to generate worm-
hole interface codevorminputCode, wormOutCode if the target is inside a wormhole.
Finally, we generate code for all child targdtarScheduler::compileRun). Note
that we generate wormhole interface code before generating code for child targets since
we can not intervene the code generation procedure of each child target once started.

void beginlteration(int repetitions ,int depth);

void endlteration(int repetitions ,int depth);
These are redefined protected methods. In the first method, wet8abTime to set
up the stop time of child targets. We do nothing in the second method.

void setStopTime(double val);
This method sets the stop time of the current target. If the child targets are not inherited, it
also sets the stop time of the child targets.

void wormInputCode();
void wormQutputCode();
void wormInputCode(PortHole& p);

U. C. Berkeley Department of EECS

The Almagest 17-13

void wormOutputCode(PortHole& p);
These are all redefined public methods. The first two methods traverse the portholes of
wormholes in the original graph, find out all portholes in sub-universes matched to each
wormhole porthole, and generate wormhole interface code for the portholes. The compli-
cated thing is that more than one ParNode is associated with a star and these ParNodes
may be assigned to several processors. The last two methods are used when the number of
processors is 1 since we then Gs&Target::worminputCode,wormOutputCode
instead of the first two methods.

int run();
If this target does not lie in a wormhole or it has only one processor, we jU3Glise
get:run to generate code. Otherwise, we transfer data samples to and from the target:
sendWormData andreceiveWormData.

int sendWormbData();
int receiveWormData();

These are redefined protected methods. They send data samples to the current target and
receive data samples from the current target. We traverse the wormhole portholes to iden-
tify all portholes in the sub-universes corresponding to them, anskadlVormData,
receiveWormData for them.

void wrapup();
In this base class, we write code for each processor to a file.

Other CGMultiTarget protected members

ParProcessors* parProcs;
This is a pointer to the actual scheduling object associated with the current parallel sched-
uler.

IntArray canProcs;
This is an integer array to be usea¢amdidateProcs to contain the list of processor
indices.

virtual void resetResources();
This method clears the resources this target maintains such as communication resources.

void updataRM(int from ,int to);
This method updates a reachability matrix for communication amortization. A reachability
matrix is created idmortizedComm is set to YES. We can packetize communication
samples only when packetizing does not introduce deadlock of the graph. To detect the
deadlock condition, we conceptually cluster the nodes assigned to the same processors. If
the resulting graph is acyclic, we can packetize communication samples. Instead of clus-
tering the graph, we set up the reachability matrix and update it in all send nodes. If there
is a cycle of send nodes, we can see the deadlock possibility.

Other CGMultiTarget public members
The destructor deletes the child targets, scheduler, and reachability matrix if they exist. There

Ptolemy Last updated: 10/9/97

17-14 Target

is anisA method defined for type identification.

Block* makeNew() const;
Creates an object of CGMultiTarget class.

int execTime(DataFlowStar* S,CGTarget* t);
This method returns the execution time of a stéscheduled on the given target If the
target does not support the star, a value of -1 is returned. If it is a heterogeneous target, we
consider the relative time scale of processors. If the second argument is NULL or itis a
homogeneous multiprocessor target, just return the execution time of the star in its defini-
tion.

IntArray* candidateProcs(ParProcessors* par , DataFlowStar* S);
This method returns a pointer to an integer array of processor indices. We search the pro-
cessors that can schedule the argumensdtgrchecking the star type and the resource
requirements. We include at most one idle processor.

int commTime(int from ,int to,int nSamples , int type);
This method returns the expected communication overhead when transi€aing/es
data fromfrom processor t@o processor. Itype = 2, this method returns the sum of
receiving and sending overhead.

int scheduleComm(ParNode* commint when, int limit =0);
Since it models a fully-connected multiprocessor, we can schedule a communication star
anytime without resource conflict that returns the second argument

ParNode* backComm(ParNode* rev);
This method returns the corresponding send node paired with the argument receive node,
rcv. If the argument node is not a receive node, return NULL.

int amortize(int from , int to);
This method returns TRUE or FALSE, based on whether communication can be amortized
between two argument processors.

17.2.3 Class CGSharedBus

Class CGSharedBus, derived from class CGMultiTarget, is a base class for shared bus multi-
processor targets. It has the same kind of constructor as its base class.

This class has an object to model the shared bus.

UniProcessor bus;
UniProcessor bestBus;

These are two protected members to save the current bus schedule and the best bus sched-
ule obtained so far. THais andbestBus are copied to each other by the following pub-
lic methods.

void saveCommPattern();

U. C. Berkeley Department of EECS

The Almagest 17-15

void restoreCommpPattern();
clearCommPattern();
void resetResources()
The first method is a public method to cleas schedule, while the second is a protected

method to clear botbus andbestBus.

This classes redefines the following two public methods.

int scheduleComm(ParNode* node, int when, int limit =0);
This method schedules the argument node availalbleeat onbus. If we can schedule
the node beforémit, = we schedule the node and return the schedule time. Otherwise,
we return -1. Ifimit = 0, there is no limit on when to schedule the node.

ParNode* backComm(ParNode* node);
For a given communication node, find another node scheduled just before the argument
node orbus.

17.3 Heterogeneous Support

In this section, we summarize the special routines to support heterogeneous targets. They are
already explained in earlier chapters.

1. To specify the component targets , we firstcb@tiTypes state of the target
class that must be derived from class CGMultiTarget. We may add special
resources to the processors by settespurces state, a list of items separated
by ;. An item starts with the target index followed by a list of strings identifying
resources. The relative computing speed of processors are specifigdi-by
meScales state.

2. An application program for a heterogeneous target uses wormholes. In pigi, all
stars in a universe should be in the same domain. To overcome this restriction, we
use wormhole representation to distinguish stars for different targets, or domains,
but still in the same universe. Once the graph is read into the Ptolemy kernel, all
wormholes of code generation domain are flattened to make a single universe:
flattenWorm method of CGMultiTarget class. Currently, we manually partition
the stars to different kinds of processors. For example, if we have three "default-
CG96" targets and one "default-CG56" target, we partition the stars to two kinds:
CG96 or CG56. This partitioning is based on the original wormhole representa-
tion. If we ignore this partitioning, we can apply an automatic scheduling with the
flattened graph. This feature has not been tested yet even though no significant
change is required in the current code.

3. When we schedule a star in the scheduling phase, we first obtain the list of proces-
sors that can schedule the st@mndidateProcs method ofCGMultiTarget
class. The execution time of the star to a processor is compute@dhime
method ofCGMultiTarget class considering the relative speed of processors.

Ptolemy Last updated: 10/9/97

17-16 Target

4. After scheduling is performed, we create sub-universes for child targets. In case
manual partitioning is performed, we just clone the stars from the original graph in
the sub-universes. In case we use automatic partitioning, we need to create a star in
the current target with the same name as the corresponding star in the original
graph:cloneStar private method obniProcessor class. We assume that we
use the same name for a star in all domains.

U. C. Berkeley Department of EECS

The Almagest 18-1

Chapter 18. CGC Domain

Authors: Soonhoi Ha
Other Contributors: Mudit Goel

In this chapter, we will explain the current implementation of C code generation domain. The
source code can be fouBTOLEMY/src/domains/cgc/kernel directory. We follow the
general framework for code generation defined in CG kernel directory.

In the CGC domain, the resource we have is the name space. We have to avoid name
conflicts by guaranteeing unique names for different variables. The most complicated task is
to determine the dimension, or buffer size, of each variable, and the method how to access
them; static buffering, linear indexing, or modulo addressing.

We use the CGC domain to test new functionalities in code generation: buffer embed-
ding for example. We have tested some simple demos to verify the design.

18.1 Buffer Allocation

In the CGC domain, we allocate one buffer for each connection in principle. We have to deter-
mine the required size of buffers first. If a portholensbedded and the buffer size require-

ment is equal to the sample rate of the embedded port, we do NOT allocate a buffer on that
connection. We will use static buffering for athbeddedndembeddingortholes. If the buff-

er requirement of an embedded(or embedding) porthole is not equal to the sample rate of the
porthole, we actually need to have two buffers on that connection and copy data between these
buffers. In this case, we splice a Copy star on the arc and schedule the Copy star appropriately
to generate code for copying data. After inserting the Copy star, we will end up with one buffer
per connection. Another cause of copy requirement is type conversion from complex to float/
int or from float/int to complex. Then, we splice a type-conversion star on the arc.

Class CGCTarget redefines the following protected method for buffer allocation .
int allocateMemory();
In this method, we first merge cascaded forks into a single fork whose input keeps the list
of all fork destinations. We will allocate only one buffer for each fork. All fork destina-
tions will refer to the same fork input buffer. Then this method does the following tasks:

1. Determine the buffer requirements for all portholes.
2. Splice Copy stars or type conversion stars if necessary.

3. Set the buffer type for each output porthole: either OWNER or EMBEDDED. If
the output porthole is embedded, or the corresponding input porthole is embedded,
it is called EMBEDDED. Otherwise, itis OWNER. The buffer type of an output is
determined using the following public method of CGCPortHole class:

void setBufferType();

Ptolemy Last updated: 10/9/97

18-2 CGC Domain

4. We assign unique names for buffers.

5. We initialize the offset pointer for each porthole which is associated with a buffer
of size greater than (n{tOffset method of CGCPortHole class). This offset
pointer indicates from which offset of the buffer the porthole starts reading or writ-
ing samples.

int initOffset();
This is a public method of CGCPortHole class to initialize the offset pointer. If there are
delays, or initial samples, on the arc, these samples are placed at the end of the buffer. The
offset pointer of a porthole indicates the location of the last sample the next firing of its
parent star will produce or consume. It is compatible with the SDF simulation domain:
$ref(porthole,num) in CGC stars is now equivalentgorthole%num in SDF stars.
We can set the offset pointer of an output porthole manually by the following public
method of CGCPortHole class.

void setOffset(int V);
Now, we will explain steps (1), (2), and (4) in more detail.

18.1.1 Buffer requirement

To determine the buffer requirements of portholes, we traverse portholes of all stars, and call
finalBufSize method of CGCPortHole class.

void finalBufSize(int statBuf);
This is a public method of CGCPortHole class to determine the buffer size for this port-
hole. The argument indicates whether we try to use static buffering or not. We allocate one
buffer for each connection. Therefore, we do nothing if this porthole is an input porthole.
If this porthole is disconnected, we set the buffer size equal to the number of samples pro-
duced for each firing. If it lies at wormhole boundary, welos#BufSize method of
CGPortHole class to determine the size of buffer and return. Otherwise, we do the follow-

ing:

1. We can manually assign the buffer size by caliéngestBufSize for an output
porthole of interest in the setup stage of a star:

void requestBufSize(int Sz);
This method sets the buffer size manually. The argument size should not be smaller than
the minimum size determined by the scheduler. The minimum size determined by the
scheduler is the sum of maximum number of samples accumulated on the arc during the
schedule and the number of old samples to be access from the destinatiorspast. If
smaller than this minimum value, we generate a warning message and give up manual
allocation.

2. We set the initial buffer size by callingcalBufSize method of CGPortHole
class. If argumendtatBuf = 1, we set the buffer size as a smallest multiple of the
sample rate of this porthole, which is not less than the initial buffer size. By doing
this, we increase the chance of using linear buffering. We also set the waste factor
in CGCGeodesic class to a huge number by calling the following public method in

U. C. Berkeley Department of EECS

The Almagest 18-3

CGCGeodesic class:

void preferLinearBuf(int i)
The waste factor set by the above method can be obtained by the following redefined pro-
tected method of the CGCGeodesic class.

double wasteFactor() const;

3. We set two flags for this porthole to indicate we can use static buffering and/or lin-
ear buffering:hasStaticBuf and asLinearBuf. These two flags are all pri-
vate. If static buffering flag is set, we use direct addressing in the generated code to
access the buffer. If linear buffering flag is set, we will use indirect addressing and
no modulo addressing will be required. Otherwise, we will use indirect addressing
and modulo addressing in the generated code to access the allocated buffer. Ini-
tially both flags are set TRUE. If this porthole needs to access past samples, we
reset both flags to FALSE. When the argumsatBuf is given 0, we give up
static buffering in case the buffer size determined in (2) is greater than the sample
rate of this porthole. Note that if a loop scheduler is usatguf becomes 0 and
some possibilities of static buffering are sacrificed as the cost of code compaction.
The following method is called to adjust the flags further.

void setFlags();
Is a protected member of CGCPortHole class. If the final buffer size is not a multiple of
the sample rate, we resafLinearBuf flag to 0. We have to use modulo addressing in
the generated code. If the product of the sample rate and the repetition count of its parent
star is not a multiple of the final buffer size, we give up static buffering, set&Syat-
icBuf to 0. If an output porthole is embedded or embedding, we set both flags TRUE
since we enforce static buffering.

4. As the final step, we set the flags for destination portholes. If this porthole is con-
nected to a fork input, all fork destinations will be the destination portholes of this
porthole. We first check whethetatBuf argument is 0 and the buffer size is
greater than the sample rate of the porthole. And, wesei®llags method for
that porthole. If the porthole needs to access past samples, or the number of initial
samples on the connection is not a multiple of the sample rate, we give up linear
buffering.

The final buffer size can be obtained by the following two public methods of
CGCPortHole class.
int maxBufReq() const;
int bufSize() const { return maxBufReq(); }
The above methods return the final buffer size associated with this porthole. If it is a fork
destination, it returns the size of the fork input buffer. If the porthole has switched its Geo-
desic , it returns the size of buffer associated with the switched Geodesic.

The flags for static buffering and linear buffering can be obtained by the following
public methods of CGCPortHole class:

int linearBuf() const;
int staticBuf() const;

Ptolemy Last updated: 10/9/97

18-4 CGC Domain

We give up static buffering for a CGPortHole by calling the following public method of
CGCPortHole class.

void giveUpStatic();

18.1.2 Splice stars

After buffer requirements for all portholes are determined, we can detect the arcs which can
not have only one buffer. For instance, if we need to convert data types from complex to float/
int or vice versa automatically, we need two buffers on the arc: one for complex variables and
the other for float/int variables. This copying operation is required since C language does not
provide built-in "complex” type variable. Therefore, we define "complex” type data in the gen-
erated code as follows;

static char* complexDecl =

"\back n#if !defined(COMPLEX_DATA)\back n#define COMPLEX_DATA 1"

"\back n typedef struct complex_data { double real; double imag; }

complex; \back n"

"#endif\back n";
Another case is when an embedded or embedding porthole requires a buffer whose size is
greater than the sample rate of the porthole. Recall that an embedded or embedding port-
hole will assume static buffering for each execution when we generate code for that port-
hole. If the buffer size is larger than the sample rate, we may not use static buffering. We
need two buffers for the embedded or embedding porthole.

Rather than assigning two buffers on an arc and letting the target generating code to
copy data between these two buffers, we splice a star on the arc. The spliced star will separate
two buffers on one arc into one buffer on its input and the other buffer on its output arc. When
this spliced star is scheduled before the destination star of after the source star, it will generate
code to copy data from the input buffer to the output buffer.

Stars are spliced in the following protected method of CGCTarget class.
void addSpliceStars();
This method traverses all portholes of stars in the galaxy.

When we splice a star at an input porthole (destination porthole), we initialize the
spliced star and set the target pointer. A spliced star should have one "input" and one "output".
We set the sample rate of these portholes equal to the sample rate of the input porthole. The
buffer size of the input porthole of the spliced star is determined by the original source port-
hole. The buffer size of the output porthole is set the sample rate of the input porthole. And,
we check whether static or linear buffering can be used for the portholes. The input porthole
of a spliced Copy star gives up static buffering while the output porthole of the spliced Copy
star and the original destination porthole can use static and linear buffering. In case we spliced
a type conversion star, we need to change the type of the original source porthole.

We splice a Copy star at the output (source porthole) when the output is an embedded
or embedding porthole and the buffer size is larger than the sample rate of the output porthole.
We initialize the spliced star and set the target pointer. The sample rate of the input and output
porthole of the spliced Copy star is equal to the sample rate of the output porthole. The buffer
size of the output porthole of the spliced star is set to the buffer size of the arc. We give up

U. C. Berkeley Department of EECS

The Almagest 18-5

static buffering for this output porthole. On the other hand, we change the buffer size of the
source porthole to the sample rate of the porthole.

We need to pay special attention to Collect (or Spread) stars. A Collect (or Spread) star
is not a regular SDF star so that it is not scheduled when all input data are available. Actually,
we do not execute the spliced Collect (or Spread) stars. But, the output porthole of a Collect
(or Spread) star is an embedding (or embedded) porthole. And its buffer size can be larger
than the sample rate of the porthole. In this case, we splice a Copy star at the destination port-
hole, not at the source porthole. We schedule this Copy star before the destination star. The
sample rate of portholes of the spliced Copy star is equal to the sample rate of the destination
porthole. The output buffer size of the spliced star is set the the buffer size of the arc while the
input buffer size now becomes the sample rate of the source porthole. The trickest part here is
to determine the offset pointers. We copy data when the destination porthole requires it.
Therefore, the offset pointers of the input porthole and the output porthole of the spliced Copy
star depends on the initial delay on the arc. We manually set the oftseOlffget method
of CGCPortHole class.

There is another case we need data copying between two buffers: when two embedded
portholes are connected together. Suppose, an output porthole of a Spread star is connected to
an input porthole of a Collect star. Since the output porthole of a Spread star is embedded to
the input buffer and the input porthole of a Collect star is embedded to the output buffer, we
need to copy data from the input buffer of the Spread star to the output buffer of the Collect
star. Since we do not schedule neither Spread nor Collect star, we may not splice a Copy star
either at the source porthole not at the destination porthole. Therefore, we leave it as a special
case so that we generate code to copy data between two buffecvaDataBetween-

Shared method of CGCStar class after executing the star connected to the input porthole of
the Spread star. So, we do not splice star when two embedded portholes are connected
together.
void moveDataBetweenShared();
This is a protected method of CGCStar class. This method is calledrmgide method
after generating code for a star. If the star is connected to an embedding porthole of a star
of which an embedded output porthole is connected to an embedded porthole. Since we
meet the case when two embedded portholes are connected, we generate code for copying
data between two embedding buffers.

Scheduling spliced stars

When we splice a star at the input port of a star, we want to schedule the spliced star before the
star. On the other hand, we want to schedule the spliced star after a star if we splice a star at the
output porthole of the star. When we splice stars, we are already given the schedule. Therefore,
we need to insert spliced stars into the schedule. An intuitive approach is to insert them into the
schedule list.

Currently, we use a simpler method. We use the fact that the spliced star and the star
connected to the spliced star can be regarded as a cluster and schedule of that cluster is well
known. Our idea is to actually execute the cluster when we execute a star if the star is con-
nected to spliced stars. CGCStar class has a private member to keep the listapliséars:

Clust. Initially, the star itself is inserted to the list. If we splice a star at the input porthole,
we prepend the spliced star to the list. If we splice a star at the output porthole, we append the

Ptolemy Last updated: 10/9/97

18-6 CGC Domain

spliced star to the list. And, we redefin@ method.

int run();
If there are spliced stars, or the list size is greater than 1, we traverse the list and execute
runlt method for each star. Otherwise, we exeauté method.

int runlt();
It is a protected method of CGCStar class to generate main code for this star. If generates a
comment regarding this star and main code. It updates offset pointers of the star. Finally, it
callsmoveDataBetweenShared method to generate code to copy data between two
embedding portholes if necessary.

18.1.3 Buffer naming

One major task for resource assignment in the CGC domain is to give a unique name for each
variable. In the setup stage of the CGCTarget, we assign a unique index value to each star start-
ing from 1 to the number of stars in the galaxy. The CGCTarget has two protected members to
give a unique index for galaxy.
int galld;
int curld,;
The second member is used to give unique indices for galaxies while the first member
indicates the index of the current galaxy.

Now, the CGCTarget can generate a unique name for each variable, portholes and
states, by the following protected method.
StringList sanitizedFullName(const NamedObj& b) const;
In this method, the argument object is a porthole or a state of a star. We prefix 'g’ followed
by the galaxy index, followed by " ", followed by the name of the star, followed by
another’_’, followed by the star index, followed by yet another ’_’ to the name of the
object. For example, if star A has a state xx and the star index is 2 and the galaxy index is
1, the name of the state becomes "gl_A 2 xx".

StringList correctName(const NamedObj& by;
Is a public version ofanitizedFullName method.

Now, we are ready to generate unique names for portholes.
void setGeoName(char* name;
Is a public method of CGCPortHole class. If this porthole is disconnected and no Geode-
sic is assigned, we store the name in the porthole. Otherwise, we store the name in the
Geodesic by calling the following public method of CGCGeodesic class.

void setBufName(char* name;
The buffer name of a porthole can be obtained by the following public method of
CGCPortHole class.

const char* getGeoName() const;

This method returns the buffer name stored in this object if it is disconnected,gat-call
BufName method of CGCGeodesic class. If it is a fork destination, it returns the name of

U. C. Berkeley Department of EECS

The Almagest 18-7

the fork input buffer.

18.2 Data structure for galaxy and stars

In the global declaration section of the generated code, we declare data structures for stars. At
early design stage of CGC domain, we stagct construct of C language to declare the data
structure of the program. This way, we could assign unique memory locations to variables very
easily. But, the length of a variable gets large as the hierarchy of the graph grows. Furthermore,
we reduce significant amount of compiler optimization possibility. Therefore, we invented a
scheme to generate unique symbols for variabbstizedFullName of CGCTarget class)
without using "struct" construct.
virtual void galDataStruct(Galaxy& galaxy ,int level =0);
virtual void starDataStruct(CGCStar* block ,int level =0);
The above methods are protected methods of CGCTarget class to be dedled@ode
method to declare data structures of galaxy and stars. The second argument of both meth-
ods indicates the depth of hierarchy which the first argument block resides in, thus advis-
ing the amount of indents in the generated code. By default, it is set 0. The first method
calls the second method for each component star if it is not a Fork star. We do not generate
code nor declare data structure for Fork stars.

The data structure for a star consists of four fields:

1. Comments to indicate that the following declarations corresponds to what star:
sectionComment method.

StringList sectionComment(const char* string);
This is a protected method of CGCTarget class to generate a commesttihge, in the

generated code.

2. Declare buffers associated with portholes. We do not declare input portholes. If an
output porthole is EMBEDDED, we declare a pointer to the embedding buffer, by
prepending "* in front of the buffer name. Otherwise, it declare a regular buffer.

3. Declare index pointers to the buffer if static buffering is not used and the size of
buffer is greater than 1 . Portholes will use these index pointers to locate the buffer
position. For a regular buffer, we declare an index pointer, named after the buffer
name appended by " _ix". The name of index porthole is givesffegtName
method of CGCTarget class.

StringList offsetName(const CGCPortHole* p);
This is a public method to assign an index pointer to the argument porthole. It appends ’_’
followed by "ix" at the end of the porthole name, by calling the following public method
of CGCTarget class:

StringList appendedName(const NamedObj& p,constchar * add);
This method is used to append ’_’ followeddw to the name of the objept

4. Finally, we declare referenced states. A State is cadfedencedonly when we

Ptolemy Last updated: 10/9/97

18-8 CGC Domain

use $ref macro for the state at most once. CGCStar class has the following mem-
bers for referenced states:

StateList referencedStates;

void registerState(const char* name),
The first is a public member to store the list of referenced states in this Star. The second is
a protected method to add the state with given name to the list of referenced states if not
inserted.

We traverse the list of referenced states to declare variables. Unlike portholes, the size
of a state variable is given. If the size of state is 1, we both declare and initialize the state. If
the state is an array state, we both declare and initialize the state using array initialization
unless the state is declared inside a function. If we declare an array state inside a function, we
have to write explicit initialization code. Class CGCTarget has the following public method to
tell whether we are working inside a function or not.
int makingFunc();

Returns TRUE if we are defining a function.

18.2.1 Buffer initialization

We initialize buffers and index pointers as follows.

1. If the buffer is EMBEDDED, we assign a pointer to the embedded buffer and set
the pointer to the starting address of the embedding buffer, from which the buffer is
embedded. If the size of the embedding buffer is 1, we assign the pointer of the
embedding buffer.

2. For the regular buffer, we initialize with Os in case the buffer size is greater than 1.

3. We initialize an index pointer of a buffer to the offset pointer of the porthole asso-
ciated with that index pointer.

18.3 CGC code streams

Besides two code streams inherited from CGTarget clag€ode and procedures,

CGCTarget class maintains 9 more code streams (all protected). These code streams will be
stitched together to make the final codérameCode method. There are two schemes to or-
ganize a code in general. One scheme would be to put code strings to a single CodeStream in
order. For example, we put global declarations, main function declaration, initialization, and
main loop into a singlmyCode stream in order. For single processor code generation, it would

be feasible. For multiprocessor case, however, the parent target may add some extra code
strings. Therefore, we assign different code streams to different section of code. On the other
hand, if we have too many code streams, it would be arduous to remember all.

CodeStream globalDecls;

CodeStream galStruct;

CodeStream include;
These three code streams will be placed in the global scope of the final code. The galaxy
declaration galStruct) is separated fromlobalDecls because we need to put gal-
axy declaration inside a function if we want to define a function from a galaxy (for exam-

U. C. Berkeley Department of EECS

The Almagest 18-9

ple, recursion construct). A programmer can provide string®balDecls and
include by using the following protected CGCStar methods in a star definition:

int addGlobal(const char* decl ,constchar * name= NULL);

int addInclude(const char* decl),
In the first method, we ustec/ strings as the name if the second argument is given
NULL, to make a global declaration unique. The argument of the second method is the
name of a file to be included, for example <stream.h> or "DataStruct.h".

CodeStream mainDecls;

CodeStream mainlinit;

CodeStream commlnit;
These three code streams will be placed in the main function before the main loop: decla-
ration in the main function, initialization code, and initialization code for communication
stars. We separatedmminit frommaininit since communication stars are inserted by
the parent multiprocessor target. A programmer can provide strings to the first two code
streams by using the following protected CGCStar methods.

int addDeclaration(const char* decl ,constchar * name= NULL);
int addMainInit(const char* decl ,constchar * name= NULL);
The first method usefec/ string as the name of the stringndmeis given NULL.

CodeStream wormin;

CodeStream wormOut;

CodeStream mainClose;
The first two streams contain code sections to support wormhole interface to the host
machine. They will be placed at the beginning of the main loop and at the end of the main

loop. The last code stream will be placed after the main loop in the main function.

Recall that usingddCode method defined in CGStar class, we can put code strings to
any code stream .

These nine code streams are initialized by the following protected method of CGCTar-
get class.:
virtual void initCodeStrings();
Note that code streams are not initializeddtup method of the target since the parent
target may put some code before callingdttap method of the target. We initialize
code streams after we stitch them together and copy the final cogi€ade stream in
frameCode method. We do not initializéyCode stream in the above method.

void frameCode();
This method put all code streams together and copy the resulting cogédde stream.

18.4 Other CGCPortHole members

CGCPortHole is derived from CGPortHole class. It has a constructor with no argument. In the
constructor, we initialize the default properties of a CGCPortHole: static buffering and linear
buffering flags are set TRUE, buffer size is set to 1. These properties are also initialized in
initialize method. In the destructor, it deallocates the name of the buffer if stored in this

Ptolemy Last updated: 10/9/97

18-10 CGC Domain

class (when this porthole is disconnected). All members described in this section are public.

CGCPortHole* getForkSrc();
const CGCPortHole* getForkSrc() const;

These methods return the fork input porthébekGrc) if this porthole is a fork destina-
tion. The second method is tbenstversion of the first method.

CGCPortHole* realFarPort();
const CGCPortHole* realFarPort() const;

These method return the far side porthole. If the far side porthole is a fork destination, they
return the far side porthole of the fork input, thus bypassing fork stars. The second is the
constversion of the first method.

CGCGeodesic& geo();

const CGCGeodesic& geo() const;
Return the geodesic connected to this PortHole, type cast. The seconmbisthever-
sion of the first method.

Geodesic* allocateGeodesic();
Allocates a CGCGeodesic.

void setupForkDests();
If this method is called for a fork input porthole, make a complete listkibests con-
sidering all cascaded forks.

int inBufSize() const;
This method returns thaufferSize of this porthole.

CGCPortHole has an iterator callEdrkDestlter. It returns fork destinations one
at a time. The return type is CGCPortHole.

The derived classes of CGCPortHole in the CGC domainn@@CPort, Out-
CGCPort, MultiCGCPort, MultiinCGCPort, andMultiOutCGCPort.

18.5 Other CGCStar members

Class CGCStar is derived from CGStar class. It has a constructor with no argument. CGCTar-
get class is a friend class. It has a method to return the domain it Hesiir{) and a method

for class identificationig¢A). In initialize method, we initializeeferencedStates
list. All other members described in this section are all protected.
CGCTarget* targ();

Returns the target pointer, type cast to CGCTarget.

StringList expandRef(const char* name),

StringList expandRef(const char* name, const char * offset);
The above methods resolve macro $ref. Adrm@e argument is a state name or a porthole
name. If it is a state name, we put the state imetfleeencedStates list. In the second

method, the second argument is the offset of the first argument (state or porthole). It can be
a numeral, an IntState name, or a string. If it is an IntState, the current value of the state is

U. C. Berkeley Department of EECS

The Almagest 18-11

taken.

There are various ways to referring to a porthole. If the buffer size is 1, we use the
buffer name or the pointer version depending on the type, EMBEDDED or OWNER. If the
buffer size is larger than 1, we use direct addressing if static buffering is used. If static buffer-
ing can not be used, we use indirect addressing. The following method generates indirect
addressing:
virtual StringList getActualRef(CGCPortHole* p,constchar * ix);

This method generates an indirect addressing for the argument pprthittteoffsetix.
If we may not use linear addressing, we generate modulo addressing, in which the index is
modulo the buffer size.

virtual int amlSpreadCollect();
Returns TRUE or FALSE, based on whether this star is a Spread or a Collect star or not.
We need to take special care for Spread and Collect stars.

18.6 Other CGCTarget members

CGCTarget is derived from HLLTarget class which is the base target class for high level lan-
guage code generation. It has a constructor with three argument like its base target classes. In
the constructor, we initialize code streams and put them int@ddeStringLists by
addStream method. It hagnakeNewmethod defined.

18.6.1 Other CGCTarget protected members
CGCTarget class has many states guiding the compilation procedure.

IntState doCompile;
If this state is set NO, we only generate code, not compiling the code.

StringState hostMachine;

StringState funcName;

StringState compileCommand;

StringState compileOptions;

StringState linkOptions;
ThehostMachine state indicates where the generated code is compiled and run. If this
state does not indicate the current host,, we will use remove shell command for compila-
tion and execution. ThiancName state is by default set "main". For multiprocessor code
generation case, we may want to give different function name for the generated code. The
next three states determines the compilation command:

compileCommand compileOptions fileNamelinkOptions

There are some other states defined in this class.
IntState staticBuffering;
If this state is set YES, we increase WasteFactor of geodesics to use static buffering
as much as possible, which is default.

StringState saveFileName;
We save the generated code in this file if the file name is given.

Ptolemy Last updated: 10/9/97

18-12 CGC Domain

StringArrayState resources;
This state displays which resources this target has. By default, the CGCTarget has the
standard I/O$TDIO) resource. If a derived target does not support the standard I/O, it
should clear this state.

int codeGenlnit();
This method generates initialization code: buffer initialization,isit@ode = method of
all stars. Before generating initialization code, we switchmty@ode pointer of stars to
themaininit code stream so thatidCode method called inside theitCode = method
puts the string into theaininit code stream.

void compileRun(SDFScheduler* S);
Before callingcompileRun method of the SDFScheduler, which will cath method of
stars in the scheduled order, we switchrtiy€ode pointer of stars back to timeyCode
code stream of the target. After code generation, we switch the pointer of stars to the
mainClose code stream for wrapup stage.

int wormLoadCode();
If the doCompile state is set NO, we just return TRUE, doing nothing. Otherwise, we
compile and run the generated code. Return FALSE if any error occurs.

StringList sectionComment(const char* S);
This method makes a comment statement with the given string in C code.

void wormInputCode(PortHole& p);
void wormOQutputCode(PortHole& p);
The above methods just print out comments. We haven’t supported wormhole interface for

CGC domain yet (Sorry!).

18.6.2 Other CGCTarget public members

void setup();
This method initializegalld , curld indices for unique symbol generation. It also gener-
ate indices for stars and portholes. Then, it €83 arget :: setup for normal setup
procedure.

void wrapup();
This method displays the generated code storegy@ode stream. If the galaxy is not
inside a wormhole, it callsormLoadCode method to compile and run the code.

int compileCode();
This method compiles the generated code. The compile command is generated by the fol-
lowing method:

virtual StringList compileLine(const char* fName);

The argument for this method is the file name to be compiled. hioBi®lachine does
not indicate the local-host, we use remote shell.

U. C. Berkeley Department of EECS

The Almagest 18-13

int runCode();
This method runs the code. If thestMachine is not the local-host, we usshSystem
function.

void headerCode();
Is redefined to generate a valid C comment with the target name.

void beginlteration(int repetitions ,int depth);

void endlteration(int repetitions ,int depth);
The first method generates the starting linetdfe loop (if repetitions IS negative)
or for loop (otherwise). After that it appends thermin code stream to theyCode
stream before stars fill the loop body. MmmIn code stream is already filled. The sec-
ond method close the loop. Just before closing the loop, it appendsrth@ut code
stream to thenyCode at the end of the loop body.

void setHostName(const char* S);
const char* hostName();

The above methods set and gettibstName state.

void writeCode(const char* name= NULL);
If the argument is NULL, we use the galaxy name as the file name. This method saves the
code to the file.

void wantStaticBuffering();
int useStaticBuffering();
These methods set and get $keticBuffering state.

int incrementalAdd(CGStar* s,int flag =1);
We add the code for the argument starduring code generation stepfildg is 0, we
add the main body of the stago(method only). Otherwise, we initialize the star, allocate
memory, and generate initialization code, main body, and wrapup code.

int insertGalaxyCode(Galaxy* g, SDFScheduler * s);
We insert the code for the argument galaxy during code generation procedure. We give the
unique index for the galaxy and set the indices of stars inside the galaxy. Then, it calls

CGTarget :: insertGalaxyCode to generate code. After all, we declare the galaxy.
void putStream(const char* n, CodeStream * CS);
CodeStream* removeStream(const char* ny;

The above methods put and remove a code stream named

18.7 Class CGCMultiTarget

Class CGCMultiTarget, derived from CGSharedBus class, models multiple Unix machines
connected together via Ethernet. We use socket mechanism for interprocessor communication.
Since the communication overhead is huge, we do not gain any speed up for small examples.
Nonetheless, we can test and verify the procedure of multiprocessor code generation.

This class has five private states as follows.

Ptolemy Last updated: 10/9/97

18-14 CGC Domain

IntState doCompile;
IntState doRun;
If these states are set YES, we compile and run the generated code.

StringState machineNames;

StringState nameSuffix;
We list the machine names separated by commas. If all machines names listed have the
same suffix, we separate that suffix in the second state. For examplehilieName is
"ohm" andnameSuffix is ".berkeley.edu”, we mean machine named "ohm.berke-
ley.edu”.

IntState portNumber;
To make socket connections, we assign port numbers that are available. For now, we set
the starting port number with this state. We will increase this number by one every time
we add a new connection. Therefore, it should be confirmed that these assigned port num-
bers should be available. If the Ptolemy program is assigned a port number in the future,
then we will be able to let the system choose the available port number for each connec-
tion.

With the given list of machine names, we prepare a data structure kitbd
nelnfo that pairs the machine name and internet address.
class Machinelnfo {

friend class CGCMultiTarget;

const char* inetAdddrr;// internet address

const char* nm; /l machine name
public:

}

Machinelnfo: inetAddr(0), nm(0) {}

This class has a constructor with three argument like its base classes. The destructor deal-
locatesMachineinfo arrays if allocated. It hasakeNewmethod andsA method rede-
fined.

18.7.1 CGCMultiTarget protected members

void setup();
If the child targets are inherited, we also inherit the machine information. Otherwise, we
set up the machine information. The number of processors and the number of machines
names should be equal. Then, we C&MultiTarget::setup for normal setup opera-
tion . At last, we set thieostName state of child targets with the machine names.

int wormLoadCode();
This method do nothing #foCompile state is NO. Otherwise, it compiles the code for all
child targets€ompileCode). Then, it checks whethdbRun state is YES or NO. Ifitis
YES, we execute the code.

int sendWormData(PortHole& P);

int receiveWormData(PortHole& P);
int sendWormData();

int receiveWormData();

U. C. Berkeley Department of EECS

The Almagest 18-15

These method should be redefined in the future to support wormhole interface. Currently,
they do same tasks with the base Target classes.

18.7.2 CGCMultiTarget public members

Machinelnfo* getMachinelnfo();
int* getPortNumber();
These methods return the current machine information and the next port number to be

assigned.

DataFlowStar* createSend(int from ,int to ,int numn;
DataFlowStar* createReceive(int from ,int to ,int numn;
The above methods create CGCUnixSend and CGCUnixReceive stars for communication

stars with TCP protocol.

void pairSendReceive(DataFlowStar* snd, DataFlowStar * rev);
This method pairs a UnixSend star and a UnixReceive star to make a connection. We
assign a port number to the connection. More important task is to generate function calls
in the initialization codecomminit stream) of two child targets which these communica-
tion stars belong to. These functions will make a TCP connection between two child tar-
gets with the assigned port number. The UnixSend star wik@atect function while
the UnixReceive star will calisten function.

void setMachineAddr(CGStar* snd, CGStar * rcv);
This method informs thend star about the internet address of the machine thatwthe
star is scheduled on. The address is needeshitect function.

void signalCopy(int flag);
By giving a non-zero value as the argument, we indicate that the code will be duplicated in

different set of processors so that we need to adjust the machine information of communi-
cation stars.

void prepCode(Profile* pf,int nPint numChunk);
This method is also used to allow code replication into different set of targets.

DataFlowStar* createCollect();
DataFlowStar* createSpread();
These methods create CGCCollect and CGCSpread stars.

18.8 Status
Here are some points about the current status.
» Data Parallel star is not supported yet.

» Execution times of CGC stars are not well defined. They will vary processor to proces-
sor. We estimate them by looking at CG96 stars, or by counting the number of elemen-
tary operations. For heterogeneous multiprocessor case, we have to design a clean way
of specifying these numbers.

Ptolemy Last updated: 10/9/97

18-16 CGC Domain

* hSpread/Collect stars and buffer embedding are not supported in ASM domain. Since
Spread/Collect stars are not supported, all ASM multiprocessor targets should set the
oneStarOneProc state TRUE.

(4) The scheduling optiomdjustSchedule is not implemented yet since the cur-
rent graphical editor does not support "cont" function.

(5) Overlapped communication is not supported since we haven't had any machine of
that sort.

18.9 References

[1] G.C.Sih and E.A.Lee, "Dynamic-level scheduling for heterogeneous processor net-
works," Second IEEE Symposium on Parallel and Distributed Processing, pp. 42-49, 1990

[2] G.C.Sih and E.A.Lee, "Declustering: A New Multiprocessor Scheduling Tech-
nique," IEEE Transactions on Parallel and Distributed Systems, 1992.

[3] S. Ha, Compile-time Scheduling of Dataflow Program Graphs with Dynamic Con-
structs, Ph.D. dissertation, U.C.Berkeley, 1992.

[4] J.L.Pino, S.Ha, E.A.Lee, J.T.Buck, "Software Synthesis for DSP Using Ptolemy,"
invited paper, Journal of VLSI Signal Processing, 1993.

[5] W.S.Wang, et al, "Assignment of Chain-Structured Tasks onto Chain-structured
Distributed Systems," source unknown.

U. C. Berkeley Department of EECS

The Almagest I-1
Index :

backup methodcccccciiiin 6-7..

BaseSymbolList class............... 1616:5 16-6, 16-7
Symbols BaseSymbolList constructorcccueeeee. 16-6
$codeblockSymbol MACKOvveeeeveereeeen, 16-4 bgginlteration methodco e, 18-13
BIADEI MABCTO oo 16-4 0110707 o] (o T 1-11
Brf MACTO ..ot 16-4 Blockclass. ..o, 3:1, 3-4, 3-5,4-1
$sharedSymbol MACrOvveerverererereen.. 16-4 blockWithDottedName................cccevveeieeeeennn. 3-10
$SIZE MACTO ..o 16-4 PIOCKWItNNAME ..o 3:6.
$StarSymbol MaCTOc.ovveeeeeeeeeeeeeeeeeeeen, 16-4 Buck, J. T. oo, 4-1, 8-1, 11-1
BVAL TNACTO oo, 16-4 buffer.............. SRR 5-4..
*StAteWIthNAME ... 3-2. Dbufferembedding ..., 16-:12
~RUNNGDIE.....co.eoeeeeeeeeeeeeeeeeeeeeeered 3.11 Dbuffermanagement........., 16:12

bufPos method..........ccccooeeiiiiiiii 16:12
A _ DUFSIZE MEthOT..... ... eeveeeeesreeeeeee 16:9 16-12
abs funCtionccccciiiiiiiiiie e 12:1 DUFSIZE() MENOT rvvvveeooeeoeoeeeooeeeoe 18.3
Zgggggﬂw """"""""""""""""""""""""""" 1§§ DUIldEVENtHONZONS.......cceveeieieee e, 5:2.
addCode method.. 164 bUSCONNECE ..., 3:8..
addDeclaration method.............cccoeeevivviiinennn. 189 © .
addGlobal method ..o 18-9 capacity method ... 6-14
addinclude method ... 18-9 CG dO.r:naln R LR 16:-1
addMaininit method ..o 18-9 CG utility functions........ccccccvveveeeeiiiiiciiiee, 16:10
AAANOUE ..ot 3.9, CGCGEOUESIC. ... 18-2
=T [0 | =do] o AR 3.3.. CGCMultiTarget class...........oooiiniiienn. 18:13
addProcedure methodommmmmmme 16-4. CGCPOIMHOIE ..o, 18-2
addSpIiceStars() MEethod e 18-4 CGCPortHole Classooovoveeeeeeeeeeeieeeeee 18-9
AAUSEAN e 3:8... COCSIArClass ..., 18-10
AAASIALE ..o 3:3,3-9 COCTargel. ..o 18411
addStream method ..o 16-.1. CGCTarget (o F= 1T 18-1
AGJUSESCREAUIE .. vvooeveeeeee oo 18-1¢9CE0 MEtNOd ..o 16:14
advance method ... 6-7,16-10 16-12 CGGeodesic class............ 16-8 16-9, 16-10, 16-12
AlIAS. .o 3-7,.3-8 CGMultiTarget class .. 15-14, 15-19, 17-4, 17-7, 17-9,
alias method..........ccccvvvieiiiiiee e 6-2.. 17-1Q 17-10, 17-14, 17-15, 18-14
aliaSFrom Methodovoveveeeeeeeeeeeeeeereee .2.. CGPortHoleclass............... 16-9, 16-16;12 16-14
allocateBuffer methodoceeveeeeveeeeeeeeen, 6.7, CGSharedBus class ..., 17-14
allocateGeodesic method...................... 6:5,18-10 CGStar class16-2,16-4, 16-5, 16-6, 16-7, 166810
allocateLocalPlasma method.......................... 6-G.. 16-11
allocateMemory() method ... 18-1 CGStarPortlter class......covveeveeeeeeieieiaeenn. 16-10
allocatePlasma methodococveeeeeveeeceeenen. 6.6... CCTargetclass4-3, 15-16, 16-1, 16-2, 16-7, 1678,
amlSpreadCollect methodcceeeeeeeeenn. 18-:11 1,17-7,18-1
append method..........oovee 16:-2 16-3 16-6 CgTarget Method........cooeveeiiiie e, 16-11
appendedName methodccoo.ovvverirve.. 18.7. CGWormStar class..........cccooviviniiiiiii, 15-14
arg fUNCHON.......ceoveeeeeeeeeeeeeee e, 12:1 Charmethod ..o 16-3
ASGAIAXY <. rvveeeeerseeeeeereeeeeee e eeee e 3.2,3-6 ClIntervalListiter Class ... 12:4
asbhinearBufccocoooiiiiiiiiiic e, 18_§ircularBuffer ClaSS v 6-7.
ASMTArGet CIasSc.ovvveveeeeeeeeeseeeee s 17-§SSNAME oo 3-10
ASPOI .. 5:3... clearParticle method ..., 6:6..
e 3:2.3-4 CIOCK ClaSS......ccoevvreeeeeeieeiee e 125
atBouUNdary Methodovveereveeeeeeeeesseee 6-4. CloCK CONSEIUCION ... 12-5
Attribute class. ... 111 clone.......... R PR 3:10
attributes MEthodc.veveeeeeeeeeeeeeeeeeeeeeai 6-2.. CNamedODjListiter classcocoovninnce. 1:11
AULOFOTK CIaSS ... veveeeeeeeeeeeeeeeeeeeee e 6:0.. COOEBlOCK CIass ..o, 18613
AUtOFOrkNOd ClassS............coovvveccvvvieiiiiieeeeeeen 6.9, COUEBIOCK CONSIIUCION....ooooivii 16-3

Ptolemy

Last updated: 10/9/97

CodeBlockandMacros...........cccuvviieeeieeneeeiiniiis 18-@SCONNECTE ... 3:9...
codeblockError method..........cccceeiieiiiiniinne 16-5 disconnect method.............ccccceeiiiinnnnnns 6-4,6-11
codeblockSymbol member...................ooool 16-5 displaySchedule..........ccccccooiiiiiiiiiiinnnnn 3-11
codeGenlnit method...........cccccceeeiiiiiiiiinnnee. 18-12 DLGraph Class....ccccccoiiiiiiiiiiiiiiiiiieeeeeeis 15:17
CodeStream Classcccevveeeviiiiinnneen. 16617, 16-2 dIOPEN e 8-1
CodeStreamList €lass........ccccceeeeviiiiiiiiienneen. 16-2 DLParProcs Class......cccccoeeeviiiiiiiiiiieeneenn. 155819
codeStringLists membercccoeeeviiiiines 16-1 DLSchedulerclass.......ccccccccvvrrrrnrnnnnn 15-18 15-22
COMMINIE .. 18:9 doCompileccooviiiiiiiiiiiie 18-11, 18-14
compileCode methodcccccceeiiiiiiiinnnnn. 18-12 dOmaiNccooiiiiiiiieeeeee e 3:2,3-6
compileCommandcooovviiiiiiiiiiiiiee e 18-1D0OMaAiN ClIaSS ..ccoeveeeiiiiiiiiiiiiieeee e Bo#4
compileLine methodcccccceiiiiiiiiiiinnen. 18-12 domain method...........cccceiiieiiiiiii, 16-11
comPpileOPLIONS ... L18-1THORUN ..ceiiiieiie e 18-14
compileRun method ..., 18:12 DoubleLink Class.....ccccccceiiiiiiiiiiiiiiiieeeeeeee 1-4.
completelyBefore method..............cccccceeeeen. 12-3 DoubleLinkiter classcccccoeeiiiniiiiiiiiiiennnne.n. 1-6.
Complex Classooovviiiiiiiieee 12:1 DoubleLinkList class..........ccccceceeeeiiiiiiiiiiineen. 1-5.
ComplexState Classcccvvveeeeieieeeiiniiiiie 9-5.. doubly linked liStS..........cceiiiiiiiiiiiiiiiieeeeee, 1-4.
conjfunctioncco i, 12:1 DynamicGalaxy class.........cccccceeveviiiiiiviiiennnns 3:1..
(o70] 0] 1! AP 3:6,3-8 DynamicLevelScheduler 15-2, 17-11
connect methodcceeeviiiiiiiieiieereed 6-3.. DynDFPortHole class.........cccccvvvviiiviiiininiiceennn, 16-12
contains methodoovvviiiiiiciiiiieee e, 12:4 DynDFStar class.........cccccceviviiiivieieiiiiin, 16-10
COPYSLAES ... 34. E

correctName method ..., 18:6 EGGALe ClaSS ..voveeveieeeeeeeeeeeeeeeeeeeee e, 13-4
COS fUNCHON ..o 12:1 EGNOGE ClASS ...ttt 13-3
CoUNter MEMDETueiiiiiiiiiiiiieeeee e 16-8 elapsedTime Method..........oeeeeeeeeereeereens 12-5.
createCollect method............ccociiinnn, 18:15 embed Methodccoovveereeeeeeeeeeeeeeeen. 16-13
createReceive method ..., 18:15 embedded method............co.covevvveeeeeerenan, 16:13
createSend methodcccccoeiiiiiiiiiiiinnen. 18:-15 gmbeddedPort member ... 16-13
createSpread method ..., 18:15 embeddingov.oveeeeeeeeeeeeeeeeeeeeee e, 18-1
CriticalSection Class..........ccoovviiiiiiieeieeieeenne 2-1. embedding MEthodc.oeeveereereeeeree, 16-13
CUII L 18-6, 18‘1%mbeddingFlag member ... 16-13

D embedHere method..........cccoooovviiiiiiiniennnn. 16-13
dataParallel member.........cccccceeeviiiiiiviienees 16-:11 empty method.....cccceeveeeviniinnnnnnee. 6-10 6-14, 12-4
DaVis, J. S 4-1, 17-g@nableLocking methodcoocccvviiiiieenneeenn. 6:5..
DCAIC ClaSS ...vvveeeiieeee i 15:25 endmethod ..o 12-3
DCArCLISt CIaSS ...vvveeieiieeeeiiiieciiiieiieeeee e, 15-25 endlteration method...........ccccocveirieeniiiinnns 18-13
DCCIUStAIC ClasS.......cevvvveeeeeeiiiiiiiiieeeeeeenn 15:30 endsBefore method..........cccccoovviiiiiiiiiennnnnn. 12-3
DCCIUStArcList Class........ccccvvveiiiieeiiiiiinen. 15-30 errMsg method.........cocvveiiiiiiiiiie i 6-8..
DCCIUStEr ClasS.......ccovvvveiiiiiiiiieee e, 15:27 Error Class......ooeeeiiiiieeeeeeeeeeeeee e, 4-7,4-8
DCClusterList Class........cccccvveeeviiiiciiiiieennn. 15:29 EVentHONZON......cccceiiiiiee e 5:3..
DCGraph classoccovvveiiiiiiiiiiiiiiee e 15:26 EventHorizon method..........ccccccovviiiiiiniiinnnn. 6-4..
DCNOdE Class......cccovvviiiiiiiiiiiee e 15:24 exp funCtionccvveeiiiiiiiie e 12-1
decCount methodcovvveeiiiiriennnnnn 6-12 6-14 expandMacro method.............ccccccvviieeennnnnns 16-5
DeclusteringSchedulerc.cccovvieenn. 15-31, 17-1&xpandPathName procedure...........ccccovvvveeeeinnnnenn. 1-2
DeclustScheduler class.........ccccccvvvieeennnnne. 15-:23 expandPortName methodccccovuveeeen. 16-10
deferrable methodc.ooovveeiiiiiiiiiieees 16-:11 expandRef method........cccccvvveveeeninns 16-5 18-10
deletePlasma method............ccccoeeiiiiiiineinnnn 6-6... expandSize method............ccooeeeiiiiiiinennnnnn. 16-5.
delLock method..........ccooovvvvviiiiiiiiinnnn. 6:12 6-14 expandVal method.............ccccoviiviieieenniines 16-5
delNodecoovviiiiiiii 39. E

delPorts Method. ..o 629 far MEthOD. ... 6-4..
(o[]S = | 3-9.. finalBufSize(int statBuf) method 18-2

den Method........cooeeviiiiiieieeeee e 12-2 FIAQAITAY ClaSScvveeeeeeeerreeerereeeeenenn, 1-9.1-12
AESCIIPION ... 120 ags oo 1-9..
disableLocking method ..., 6:3. FloatArrayState class..........ccoc.corvvrevreeeens 9:5..

U. C. Berkeley

Department of EECS

The Almagest I-3
FloatState class...........ccceeeeeeeiiiiiiiieeeeeeeeii, Q:5... ghoStCONNECL........covviiiiiiiiieeie e, 5-3..
forceGrabData methodcccccceeeeeeeennnn. 16:14 ghOStPOI.......ovviiciiiee e, 5-4..
forceSendData methodccccoeeveieieeeenin. 16-14 giveUpStatic() methodcccovveeeeeieeinnnnn. 18-4
fork methodvviiiiiiii 16-:9 globalDecCIs..........coovveviiii 18:-8
forkDelay method..............coooeeeiiiiie G T o o B 3-5..
FOrkDestlter.........oocovviiieiiiieie e 1810 GOElL Muiiiiiiiicc e 18-1
forkDests member ..., 16:9 4

forklnit method..........ccoooiiiii 16:8 HAL S oo 16-1, 17-1, 18-1
forkProcessing method ..., 16:14 hashstring Procedurecoooweeeeeeeoeeeeeeeesenenn,
forkSrc member ... 16:9 nasinternalStateooovveeeeeeeeeeeeeeeereeene, 3:5...
forkType method ... 1629 RaSSHAtICBUSveeeeeeeeeeeeee e, 18-3
Fraction Class........ccccovcvieieiiiiiiec e 12:2 head Method ...neeoeee oo 6-10
frameCode methodccccovvivieiiiniiienenns 18-9 neaderCode method.....oomeeomeeooeeo 18-13
freeCoNteNtS........evvvieiiiee e 52 here Method ... oo 6-7...
freeup method............eeevveiiiiiiiii 6-10 HeterogeneouSSUPPOIto.ovvveeeeerrrereereeen. 15-14
FromEvVentHomNzon ..o, D3 NiddeN FUNCHON. ... 6:2.

full method.........ooooiiii 6-14 HIStOGIam ClaSScvvveeeeeeeeeeeeeeeeeeeeeeeenas 11-8
fUNCNAME ... 18'1ﬂ-ILLTarget __ 18-11
G HLLTarget class......ccccoevvevevviiieennennnn. 17-7,18-11
GalAlIBIOCKIENeeveeeeee e 3-7hostMaching ..o 18-11
Galaxy Class........ccccccvvieeiiiiiee e 3-%,5-1 hostName method.........cccccoevvvvevieeieeiiininnnn. 18-13
galDataStruct methodcccoocveeeeiiiiieeeenns 18:7 HuGraph class.......ccccccviiiieiiiiiiiiieiiieeeee 15:21
alld ..o 18-6, 18-1PluLevelScheduler........c.ccoovvuveeeiiiiiiieeeeeeeeeen, 17-11
GalMultiPort class........cccccveveievieeee e 6:15 HuNode class.......cccccvviiiiieeeeiiiieeeeeee 1520
GAIP e 3:11 HuParProcs class.....ccoooevvvevveeeeeieiiiiinnnnn. 15892
GalPort Class.......coooveeeciiiiiiiieeee e 6-15 HuScheduler class.........ccccoociiieieeeiiiiiinns 15-21

(CE= 1) =1 1 (=] G 3-FAylands, C.......ovveiiiiiieeee e
QalSIrUCT.......coeiiiii 18-:8 |

GalTOPBIOCKItErceiiieiiiceecc 3-HMag fUNCHON. ...t 12-1
Generichrt Class......cccooviiiiii 6:-1... inBufSize method.......oovoooeeo 18-10
genPortWithNamecccccooiiiiic e, 3:2.. incCount method ..o 6:12 6-14

980 MEthOd ... 6:5,.18-10 |NCGCPOIM.......ooocveceecrereeeeeeee e 18-10
GeodeSiC Classoeevvvvveeviiiieceeeeee e, 6:10. |nCGPortclass.........oooeooe 16-14
ge0deSIC SWItChing........occccovvecveesre 1613 INGIUGE wevvvrooeeeeeseeeees e oo 188

get method ..6-1Q, 6-12,6-13 16-2 16-3 16-6 16-7 jncrementalAdd methodccooovveen..... 18:13
getActualRef method...........ocoeveiiiinnn 18211 NAEX oo 3:4..
getBufName...........ccoooeiini 18-Bdex methodoeeoe oo 6-5..
getData........cccvveiiiiiiiii, 5-4.. INFSHTNG ClASS ..o, 11-3
getForkSrc method ... 18:10 jnheritTypeFrom method...........ccccoevererereunn 6-3.
getGeoName Method ..., 18:6. initCode Methodcovvvevvecrerrriaen, 16-11
getMachinelnfo method..............oooeviniinens 1815 initCOESHINGSvv.vveevvecrerrerresreierieaa 18-9
getMyMultiPortHole method ..., 6:5 jnitDelayValues method............ccc.ccovvrvennne. 6:13
getParticle method...........cccoooiiiiiiiince 6-6.. initialize ... 3:2 3-5,5-4, 5-5
getPlasma method..........ccccoviierennnnnd 6:13 6-14 jpitialize metho®-4, 6-8, 6-12 6-15, 16-2 16-6, 16-7,
getPortNumber methodc.cccoei 18-15 16-10

getProcld method..........ovvvvvinin, 16:12 injtOffset() Method...........cco..evvecveerrrrrereane. 18:2
getProfile method ..., 16:11 initState.....cvvecveeveeeeeee e 3:3.3-6
getq Method ... 6:15 nitSUDDIOCKScveeveeee e 3-1.
GEISIOPTIME oo B2 NITAIGEL covvoveeveoeeeeee s 311
getStream method.........oooivinininiens 16:2. innerSched........co.coovveevecveeeeieeeeeeeeeeesea, 5:4..
getTgxt method.........coooviii 16:3 insertGalaxyCode method..........coovvveeeeene. 18-13
getTIMeMark ... D iNSIAEDOMAINo.voveeeeieee e 5:1.
OhOSEASPOIT ... 5-3.. installPort method ...oooooooeeoeo 6-9..

Ptolemy

Last updated: 10/9/97

int allocateMemory()......ccceeeeeeeeieiiinieeeeeeeeeeene, 18-1 lookupSharedSymbol method 16-7
IntArrayState class..........cccoceeeiiiiiiciiniieenn, 5. M

internalBufSize method.................ccocoo 16:9 Machinelnfo Class.......ococoeeeeeeeeeeeeeeeeeeeeeeeen 18-14
InterpGalaxy class............cooovivnininnnn, 35,6-15 machineNAMES «....c.ovoveeeeeeeeeeeeeeeeeeeeeeeeeeeees 18-14
INterpUNIVErSe......coooiiiiiiieieeceeee e 3-11 macroError method.......o oo 16-5
InterpUniverse Class ... 31l MACIOS. e, 16-3
intersects method............oooooii, 12:3 MAINCIOSE .o, 18-9
Interval Class ... 12:2 AINDECIS ..o 18:9
IntervalList Class ..., 12:2 @I e 18-9
IntervalListlter class........ccooevviveiiiiiieiiiiee, 12:4 makeLock method ...oooneoome 6-12 6-1
INtState Classcocoeeevveeviiiiieeccc e, 9-5.. makeLower function.........ooo 16-10
ISAMethod ..., 1BIL makeNeW..oooooooo 3:3,.3-10
ISA_FUNC MACKO......ccvvviiiiieiiiiiiiinee e 1-9makeNew methodoomee oo 6-13
isaFork method........cccooovvviiiiiiiiies 16-8 MakiNgFUNC MEthodoveeveeeeeeeereeeeeenn. 18-8
isAfter method.............ooooviiiii e, 12:3 matchMacro method.....oooeoomeo 16-5
ISILALOMIC. ..o 3-1, 3-6 maxBufReq() const method.................oeeve.... 18-3
isltFork method ..., 16:8 maxComm method ..ooovvoee o 16-:12
ISIINPUL .. 5:3. maxNumParticles methodoo oo 6-12
isltinput method ..., 6-1. MErGE MENOU ..., 12-3
isltMulti method...........ceiiiiiiiiiiiee, 6-1, 6-8 mergeableWith methodcooeeeeverenn... 12-3
ISIHOULPUL . 5:3. minNeeded method..........ooooeooo 16-8
isltOutput method ... 6:1. moreThanOne methodowooeomeo 6-10
isltPersistent method..............cccoeeeeeiiiiiinnnnnnn. 6-:11 moveDataBetweenShared........ooooeooeoeo 18-6
iISTWormhole ... 3:2. moveDataBetweenShared() method............. 18:-5.
isLocal method..........ccooooiiiiiiiiiiie 6:13 moveFromGhoSt ... 5-4..
isLockEnabled method............ccccooevne. 66,613 MUIICGCPOM ... 18-10
isParallel method..............coviiiiiiiiiiiiend 16-11 MUliCGPOrt class ..o 16-14
ISSDF method..........cooovii 16:11 MUItIDFPOI ClaSS.....vvveeeeeeeeeeeeeeeeeeeeeeeeereeen. 16-14
isUnique method ... 1652 MUIINCGCPOM ... 18-10
1 =T 7= 1 (0] £ 1-1, 3-MUltiinCGPOIt Class ..o 16-14

K MUItIOULCGCPOI ... oo 18-10
KeptGate Class.........ccveveiiiiieeieiiiiiiee e 2-3.. MultiOUtCGPOrt Classccccvvevrivreneennnnn. 16-14
KnownBlock class............... 3-1, 3-7, 3-10-1, 10-5 MultiPortHole class................. 3-1, 5-5, 6618, 6-15
KnownBIlocklter class...........ccooevveeeeieiievnnnnnn.. 10-2 mMUltiPONAGMES.....oi i 3:-2..
KnownState class.......ccoooeevvevveieeeeeeeennnnn. 9-5,.10-5 multiPortWithNamecoovveeiiiiiee e 3:-2.
KnownTarget Class.......cccccvvveeeeeeieiiciiiieeeeen, 10-3 MultiTarget class....ccccceeevvveecenvvnnnnn. 1737-8 17-10
KnownTargetlter class........ccccoovveeeiiiiiiieeennns 10:4 mMYCode.....ooouviiiiiiiiiiee e 18-12, 18-13
L myCode MembErccocviiiiiiiicicie 16-1
LANE, T+ ettt B-IMNYTAIGeL. oo 3:12
last method ..o G6-7.. N

Lo OO PPPUTOPRURPPINt 8-NamedList class.............ccceeeee. 1618;3 16-5, 16-7
LD_LIBRARY_PATH environment variable 8-3 NamedListlter class........cccovvveviiiiiiiiiiieeeeeeeen, 16-3
length method............vviiiiciiieii, 6:14,12-3 NamedObj class.................. 1-7, 3-1, 6-1, 6-119-1
linearBuf() method.........ccccceeeeiiiiiiiiieneee, 18:3 NamedObijList Class........cccccciiiiiiiiiiieeeeen. 1-10
lINKed liSt......uuveiieieee e, 1-3. NamedObijListlter class........cccceeeeeeiiiiiiereneennn. 1-11
NKET <. e 8-hameSuffiXcoeeiiiiiiiii e, 18-14
LINKEr Classcouvviiiiiiiiiiice e, 8-hewConnection method...............coovvvenn.... 6:3,.6-8
NKOPLIONS ..ot 18-1InewName method...........ccccceeeiiiiiiiiiiiieeneennn, 6-9...
lISt ClaSSES....uviiiiiiieice e, 1-3.. newPort method............cccoveeviriiiinnnnnnnnn. 6-8,.16-14
Listiter Classocovvvvviiiiiiieiicee e, 1-4. newStream method........ccccooeeeiiiiiiiiinneneeennnnn. 16-2
localBufSize method............cccevvveennne. 169 16-12 newTarget.......cccceeiiiiiiiieeeeeee 3:12

[0 I8 {8] 0o 1] 0 To TSN 12:1 nextmethod.........cooovvvviiiiiiiccee, 6-7,.16-10
lookup method...........ccccoeveiiiiiiiiiiiiine. 16:6 16-7 NOAECONNECT........uviiiiiiiiiieeeee e 3:9...

U. C. Berkeley

Department of EECS

The Almagest I-5
NodePair Classcccvvviieeeiiiiiie T PrNt . 3:2,3-4,3-6
NodeSchedule class........cccccceeeeiiiiniiiiineen. 15:12 printmethodccvvvveeeiiiiii 6-1,6-12
nolnternalState..............cocviiiieeie i 3-5.. printCode method.............ccooiiiiiiiiiiiiiinnnn, 16-3
NOrM fUNCLIONcoooiiiiiiii 12:1 PrNtPOMS oo 3:2..
NUM MEthod ... 12:2 PrintStates......c..vveviieiiiieee e 3-4..
NUMDBErBIOCKS.........uuiiiiieiiiiiiiiiieeee e, 3:6.. procedures MembErccccceeirriiniiciiiiieeeen. 16-1
NUMBErMPHS ...t 3:1.. processCode methodcccccevviiiiiinnnins 16-4.
NUMDBEIPONS.....coeiiiiiiieiiiiiece e 3-1... Processorlter class..........cocoeveiviviiiiiincinnnnen, 15-17
numberPorts method...........ccooviiiiiiiiiieennn. 6-8... procld memberoooiiiiii 16-11
NUMDBDEISTALESoeeiiiiiiieeiiieee e 3:1... Profileclass.........ccoceernnnnnn. 15-3, 15-9, 15-20, 16-12
nuMINit Method ... 6-12 profile member ... 16-11
numinitDelays methodcccccccoiiiiinnnnen. 6-5. progNotFound procedureccccuveeieeeiieeenninnnns 1-3
NUMPOIS ... 3:9.. pLifStream ... 11-6
numTokens methodccccceeiiiiiiiiiiiiennn 6-0.. ptoofstream........ccccoiiiiiiiiiiii 11-6
numXfer method...........cccoeiiiiiee B:5.. PtGate Classcooocveeeeiiiiiiiei e 2:1...

o) push method ..., 16-7
OffSet MEMDET ... 16:12 PushBack method ..., 6:12
offsetName methodccccooureerivriecnnne. 18.7 PUtmethod.......ooviiiiiinn, 6-10,6-12 16-2
ONEStATONEPIOC ... oo 18-JBItData ... 5-5..
ONIYONE ... 5.3.. PutParticle method. ... 6:6..
Operator++ Methodoveeeeeereeeerrnenn. 16-10 Putgmethod...........ocoiii 6-15
OFigin MEOM. ..o 12:3 putStream method ..., 18:13
OUICGCPOM ..o 18-18ULTaIl MEtNOT ... 6-10
OUtCGPOIt ClIasS ...ccvvveeeeeiieciiiiieiieeee e 16:14 Q

outerSched........coeeviveiieiieieeeeee e, 5:2.5-4 QUEUE CIaSsS........cccooiiiiiiiiiee 1-7...
outputComment methodcccccceeeeeeiiinnnns 16:10 R

P FEAAY ...coviiiiiie 5:5..
pairSendReceive method..............ccoeveennnne 18-15 real fuNCioN........ocvvvee i 12-1
ParallelSchedulersccccoviiiiiiiiie e 134kalFarPort method............cccvviiiiiiiee 18:10
PArAMELEN ...t 9:1... realPort methodccceeeeveiiiiiiiiiiie 6-2,.6-8
ParGraph class.........cccooviieiiiiiiiee, 153L receiveData method..........cccccoiviiiiiiiiinnnnnn 6-4..
ParNode Classccccovvvveeeeiiiiiecc e 15:1. receiveWormData method..............cc.cocueeee. 18-14
ParProcessors class............... 13579 15-12, 15-14 referencedStatescccceevvireieeiicieie e 18-8
ParScheduler class..........ccccccoviiieiiiiiieecs 15:6. References........cccccomiiiiiiiinnennns 15-17, 15-22, 17-1
Particle Classuvvvvieiiiiiiiiiiie e, 6-1, 74egisterState method...........cccceeveveiiieieiieeennn. 18-8
ParticleQueue Class...........ccceeeeeiviviviveeeiiiiinns 6:14. remove method............ccevvvvvennnn. 16-2 16-3 16-6
ParticleStack classcccceevvinieeeins 6-10 6-13 removeBIOCKccceevviiiiiii 3-6..
pathSearch procedureocccuviviieeiiieeiiine LFBMOVEPOIT ... 3-3..
Plasma Class.........cocveeviiiieeiie e 6-13. removeStream method............cccceeevriiineeennnns 18-13
POINtEr tYPE ...t 1-BquestBufSize(int sz) method 18:2
POP MELhOMeeeeeiiiieiiiiiie e 16-7 resetmethodcccccoeiiiiiiiiiiiii 6-7,12-5
PortHole class..........cccccvvieeeeeenenenn. 3-1, 6-B,6-15 resolvedType methodcccccoevivniiiiiiiiennenenn. 6-4..
portHoleConnect method.............ccvvveeeeneeenn. 6-13 resource management.........oocccevvviveeeeeeeeeennnn. 16-8.
POItNUMDET ... 18-1ResourceManagement...........cccoeeeeeeeeeeeenn, 16-12, 18-2
POrtWIthNamMecoooviiiiiiie e 322, TESOUICES ...eeiiiiieeee ettt e e e e e e e a e 18-12
POSTFIX_OP.eeeiiiiiiiiiieeee 1-tevertGeo method........cccooevviiiiiiiiine, 16-13
POW fUNCHONeeeiiiiiiiiiiiiiieecc e 12-:1 rshSystem function..........ccccceeiiiiiiiiiiiiennen. 16-10
preferLinearBuf(int i) methodccccccoeenn. 18:3 ruUN. ..o 3-3, 3-4, 3-11, 3-12 5-2
preferredType methodcceeeeeeviiiiiinnnnnnd 6-5.. runmethod..........cccuviiiiiiiiiiie 16:11
preinitialize ... 3-3,3-53-10 runCode methodcoovviviiiiiiiiiieeennns 18:13
prepCode method...........cceveeeeiiiiiiiiiiiiiie, 18-15 runlt() method ..o 18-6
prepend method ..., 16:316-6 RUNNADIE........eeiiiiiiiiiiiii e 3-10
previous methodcccccciiiiiiiiiiiind 6-7.. Runnable Class........cccccccrniinniiiiiieinennnn. 3-1Q 5-1

Ptolemy

Last updated: 10/9/97

S SiN FUNCLION ..., 12-1
sanitizedFullNameccooiiiiiiiieeieneeeennn, 18:6 size method.........ccccooeiiiiiiiiiiiiiiiieee 6-7,6-12
saveFileName. ... 18-18leepUntil method........cccooovviiiiiiiiiiiiiceeee 12:5
Savestring ProCedureocccvvveeeeeeieeeeee e 1-@lowGet method..........cevvivieeiiiiiiii, 6-13
scheduler ..., 3:2,3-11, 3-12 slowPut methodcoooiiiiiiiiiis 6-13
Scheduler class.........ooocciiiiiici B8, sourcePort method...........ccceeevieeiiiiiiiiinnee, 6-12
ScopedSymbolList Classcccccceveeeeiniiinnins 16:7 SPlICECIUST ... 18-5
SDFSHar Classuuueieiiiieiiiiiiiiieieeee e 16-18preadandCollectstarsccccceeeerennnnes 15-14, 15-15
sectionComment method..................... 18:7,18-12 sSQrt fuNCioN.......coceiiiiiiiiiiiieeee e 12-1
sendData method...........ccveeeeviiiiiiininieee, B6-4... SIemMethoduvveiiiiiiiiiii 16-9
sendWormData method.............cccccccoerninnns 18-:14 Stack Classcccvvieeiiiiiiiiiiiieeee e 1-7...
separator member ... 16-8 Starclass.......ccooveiieiiiiiiiieen 34,4-8
SequentialList Class........ccccceeveeennn. 1-3,1-10, 16-3 starDataStruct methodccccccevveeeiininnnnns 18-7.
setAlias method.........cccceeeeiiiiiinnnnnn. 6:3,6-4,6-8 starSymbol member................cccrrriiiiiiiinnns 16-5
setAttributes methodcccccceeiiniiiiiiinenn. 6:3.. State Classccccuvvviiiiiiiiee e 9311,
SEBIOCK. ..., 3:3.. staticBuf() method...............oovririii 18-3
setBufferType method............cccciiiiiiieennnnn. 18-1 staticBuffering..........ccccoeeiiii, 18-11
setBufName method............cccooevviiiviiiicinnnn, 18:6 StringArrayState classccccvvvvvevviiiinnnnnd 9-6..
setCapacity methodccccceeeviiiiiiiiiiiiennnn. 6:15 StringListclasscccceeevvveeeens 11-1 16-1, 16-2
setCounter methodoovvvvvinnnnne. 16-6 16-7 StringState Class.........ccccvvvvveiiiiiiiiin e, 9:5...
setDelay method..........ccccoooeeeiii, 6-5.6-11 subsetOf method............coovvvviiiiiiiiiiicieee, 12-3
SEtDESCIIPION ..cvviieeiiiiiiieeee e 3:8.. substChar methodccccceeiiiiniiiiiiiieen. 16-5.
setDest method ... 6-9.. subtract methodcccccveiiiiiiiiiiiiiii 12-4
setDestPort method ... 6-11 Sub-Universecreationcccccccovvvniiiiiiiieeeneenenn. 154
SEtDOMAIN ..coviiieiiiiee e 3:6,.3-9 SUMUD .o 5-2..
setEventHorizon ... 5-4.. switched method............cccccoiiiiiiin, 16-14
setFlags() method.............ccccciiiiiiiienieene, 18:3 switchGeo method..............oeeeeeiiiiiiiiiiiie, 16:13
setForkBuf method..........cccocoeeiiiiiiiiiiiiieee, 16:14 SWItChGEOUESIC......uuvviieiiieiieeeei it 18-3
setForkSource method........ccccceeviiiiiineneneeen.s. 16-2 symbol generationccceeeeeiiiiiiiiiiiiiiinnn, 165
setGeoName method...........ccccvvvvvviniiiiiieennn. 18-6 symbolmethodcccccevvviiiviiiciienn, 16-6, 16-7
setHostName methodcccceeeiiiiiiinnnennn. 18:13 symbolCounter methodccccccoeveeiinennnn. 16-8
setMachineAddr method...............oeeeeeeee. 18:15 SymbolList class........cccccvvvvvvvvvvnvnennnnnnn. 16-5 16-6
setOffset methodcoovvvvviiiiiiinnnnne. 18-2 18-5 SymbolStack class...........ccccevvvvvirvvevnnvnrnnnnnn. 16-7.
setPort method...........ccooeiiiiiinins 6:3,6-4,6-8 T

SetPreferredType method ...l 67 QA MELNOM ..o, 6-10
setProcld method.........c.ovvviiniiiinnnn, 16:12 targ Method.......c..vvveeeeeeecieee e, 18:10
setSeparator method..............ccococevni 16-6 16-7 LI Lo = SRR 15-7
setSource method ... B:9... Target ClasS.....oovveereeeeeeeeeeeeeereeeeereernene 3-1, 3-4, 4-1
setSourcePort Method ... 6:11 targetNamec..ccooorvverirrieiieeseeens 3:12
SEtSIALE v 3-4,.3-9 targetNestedSymbol member 16-7
SELSIOPTIME oo 321151 imeMark ..o 5:4.
setTarget........cocevviiiiiiiic 3550 TimeVal Class ..o 12-4
setTarget method. ..., 16:11 TOEVENtHONZO ...vooveeeo s 5-4.
SELTEXt MENOD ... 16:3 TOEVENtHONZONvvovee 5-4.
setTimeMark ..o 5:4. Tokenizer class ... 9:3,11-5
SEIP -.covvii s 3:4.5:2, 18-14 {GKeNNEW.........covvveeiee o 5:4..
SELUP METNOM ... 18:12 fransferDat.......cc..coovevvecverirrieineiseienennne. 5-5..
setupForkDests method...........covvviiens 18:10 transferDatac..cooerverererrieriseeieeieeiens 5:5..
sharedNames member ..., 16:2. translateAliases method..............cccocoevuruenn.. 6:3..
sharedSymbol member..............c.cccoooonn. 16-7 117/ 01O 3:11
signalCopy Method ..o 18:15 type methodcocoovverierisisees 6:2,.6-14
SIMACLION ClasS..........ccociiiiiiiic i, 4-QyPEPOrt MEthO.veveeeeeeeeeeeeeeeeeeeeeersr 6-2..
SImControl Classccvvveeiiiiiiiiiiieeeen. 4-8, 4-9

simplify method ... 12-2

U. C. Berkeley

Department of EECS

The Almagest

U

UnNiProcessor Class......ccccovvvviiiiiiiieeenennenn. 15,61
unigue symbol generation............ccccceeeeeennnne 16-5
UniqueStringList class...........oocoviiiieeeeineeennn. 16-2
UniqueSymbolGenerationcccccvvveeeeeeneennnn. 16-5
UNIVEISE ..ottt 3:11
Universe Class.......ccovvvieeeeieee e 3-11, 51
useStaticBuffering method 18-13
utility fuNCLioNS.........ccoooeeiei, 9-5
UtilityfunCtionS..........ooooeeee e, 6-9
w

wantStaticBuffering method................c........ 18:13
wasteFactor method........cccccceveeeviiiiiiiinenen, 16-10
whereEmbedded methodccceee 16-13
Williamson, M. C.oovveiiiiiieeeeeeeee e 16-1
WOrmhole........ouvuiiiiiiiiiiiiie e, 5:1.
WOIMNOIE ..., 5:4..
WOIMIN Lo 18-9 18-13
wormlnputCode method..........cccceevviivieeeenns 18-12
WormLoadCodecoovvvveiiiiiiiicceeee e, 18-12
wormLoadCode method..................... 18:-:12 18-14
WormMUItiPOr ..., 5:5.
WOIrMOUL.......eeiiiiieiie e 18:-9 18-13
wormOutputCode methodccccvvveeee. 18-12
WIAPUP ettt eeeees 3-3 3-6, 3-12
wrapup method ... 18:12
writeCode methodccceeviieeiiiiiiiinn. 18-:13

X

XGraph Classcoveeiiiiiiiiiiii e 11-.7
XHistogram class............cccevvvvvvveevivniniiiinnn, 118
XIONG, Y. o e e e e e e e e e e e e 6-1
Ptolemy

Last updated: 10/9/97

U. C. Berkeley Department of EECS

	The Almagest
	Vol. 3 - Ptolemy 0.7 Kernel Manual

	Primary Authors
	Other contributors
	Copyright © 1990-1997
	The Regents of the University of California All ri...
	Current Sponsors
	Trademarks
	About the Cover
	The Almagest
	Contents
	Introduction 1
	1. Basic concepts, classes, and facilities
	2. Support for multithreading
	3. Block and related classes
	4. Control of Execution and Error Reporting
	5. Interfacing domains – wormholes and related cla...
	6. Classes for connections between blocks
	7. Particles and Messages
	8. The incremental linker
	9. Parameters and States
	10. Support for known lists and such
	11. I/O classes
	12. Miscellaneous classes
	13. Overview of Parallel Code Generation
	14. APEG generation
	15. Parallel Schedulers
	16. Base Code Generation Domain and Supporting Cla...
	17. Target
	18. CGC Domain

	Introduction

	Chapter 1. Basic concepts, classes, and facilities...
	1.1 The C++ Subset Used In Ptolemy
	1.2 Iterators
	class MyIterator { public: // constructor: argumen...
	// print the names of all objects in the container...
	while ((itemP = nextItem++) != 0) cout << itemP->n...

	1.3 Non-class utility procedures
	char* savestring(const char* text);
	const char* hashstring(const char* text);
	const char* expandPathName(const char* fileName);
	const char* pathSearch(const char* file, const cha...
	int progNotFound(const char* program,const char* e...

	1.4 Generic Data Structures
	typedef void * Pointer;

	1.5 Class SequentialList
	1.5.1 SequentialList information functions
	int size() const;
	Pointer head() const;
	Pointer tail() const;
	Pointer elem(int n) const;
	int empty() const;
	int member(Pointer arg) const;

	1.5.2 Functions that modify a SequentialList
	void prepend(Pointer p);
	void append(Pointer p);
	int remove(Pointer p);
	Pointer getAndRemove();
	Pointer getTailAndRemove();
	void initialize();

	1.5.3 Class ListIter

	1.6 Doubly linked lists
	1.6.1 Class DoubleLink
	DoubleLink(Pointer p, DoubleLink* next, DoubleLink...
	Pointer content();
	virtual ~DoubleLink();
	void unlinkMe();
	DoubleLink *next; // next node in the list DoubleL...

	1.6.2 Class DoubleLinkList
	DoubleLinkList(); DoubleLinkList(Pointer* e);
	virtual ~DoubleLinkList();
	DoubleLink* createLink(Pointer e);
	void insertLink(DoubleLink *x); void insert(Pointe...
	void appendLink(DoubleLink *x); void append(Pointe...
	void insertAhead(DoubleLink *y, DoubleLink *x); vo...
	DoubleLink* unlink(DoubleLink *x);
	void removeLink(DoubleLink *x);
	void remove(Pointer e);
	int find(Pointer e);
	virtual void initialize();
	void reset();
	int size();
	DoubleLink *head(); DoubleLink *tail();
	DoubleLink *getHeadLink(); Pointer takeFromFront()...
	DoubleLink *getTailLink(); Pointer takeFromBack();...
	DoubleLink *myHead; DoubleLink *myTail;

	1.6.3 Class DoubleLinkIter

	1.7 Other generic container classes
	1.7.1 Class Queue
	void putTail(Pointer p); void putHead(Pointer p); ...

	1.7.2 Class Stack
	void pushTop(Pointer p); Pointer popTop(); pushBot...
	Pointer accessTop() const;

	1.8 Class NamedObj
	1.8.1 NamedObj constructors and destructors
	NamedObj(const char* name,Block* parent, const cha...

	1.8.2 NamedObj public members
	virtual const char* className() const;
	const char* name() const;
	const char* descriptor() const;
	Block* parent() const;
	virtual StringList fullName() const;
	void setName(const char* name);
	void setParent(Block* parent);
	void setNameParent (const char* my_name, Block* my...
	virtual void initialize() = 0;
	virtual StringList print (int verbose) const;
	virtual int isA(const char* cname) const;

	1.8.3 Flags on named objects
	FlagArray flags
	b->flags[visited] = TRUE; ...
	if (b->flags[visited]) { ... }

	1.8.4 NamedObj protected members
	void setDescriptor(const char* desc);

	1.9 Class NamedObjList
	1.9.1 NamedObjList information functions
	NamedObj* objWithName(const char* name); const Nam...
	NamedObj* head(); const NamedObj* head() const;

	1.9.2 Other NamedObjList functions
	void put(NamedObj& obj)
	void initElements();
	int remove(NamedObj* obj);
	void deleteAll();

	1.9.3 NamedObjList iterators

	1.10 Attributes
	1.10.1 Attribute member functions
	Attribute& operator |= (const Attribute& arg); Att...
	bitWord eval(bitWord defaultVal) const;
	bitWord clearAttribs(bitWord defaultVal) const;
	bitWord on() const; bitWord off() const;

	1.11 FlagArray
	1.11.1 FlagArray constructors and destructor
	FlagArray()
	FlagArray(int size)
	FlagArray(int size, int fill_value)

	1.11.2 FlagArray public methods
	FlagArray & operator = (const FlagArray & v)
	int size() const
	int & operator [] (int n)

	Chapter 2. Support for multithreading
	2.1 Class PtGate
	2.2 Class CriticalSection
	2.3 Class GateKeeper
	2.4 Class KeptGate

	Chapter 3. Block and related classes
	3.1 Class Block
	3.1.1 Block constructors and destructors
	3.1.2 Block public “information” members
	3.1.3 Other Block public members
	3.1.4 Block protected members
	3.1.5 Block iterator classes

	3.2 Class Star
	3.2.1 Star public members
	3.2.2 Star protected members

	3.3 Class Galaxy
	3.3.1 Galaxy public members
	3.3.2 Galaxy protected members
	3.3.3 Galaxy iterators

	3.4 Class DynamicGalaxy
	3.5 Class InterpGalaxy
	3.5.1 Building structures with InterpGalaxy
	3.5.2 Deleting InterpGalaxy structures
	3.5.3 InterpGalaxy and cloning
	3.5.4 Other InterpGalaxy functions

	3.6 Class Runnable
	3.7 Class Universe
	3.8 Class InterpUniverse

	Chapter 4. Control of Execution and Error Reportin...
	4.1 Class Target
	4.1.1 Target public members
	4.1.2 Target protected members

	4.2 Class Scheduler
	4.2.1 Scheduler public members
	4.2.2 Scheduler protected members

	4.3 Class Error
	4.4 Class SimControl
	4.4.1 Access to SimControl status flags.
	4.4.2 Pre-actions and Post-actions
	4.4.3 SimControl interrupts and polling

	Chapter 5. Interfacing domains – wormholes and rel...
	5.1 Class Wormhole
	5.1.1 Wormhole public members
	5.1.2 Wormhole protected members

	5.2 Class EventHorizon
	5.2.1 How EventHorizons are used
	5.2.2 EventHorizon public members
	5.2.3 EventHorizon protected members

	5.3 Class ToEventHorizon
	5.4 Class FromEventHorizon
	5.5 Class WormMultiPort

	Chapter 6. Classes for connections between blocks
	6.1 Class GenericPort
	6.1.1 GenericPort query functions
	6.1.2 Other GenericPort public members
	6.1.3 GenericPort protected members

	6.2 Class PortHole
	6.2.1 PortHole public members
	6.2.2 PortHole protected members
	6.2.3 CircularBuffer – a class used to implement P...

	6.3 Class MultiPortHole
	6.3.1 MultiPortHole public members
	6.3.2 MultiPortHole protected members

	6.4 AutoFork and AutoForkNode
	6.4.1 Class AutoFork
	6.4.2 Class AutoForkNode

	6.5 Class ParticleStack
	6.6 Class Geodesic
	6.6.1 Geodesic public members
	6.6.2 Geodesic protected members

	6.7 Class Plasma
	6.8 Class ParticleQueue
	6.9 Classes for Galaxy ports
	6.10 The PortHole type resolution algorithm
	1. Printer and similar polymorphic stars, which ac...
	2. Fork and similar stars, which want to bind mult...
	3. Merge and similar stars, which have a single ou...
	Note:

	6.11 Changes since Ptolemy0.6

	Chapter 7. Particles and Messages
	7.1 Class Particle
	7.2 Particle public members
	7.3 Arithmetic Particle classes
	7.4 The Heterogeneous Message Interface
	7.4.1 Class Envelope
	7.4.2 Class Message
	7.4.3 Class MessageParticle

	7.5 Example Message types

	Chapter 8. The incremental linker
	8.1 ld -A style linking vs. dlopen() style linking...
	8.2 Temporary vs. Permanent Incremental Linking
	8.3 Linker public members
	8.4 Linker implementation
	8.4.1 Shared Objects and dlopen() style linking
	1. Using just a file name link foo.so will not wor...
	2. 2If the file name begins with ./, then the curr...
	3. If the file name is an absolute path name, then...
	4. Dynamic programs can have a run path specified ...

	8.4.2 Porting the Dynamic Linking capability
	8.4.3 ld -A Style Dynamic Linking
	1. Align the memory as required.
	2. Form the command line and execute the Unix link...
	3. Read in the object file. This is heavily system...
	4. Make the read-in text executable. On most syste...
	5. Invoke constructors in the newly read in code. ...
	6. If this is a permanent link, copy the linker ou...

	8.4.4 dlopen() Style Dynamic Linking
	1. Generate a list of files to be linked in. If we...
	2. Generate a shared object .so file from all the ...
	3. Do a dlopen() on the shared object.
	4. Most architectures use nm to search for constru...

	Chapter 9. Parameters and States
	9.1 Class State
	9.1.1 State public members
	9.1.2 The State parser and protected members

	9.2 Types of states
	9.2.1 Class IntState and class FloatState
	9.2.2 Class ComplexState
	9.2.3 Class StringState
	9.2.4 Numeric array states
	9.2.5 Class StringArrayState

	Chapter 10. Support for known lists and such
	10.1 Class KnownBlock
	10.2 Class KnownTarget
	10.3 Class Domain
	10.3.1 Domain virtual functions

	10.4 Class KnownState

	Chapter 11. I/O classes
	11.1 StringList, a kind of String class
	11.1.1 StringList constructors and assignment oper...
	11.1.2 Adding to StringLists
	11.1.3 StringList information functions
	11.1.4 StringList conversion to const char *
	11.1.5 StringList destruction and zeroing
	11.1.6 Class StringListIter

	11.2 InfString, a class supporting unbounded strin...
	11.2.1 InfString constructors and assignment opera...
	11.2.2 Adding to InfStrings
	11.2.3 InfString information functions
	11.2.4 InfString conversion to char *
	11.2.5 InfString destruction and zeroing
	11.2.6 Class InfStringIter

	11.3 Tokenizer, a simple lexical analyzer class
	11.3.1 Initializing Tokenizer objects
	11.3.2 Reading from Tokenizers
	11.3.3 Tokenizer include files

	11.4 pt_ifstream and pt_ofstream: augmented fstrea...
	11.5 XGraph, an interface to the xgraph program
	11.6 Histogram classes
	11.6.1 Class Histogram
	11.6.2 Class XHistogram

	Chapter 12. Miscellaneous classes
	12.1 Mathematical classes
	12.1.1 Class Complex
	12.1.2 class Fraction

	12.2 Class IntervalList
	12.2.1 class Interval and methods
	12.2.2 IntervalList public members
	12.2.3 IntervalList iterator classes.

	12.3 Classes for interacting with the system clock...

	Chapter 13. Overview of Parallel Code Generation
	Chapter 14. APEG generation
	14.1 Class EGArc
	14.2 Class EGGate
	14.2.1 EGGate public members
	14.2.2 Class EGGateList
	class EGGateLink
	EGGateList public members
	Iterator for EGGateList

	14.3 Class EGNode
	14.3.1 Other EGNode public members
	14.3.2 EGNodeList

	14.4 Class ExpandedGraph
	5. Initialize the APEG graph.
	6. Allocate all invocations (EGNodes) of the block...
	7. For each star in the original SDF graph,
	8. Find the root nodes in the APEG and stored in i...
	14.4.1 Other ExpandedGraph public members
	14.4.2 Iterators for ExpandedGraph

	Chapter 15. Parallel Schedulers
	15.1 ParNode
	15.1.1 ParNode protected members
	15.1.2 Other ParNode public members
	15.1.3 Iterators for ParNode

	15.2 Class ParGraph
	15.2.1 Other ParGraph protected members
	15.2.2 Other ParGraph public members
	15.2.3 Class NodePair

	15.3 Class ParScheduler
	15.3.1 compileRun method
	15.3.2 Other ParScheduler protected members
	15.3.3 Other ParScheduler public members

	15.4 class ParProcessors
	15.4.1 Other ParProcessors protected members
	15.4.2 Other ParProcessors public members

	15.5 UniProcessor
	15.5.1 Class NodeSchedule
	15.5.2 Members for scheduling
	15.5.3 Sub-Universe creation
	Spread and Collect stars

	15.5.4 Members for code generation
	15.5.5 Other UniProcessor protected members
	15.5.6 Other UniProcessor public members
	15.5.7 Iterator for UniProcessor

	15.6 Dynamic Level Scheduler
	15.7 Class DLGraph
	15.8 class DLScheduler
	15.9 Class DLParProcs
	15.10 Hu Level Scheduler
	15.10.1 Class HuNode
	15.10.2 Class HuGraph
	15.10.3 Class HuScheduler
	15.10.4 Class HuParProcs

	15.11 Declustering Scheduler
	15.11.1 Class DCNode
	15.11.2 Classes DCArc and DCArcList
	15.11.3 Class DCGraph
	15.11.4 Class DCCluster
	15.11.5 Class DCClusterList
	15.11.6 Class DCClustArc and class DCClustArcList
	15.11.7 Class DCParProcs

	Chapter 16. Base Code Generation Domain and Suppor...
	16.1 Class CodeStream
	16.1.1 Class NamedList

	16.2 Class CodeBlock and Macros
	16.3 Class SymbolList and Unique Symbol Generation...
	16.4 Class CGGeodesic and Resource Management
	16.5 Utility Functions
	16.6 Class CGStar
	16.6.1 CGStar Protected Methods and Members
	16.6.2 CGStar Public Methods

	16.7 Class CGPortHole
	16.7.1 Buffer Management
	16.7.2 Buffer Embedding
	16.7.3 Geodesic Switching
	16.7.4 Other CGPortHole Members
	16.7.5 CGPortHole Derived Classes

	Chapter 17. Target
	17.1 Class CGTarget
	(1) Initialize myCode and procedure code stream.
	(2) Select a scheduler if no scheduler is selected...
	(3) Reset the symbol lists.
	(4) If we are the top-level target, initialize the...
	(5) If it is a child target, the schedule was alre...
	(6) If it is a child target or it is not inside a ...
	(1) If this target is a child target, call setup t...
	(2) We compute buffer sizes, allocate memory, etc:...
	(3) Call the method generateCodeStreams(). This me...
	(4) Organize the CodeStreams into a single code st...
	(5) If this target is not a child target, write th...
	(6) If it is a child target, copy the symbol count...
	(1) Write initial code.
	(2) We do initialization for code generation: for ...
	(3) Generate the code for the main loop: mainLoopC...
	(4) Call wrapup methods of stars to generate code ...
	(5) Add more code if necessary: trailerCode
	17.1.1 Other CGTarget protected members
	17.1.2 Other CGTarget public members
	17.1.3 Class HLLTarget

	17.2 Multiprocessor Targets
	17.2.1 Class MultiTarget
	Other MultiTarget public members

	17.2.2 Class CGMultiTarget
	(1) Based on the states, we create child targets a...
	(2) Choose a scheduler based on the states: choose...
	(3) If it is a heterogeneous target, we flatten th...
	(4) Set up the scheduler object. Clear myCode stre...
	(5) Initialize the flattened galaxy, and perform t...
	(6) If the child targets are not inherited, displa...
	(7) If this target is inside a wormhole, it adjust...
	Other CGMultiTarget protected members
	Other CGMultiTarget public members

	17.2.3 Class CGSharedBus

	17.3 Heterogeneous Support
	1. To specify the component targets , we first set...
	2. An application program for a heterogeneous targ...
	3. When we schedule a star in the scheduling phase...
	4. After scheduling is performed, we create sub-un...

	Chapter 18. CGC Domain
	18.1 Buffer Allocation
	1. Determine the buffer requirements for all porth...
	2. Splice Copy stars or type conversion stars if n...
	3. Set the buffer type for each output porthole: e...
	4. We assign unique names for buffers.
	5. We initialize the offset pointer for each porth...
	18.1.1 Buffer requirement
	1. We can manually assign the buffer size by calli...
	2. We set the initial buffer size by calling local...
	3. We set two flags for this porthole to indicate ...
	4. As the final step, we set the flags for destina...

	18.1.2 Splice stars
	Scheduling spliced stars

	18.1.3 Buffer naming

	18.2 Data structure for galaxy and stars
	1. Comments to indicate that the following declara...
	2. Declare buffers associated with portholes. We d...
	3. Declare index pointers to the buffer if static ...
	4. Finally, we declare referenced states. A State ...
	18.2.1 Buffer initialization
	1. If the buffer is EMBEDDED, we assign a pointer ...
	2. For the regular buffer, we initialize with 0s i...
	3. We initialize an index pointer of a buffer to t...

	18.3 CGC code streams
	18.4 Other CGCPortHole members
	18.5 Other CGCStar members
	18.6 Other CGCTarget members
	18.6.1 Other CGCTarget protected members
	18.6.2 Other CGCTarget public members

	18.7 Class CGCMultiTarget
	18.7.1 CGCMultiTarget protected members
	18.7.2 CGCMultiTarget public members

	18.8 Status
	18.9 References
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X

