
COLLEGE OF ENGINEERING
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES
BERKELEY, CALIFORNIA 94720

U N I V E R S I T Y O F C A L I F O R N I A AT B E R K E L E Y
A

•T

H
E

•U
N

IV
E

R
S I T Y • O F • C

A
L

I F
O

R
N

IA
•

•1868•

LE
T THE R E BE

LIG H T
The
Almagest

Vol. 3 - Ptolemy 0.7 Kernel Manual

The
Almagest

an L.
Lane,
s M.
nard

 fees,
y pur-
r in all

-

Primary Authors

Joseph T. Buck (Part I — The Kernel Manual, Chapters 1-12)

Soonhoi Ha (Part II — Code Generation, Chapters 13-18)

Other contributors

Shuvra Bhattacharyya, Wan-Teh Chang, Michael J. Chen, John S. Davis II, Bri
Evans, Mudit Goel,Christopher Hylands, Asawaree Kalavade, Alan Kamas, Tom
Bilung Lee, Edward A. Lee, Jie Liu, David G. Messerschmitt, Praveen Murthy, Thoma
Parks, José Luis Pino, Gilbert Sih, Neil Smyth, S. Sriram, Michael C. Williamson, Ken
White,Yuhong Xiong

Copyright © 1990-1997

The Regents of the University of California
All rights reserved.

Permission is hereby granted, without written agreement and without license or royalty
to use, copy, modify, and distribute the Ptolemy software and its documentation for an
pose, provided that the above copyright notice and the following two paragraphs appea
copies of the software and documentation.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMEN
TATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRAN-
TIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
PROVIDED HEREUNDER IS ON AN “AS IS” BASIS, AND THE UNIVERSITY OF CAL-
IFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
Ptolemy Last updated: 10/9/97

gency
Alta

muni-

 heter-

n are

ation-
 of
Current Sponsors
The Ptolemy project is supported by the Defense Advanced Research Projects A

(DARPA), the State of California MICRO program, and the following companies: The
Group of Cadence Design Systems, Hewlett Packard, Hitachi, Hughes Space and Com
cations, LG Electronics, NEC, Philips, and Rockwell.

The Ptolemy project is an ongoing research project focusing on design methodology for
ogeneous systems. Additional support for further research is always welcome.

Trademarks
Sun Workstation, OpenWindows, SunOS, Sun-3, Sun-4, SPARC, and SPARCstatio
trademarks of Sun Microsystems, Inc.

Unix is a trademark of Unix Systems Laboratories, Inc.

PostScript is a trademark of Adobe Systems, Inc.

About the Cover
The image on the cover is from a medieval illuminated manuscript at the Bibliotheque N
ale, Paris. It depicts a monk using anastrolabe,a device for measuring the angular distance
stars above the horizon. An assistant records the readings.
Ptolemy Last updated: 10/9/97

The Almagest
Contents
Introduction 1

1. Basic concepts, classes, and facilities
1.1 The C++ Subset Used In Ptolemy . 1-1
1.2 Iterators . 1-1
1.3 Non-class utility procedures . 1-2
1.4 Generic Data Structures. 1-3
1.5 Class SequentialList. 1-3

SequentialList information functions 1-3
Functions that modify a SequentialList 1-3
Class ListIter 1-4

1.6 Doubly linked lists . 1-4
Class DoubleLink 1-4
Class DoubleLinkList 1-5
Class DoubleLinkIter 1-6

1.7 Other generic container classes . 1-7
Class Queue 1-7
Class Stack 1-7

1.8 Class NamedObj . 1-7
NamedObj constructors and destructors 1-8
NamedObj public members 1-8
Flags on named objects 1-9
NamedObj protected members 1-10

1.9 Class NamedObjList . 1-10
NamedObjList information functions 1-10
Other NamedObjList functions 1-10
NamedObjList iterators 1-11

1.10 Attributes . 1-11
Attribute member functions 1-11

1.11 FlagArray . 1-12
FlagArray constructors and destructor 1-12
FlagArray public methods 1-12

2. Support for multithreading
2.1 Class PtGate . 2-1
2.2 Class CriticalSection . 2-1
2.3 Class GateKeeper . 2-2
2.4 Class KeptGate . 2-3

3. Block and related classes
Ptolemy Last updated: 10/9/97

3.1 Class Block . 3-1
Block constructors and destructors 3-1
Block public “information” members 3-1
Other Block public members 3-2
Block protected members 3-4
Block iterator classes 3-4

3.2 Class Star . 3-4
Star public members 3-4
Star protected members 3-5

3.3 Class Galaxy . 3-5
Galaxy public members 3-5
Galaxy protected members 3-6
Galaxy iterators 3-7

3.4 Class DynamicGalaxy . 3-7
3.5 Class InterpGalaxy . 3-7

Building structures with InterpGalaxy 3-8
Deleting InterpGalaxy structures 3-9
InterpGalaxy and cloning 3-10
Other InterpGalaxy functions 3-10

3.6 Class Runnable . 3-10
3.7 Class Universe . 3-11
3.8 Class InterpUniverse . 3-11

4. Control of Execution and Error Reporting
4.1 Class Target . 4-1

Target public members 4-1
Target protected members 4-4

4.2 Class Scheduler . 4-5
Scheduler public members 4-6
Scheduler protected members 4-7

4.3 Class Error . 4-7
4.4 Class SimControl . 4-8

Access to SimControl status flags. 4-8
Pre-actions and Post-actions 4-9
SimControl interrupts and polling 4-9

5. Interfacing domains – wormholes and related classes
5.1 Class Wormhole . 5-1

Wormhole public members 5-1
Wormhole protected members 5-2

5.2 Class EventHorizon . 5-3
How EventHorizons are used 5-3
EventHorizon public members 5-3
U. C. Berkeley Department of EECS

The Almagest
EventHorizon protected members 5-4
5.3 Class ToEventHorizon . 5-4
5.4 Class FromEventHorizon . 5-5
5.5 Class WormMultiPort . 5-5

6. Classes for connections between blocks
6.1 Class GenericPort. 6-1

GenericPort query functions 6-1
Other GenericPort public members 6-3
GenericPort protected members 6-3

6.2 Class PortHole . 6-3
PortHole public members 6-4
PortHole protected members 6-6
CircularBuffer – a class used to implement PortHole 6-7

6.3 Class MultiPortHole . 6-8
MultiPortHole public members 6-8
MultiPortHole protected members 6-8

6.4 AutoFork and AutoForkNode. 6-9
Class AutoFork 6-9
Class AutoForkNode 6-9

6.5 Class ParticleStack. 6-10
6.6 Class Geodesic . 6-10

Geodesic public members 6-11
Geodesic protected members 6-13

6.7 Class Plasma. 6-13
6.8 Class ParticleQueue . 6-14
6.9 Classes for Galaxy ports . 6-15
6.10 The PortHole type resolution algorithm 6-15
6.11 Changes since Ptolemy0.6. 6-18

7. Particles and Messages
7.1 Class Particle . 7-1
7.2 Particle public members . 7-1
7.3 Arithmetic Particle classes . 7-2
7.4 The Heterogeneous Message Interface 7-2

Class Envelope 7-3
Class Message 7-4
Class MessageParticle 7-5

7.5 Example Message types. 7-5

8. The incremental linker
8.1 ld -A style linking vs. dlopen() style linking 8-1
8.2 Temporary vs. Permanent Incremental Linking. 8-1
Ptolemy Last updated: 10/9/97

8.3 Linker public members . 8-2
8.4 Linker implementation . 8-3

Shared Objects and dlopen() style linking 8-3
Porting the Dynamic Linking capability 8-3
ld -A Style Dynamic Linking 8-4
dlopen() Style Dynamic Linking 8-4

9. Parameters and States
9.1 Class State . 9-1

State public members 9-1
The State parser and protected members 9-2

9.2 Types of states . 9-5
Class IntState and class FloatState 9-5
Class ComplexState 9-5
Class StringState 9-5
Numeric array states 9-5
Class StringArrayState 9-6

10. Support for known lists and such
10.1 Class KnownBlock . 10-1
10.2 Class KnownTarget . 10-3
10.3 Class Domain . 10-4

Domain virtual functions 10-4
10.4 Class KnownState . 10-5

11. I/O classes
11.1 StringList, a kind of String class 11-1

StringList constructors and assignment operators 11-1
Adding to StringLists 11-1
StringList information functions 11-2
StringList conversion to const char * 11-2
StringList destruction and zeroing 11-2
Class StringListIter 11-3

11.2 InfString, a class supporting unbounded strings 11-3
InfString constructors and assignment operators 11-3
Adding to InfStrings 11-4
InfString information functions 11-4
InfString conversion to char * 11-4
InfString destruction and zeroing 11-4
Class InfStringIter 11-4

11.3 Tokenizer, a simple lexical analyzer class. 11-5
Initializing Tokenizer objects 11-5
Reading from Tokenizers 11-5
Tokenizer include files 11-6
U. C. Berkeley Department of EECS

The Almagest
11.4 pt_ifstream and pt_ofstream: augmented fstream classes11-6
11.5 XGraph, an interface to the xgraph program 11-7
11.6 Histogram classes . 11-7

Class Histogram 11-8
Class XHistogram 11-8

12. Miscellaneous classes
12.1 Mathematical classes . 12-1

Class Complex 12-1
class Fraction 12-2

12.2 Class IntervalList . 12-2
class Interval and methods 12-2
IntervalList public members 12-3
IntervalList iterator classes. 12-4

12.3 Classes for interacting with the system clock 12-4

13. Overview of Parallel Code Generation

14. APEG generation
14.1 Class EGArc . 13-1
14.2 Class EGGate . 13-1

EGGate public members 13-1
Class EGGateList 13-3

14.3 Class EGNode . 13-4
Other EGNode public members 13-4
EGNodeList 13-5

14.4 Class ExpandedGraph . 13-5
Other ExpandedGraph public members 13-6
Iterators for ExpandedGraph 13-7

15. Parallel Schedulers
15.1 ParNode . 15-1

ParNode protected members 15-1
Other ParNode public members 15-2
Iterators for ParNode 15-4

15.2 Class ParGraph . 15-4
Other ParGraph protected members 15-5
Other ParGraph public members 15-5
Class NodePair 15-6

15.3 Class ParScheduler . 15-6
compileRun method 15-7
Other ParScheduler protected members 15-8
Other ParScheduler public members 15-8

15.4 class ParProcessors. 15-9
Ptolemy Last updated: 10/9/97

Other ParProcessors protected members 15-10
Other ParProcessors public members 15-10

15.5 UniProcessor . 15-11
Class NodeSchedule 15-12
Members for scheduling 15-12
Sub-Universe creation 15-13
Members for code generation 15-15
Other UniProcessor protected members 15-16
Other UniProcessor public members 15-16
Iterator for UniProcessor 15-17

15.6 Dynamic Level Scheduler . 15-17
15.7 Class DLGraph . 15-17
15.8 class DLScheduler . 15-18
15.9 Class DLParProcs . 15-19
15.10 Hu Level Scheduler . 15-20

Class HuNode 15-20
Class HuGraph 15-21
Class HuScheduler 15-21
Class HuParProcs 15-22

15.11 Declustering Scheduler . 15-22
Class DCNode 15-24
Classes DCArc and DCArcList 15-25
Class DCGraph 15-26
Class DCCluster 15-27
Class DCClusterList 15-29
Class DCClustArc and class DCClustArcList 15-30
Class DCParProcs 15-30

16. Base Code Generation Domain and Supporting Classes
16.1 Class CodeStream . 16-1

Class NamedList 16-3
16.2 Class CodeBlock and Macros . 16-3
16.3 Class SymbolList and Unique Symbol Generation. 16-5
16.4 Class CGGeodesic and Resource Management 16-8
16.5 Utility Functions . 16-10
16.6 Class CGStar . 16-10

CGStar Protected Methods and Members 16-10
CGStar Public Methods 16-11

16.7 Class CGPortHole . 16-12
Buffer Management 16-12
Buffer Embedding 16-12
Geodesic Switching 16-13
Other CGPortHole Members 16-14
U. C. Berkeley Department of EECS

The Almagest
CGPortHole Derived Classes 16-14

17. Target
17.1 Class CGTarget . 17-1

Other CGTarget protected members 17-5
Other CGTarget public members 17-5
Class HLLTarget 17-7

17.2 Multiprocessor Targets . 17-7
Class MultiTarget 17-8
Class CGMultiTarget 17-10
Class CGSharedBus 17-14

17.3 Heterogeneous Support . 17-15

18. CGC Domain
18.1 Buffer Allocation . 18-1

Buffer requirement 18-2
Splice stars 18-4
Buffer naming 18-6

18.2 Data structure for galaxy and stars. 18-7
Buffer initialization 18-8

18.3 CGC code streams . 18-8
18.4 Other CGCPortHole members . 18-9
18.5 Other CGCStar members . 18-10
18.6 Other CGCTarget members . 18-11

Other CGCTarget protected members 18-11
Other CGCTarget public members 18-12

18.7 Class CGCMultiTarget . 18-13
CGCMultiTarget protected members 18-14
CGCMultiTarget public members 18-15

18.8 Status . 18-15
18.9 References. 18-16
Ptolemy Last updated: 10/9/97

U. C. Berkeley Department of EECS

The Almagest

ore of
f you

n of the
ecided
 to the
ever,
e call-
 code
al in an

bugs in
 Introduction

The Ptolemy Kernel Manual describes the C++ classes that make up the c
Ptolemy. It is assumed that the reader is intimately familiar with the Ptolemy system (I
are not, seehttp://ptolemy.eecs.berkeley.edu) . The Kernel Manual was originally
written by Joe Buck, Soonhoi Ha added the Code Generation chapters. The last versio
Kernel Manual was released with Ptolemy 0.5.2. With the release of Ptolemy 0.7, we d
that it was time to update the Kernel Manual to include things like Tom Lane’s changes
type checking system (“The PortHole type resolution algorithm” on page 6-15). How
much of the Kernel Manual is still out of date, the most common errors are changes in th
ing signature of methods, or the addition or removal of methods. Ultimately, the source
is the best reference for these sorts of issues. We decided to release the Kernel Manu
unpolished form because the usefulness of some of the sections far outweighs the
other sections.
Ptolemy Last updated: 10/9/97

U. C. Berkeley Department of EECS

The Almagest 1-1

oughout
portant
eavi-

my –
amed-

est fea-
otated
tation.
erent
experi-
, such
al places.

n Ptole-
ts. We
ss has

such
. This
ously,
Chapter 1. Basic concepts, classes,
and facilities

Authors: The Ptolemy Team

This section describes some basic classes and low-level concepts that are used thr
Ptolemy. There are a number of iterator classes, all with the same interface. Several im
non-class library functions are provided. A basic linked list class called SequentialList is h
ly used. States (see section 9.1) and Portholes (see section 6.2) can haveattributes; these are
particularly important in code generation. Finally, many of the significant classes in Ptole
functional blocks, portholes to implement connections, parameters – are derived from N
Obj, the basic object for implementing a named object that lives in a hierarchy.

1.1 The C++ Subset Used In Ptolemy
The Ptolemy system has grown up with the C++ language, so it does not use all the lat
tures in the newest compilers or every nook and cranny of Ellis and Stroustrup’s Ann
Reference Manual, because of unimplemented features or lack of stability of implemen
Instead, we focused on stability. Accordingly, Ptolemy can be built with a number of diff
C++ compilers. This means, for one thing, that templates are not used (except in the
mental IPUS domain). In addition, some features that do not work that well yet under g++
as nested classes, are also avoided. Nested enumerations, however, are used in sever

1.2 Iterators
Iterators are a very basic and widely used concept in Ptolemy, and are used repeatedly i
my programming in almost any situation where a composite object contains other objec
have chosen to use a consistent interface for all iterator objects. The typical iterator cla
the following basic interface (some iterators provide additional functions as well):

class MyIterator {
public:
// constructor: argument is associated outer object

MyIterator(OuterObject&);
// next: return a pointer to the next object,
// or a null pointer if no more
InnerObject* next();
// operator form: a synonym for next
InnerObject* operator++(POSTFIX_OP) {return next();}
// reset the iterator to point to the first object
void reset();

}

POSTFIX_OP is a macro that is defined to be an empty string on older compilers (
as cfront 2.1 and versions of g++ before 2.4) and to the string "int" with newer compilers
conditional behavior is required because of the evolution of the C++ language; previ
Ptolemy Last updated: 10/9/97

1-2 Basic concepts, classes, and facilities

aded;

erator,
the
modi-

lating

direc-

ring
le
t ref-

eans
 call.

. If
ment
ion
rns a
postfix and prefix forms of the operators ++ and – were not distinguished when overlo
now, a dummy int argument indicates that the postfix form is intended.

A typical programming application for iterators might be something like

// print the names of all objects in the container
ListIter nextItem(myList);
Item *itemP;
while ((itemP = nextItem++) != 0)

cout << itemP->name() << "\back n";

It is, as a rule, not safe to modify most container classes in parallel with the use of an it
as the iterator may attempt to access an object that does not exist any more. However, re-
set member function will always make the iterator safe to use even if the list has been
fied (user-written iterators should preserve this property).

1.3 Non-class utility procedures
The kernel provides several useful ordinary (non-class) procedures, primarily for manipu
strings and path names. Some are defined inmiscFuncs.h, others inpaths.h.

char* savestring(const char* text);

Create a copy of thetext argument withnew and return a pointer to it. It is the caller’s
responsibility to assure that the string is eventually deleted by using thedelete [] opera-
tor. The argumenttext must not be a null pointer.

const char* hashstring(const char* text);

Enters a copy oftext into a hash table and return a pointer to the entry. If two strings
compare equal when passed tostrcmp, then if both are passed tohashstring, the
return values will be the same pointer.

const char* expandPathName(const char* fileName);

Expand a path name that may begin with an environment variable or a user’s home
tory. If the string does not begin with a ~ or$ character, the string itself is returned. A
leading “~/ ” is replaced by the user’s home directory; a leading “~user ” is replaced by
the home directory foruser, unless there is no such user, in which case the original st
is returned. Finally, a leading “$env ” is replaced by the value of the environment variab
env; if there is no such environment variable, the original string is returned. Note tha
erences to environment variables other than at the beginning arenotsubstituted. If any
substitutions are made, the return value is actually a pointer into a static buffer. This m
that a second call to this function may write on top of a value returned by a previous

const char* pathSearch(const char* file , const char* path =0);

For this function,path is a series of Unix-style directory names, separated by colons
no second argument is supplied or if the value is null, the value of the PATH environ
variable is used instead. For each of the colon-separated directory strings, the funct
checks to see whether the file exists in the named directory. If it finds a match, it retu
pointer to an internal buffer containing the full path of the match. If it does not find a
match, it returns a null pointer.
U. C. Berkeley Department of EECS

The Almagest 1-3

so

, with

 is pos-

struc-
er, the
 because
iated
int progNotFound(const char* program ,const char* extra =0);

This function searches forprogram in the user’s PATH using thepathSearch function.
If a match is found, the function returns false (0). Otherwise it returns true (1) and al
generates an error message with theError::abortRun function. If theextra argument
is given, it forms the second line of the error message.

1.4 Generic Data Structures
As Ptolemy does not use templates, our generic lists use the generic pointer technique

typedef void * Pointer;

The most commonly used generic data structure in Ptolemy isSequentialList. Other lists
are, as a rule, privately inherited from this class, so that type safety can be preserved. It
sible to insert and retrieve items at either the head or the tail of the list.

1.5 Class SequentialList
This class implements a single linked list with a count of the number of elements. The con
tor produces a properly initialized empty list, and the destructor deletes the links. Howev
destructor does not delete the items that have been added to the list; this is not possible
it has onlyvoid * pointers and would not know how to delete the items. There is an assoc
iterator class for SequentialList called ListIter.

1.5.1 SequentialList information functions

These functions return information about the SequentialList but do not modify it.

int size() const;

Return the size of the list.

Pointer head() const;

Return the first item from the list (0 if the list is empty). The list is not changed.

Pointer tail() const;

Return the last item from the list (0 if the list is empty). The list is not changed.

Pointer elem(int n) const;

Return thenth item on the list (0 if there are fewer thann items). Note that the time
required is proportional ton.

int empty() const;

Return 1 if the list is empty, 0 if it is not.

int member(Pointer arg) const;

Return 1 if the list has a Pointer that is equal toarg, 0 if not.

1.5.2 Functions that modify a SequentialList
void prepend(Pointer p);

Add an item at the beginning of the list.
Ptolemy Last updated: 10/9/97

1-4 Basic concepts, classes, and facilities

 if

rs

tructor

dard

s Dou-
ws,

mer
ne-
it.

s.
void append(Pointer p);

Add an item at the end of the list.

int remove(Pointer p);

Remove the pointerp from the list if it is present (the test is pointer equality). Return 1
present, 0 if not.

Pointer getAndRemove();

Return and remove the head of the list. If the list is empty, return a null pointer (0).

Pointer getTailAndRemove();

Return and remove the last item on the list.

void initialize();

Remove all links from the list. This does not delete the items pointed to by the pointe
that were on the list.

1.5.3 Class ListIter

ListIter is a standard iterator class for use with objects of class SequentialList. The cons
takes an argument of typeconst SequentialList and the ++ operator (ornext function)
returns aPointer. Class ListIter is a friend of class SequentialList. In addition to the stan
iterator functionsnext andreset, this class also provides a function

void reconnect(const SequentialList& newList)

that attaches the ListIter to a different SequentialList.

1.6 Doubly linked lists
Support for doubly linked lists is found inDoubleLink.h. The class DoubleLink implements
a base class for nodes in the list, class DoubleLinkList implements the list itself, and clas
bleLinkIter forms an iterator.WARNING: We consider this class to have serious design fla
so it may be reworked quite a bit in subsequent Ptolemy releases.

1.6.1 Class DoubleLink

A DoubleLink object is an item in the list defined by DoubleLinkList. Normally, a program
will not interact directly with this class, but rather will use methods in DoubleLinkList. No
theless, we present it here because some of the methods of DoubleLinkList do refer to

There are two constructors:

DoubleLink(Pointer p, DoubleLink* next , DoubleLink* prev):
DoubleLink(Pointer p);

The first form initializes thenext andprev pointers of the node as well as the content
The second form sets these pointers to null and only initializes the contents pointer.

Pointer content();

Return the content pointer of the node.
U. C. Berkeley Department of EECS

The Almagest 1-5

y the

ining

ink;
s

cond
the
virtual ~DoubleLink();

The destructor is virtual.

void unlinkMe();

Delete the node from the list it is contained in. I.e. connect the elements pointed to b
prev andnext pointers. The object pointed to by the node is not deleted.

The following data members are protected:

DoubleLink *next; // next node in the list
DoubleLink *prev; // previous node in the list
Pointer e; // contents of this node

1.6.2 Class DoubleLinkList
DoubleLinkList();
DoubleLinkList(Pointer* e);

The first constructor creates an empty list. The second creates a one-node list conta
the object pointed to bye. That object must live at least as long as the link lives.

virtual ~DoubleLinkList();

The destructor is virtual. It deletes all DoubleLinks in the list, but does not delete the
objects pointed to by each link.

DoubleLink* createLink(Pointer e);

Return a newly allocated DoubleLink that contains a pointer toe. It is up to the caller to
delete the DoubleLink, or to use eitherremoveLink or remove .

void insertLink(DoubleLink * x);
void insert(Pointer e);

These methods insert an item at the beginning of the list. The first inserts a DoubleL
the second creates a DoubleLink withcreateLink and inserts that. If the second form i
used, the link should only be removed usingremoveLink or remove , notunlink ,
becauseunlink will not delete the DoubleLink.

void appendLink(DoubleLink * x);
void append(Pointer e);

These methods append at the end of the list. The first appends a DoubleLink; the se
creates a DoubleLink withcreateLink and appends that. If the second form is used,
link should only be removed usingremoveLink or remove , notunlink , because
unlink will not delete the DoubleLink.

void insertAhead(DoubleLink * y, DoubleLink * x);
void insertBehind(DoubleLink * y, DoubleLink * x);

The first method insertsy immediately ahead of the DoubleLink pointed to byx ; the sec-
ond insertsy immediately after the DoubleLink pointed to byx . Both of these functions
assume thatx is in the list; disaster may result otherwise.

DoubleLink* unlink(DoubleLink * x);

Remove the linkx from the list and return a pointer to it. Make sure thatx is in the list
Ptolemy Last updated: 10/9/97

1-6 Basic concepts, classes, and facilities

;

 will

d
f the

de

d”
before calling this method, or disaster may result.

void removeLink(DoubleLink * x);

This is the same asunlink, except thatx is deleted as well. The same cautions apply.

void remove(Pointer e);

Search for a DoubleLink whose contents matche. If a match is found, the node is
removed from the list and the DoubleLink is deleted. The object pointed to bye is not
deleted. The search starts at the head of the list.

int find(Pointer e);

Search for a DoubleLink whose contents matche. If a match is found, 1 (true) is returned
otherwise 0 (false) is returned. The search starts at the head of the list.

virtual void initialize();

Delete all DoubleLinks in the list and make the list empty.

void reset();

Make the list empty, but do not delete the DoubleLinks in each of the nodes.

int size();

Return the number of elements in the list. This method should be const but isn’t.

DoubleLink *head();
DoubleLink *tail();

Return a pointer to the head or to the tail of the list. If the list is empty both methods
return a null pointer.

DoubleLink *getHeadLink();
Pointer takeFromFront();

The first method gets and removes the head link, returning a pointer to it. The secon
method returns the object pointed to by the head link, and deletes the DoubleLink. I
list is empty, both functions return a null pointer.

DoubleLink *getTailLink();
Pointer takeFromBack();

These methods are identical to the previous pair except that they remove the last no
rather than the first.

The following two data members are protected:

DoubleLink *myHead;
DoubleLink *myTail;

1.6.3 Class DoubleLinkIter

DoubleLinkIter is an iterator for DoubleLinkList. It is only capable of moving “forwar
through the list (following the “next” links, not the “prev” links). Itsnext operator returns the
U. C. Berkeley Department of EECS

The Almagest 1-7

rived
O or a

move

ialList
ber

inters

ive

e Se-

simply
, which
 a de-

as the
ile-time
rt (see
Pointer values contained within the nodes; it is also possible to use the non-standardnextLink
function to return successive DoubleLink pointers.

1.7 Other generic container classes
The fileDataStruct.h defines two other generic container classes that are privately de
from SequentialList: Queue and Stack. Class Queue may be used to implement a FIF
LIFO queue, or a mixture. Class Stack implements a stack.

1.7.1 Class Queue

The constructor for class Queue builds an empty queue. The following four functions
pointers into or out of the queue:

void putTail(Pointer p);
void putHead(Pointer p);
Pointer getHead();
Pointer getTail();

In addition,put is a synonym forputTail, andget is a synonym forgetHead. All these
functions are implemented on top of the (hidden) SequentialList functions. The Sequent
functionssize and initialize are re-exported (that is, are accessible as public mem
functions of class Stack).

1.7.2 Class Stack

The constructor for class Stack builds an empty stack. The following functions move po
onto or off of the stack:

void pushTop(Pointer p);
Pointer popTop();
pushBottom(Pointer p);

pushTop andpopTop are the functions traditionally associated with a stack;pushBot-
tom adds an item at the bottom, which is non-traditional. The following non-destruct
function also exists:

Pointer accessTop() const;

This accesses but does not remove the element from the top of the stack.

All these functions are implemented on top of the (hidden) SequentialList functions. Th
quentialList functionssize andinitialize are re-exported.

1.8 Class NamedObj
NamedObj is the base class for most of the common Ptolemy objects. A NamedObj is,
put, a named object; in addition to a name, a NamedObj has a pointer to a parent object
is always a Block (a type of NamedObj). This pointer can be null. A NamedObj also has
scriptor. Warning! NamedObj assumes that the name and descriptor “live” as long
NamedObj does. They are not deleted by the destructor, so that they can be comp
strings. Important derived types of NamedObj include Block (see section3.1), GenericPo
section 6.1), State (see section 9.1), and Geodesic (see section 6.6).
Ptolemy Last updated: 10/9/97

1-8 Basic concepts, classes, and facilities

ets the
nt con-

 every

s the
tation

s long

This
1.8.1 NamedObj constructors and destructors

All constructors and destructors are public. NamedObj has a default constructor, which s
name and descriptor to empty strings and the parent pointer to null, and a three-argume
structor:

NamedObj(const char* name,Block* parent , const char* descriptor)

NamedObj’s destructor is virtual and does nothing.

1.8.2 NamedObj public members
virtual const char* className() const;

Return the name of the class. This needs to have a new implementation supplied for
derived class (except for abstract classes, where this is not necessary).

const char* name() const;

Return the local portion of the name of the class (vs. the full name).

const char* descriptor() const;

Return the descriptor.

Block* parent() const;

Return a pointer to the parent block.

virtual StringList fullName() const;

Return the full name of the object. This has no relation to the class name; it specifie
specific instance’s place in the universe-galaxy-star hierarchy. The default implemen
returns names that might look likeuniverse.galaxy.star.port for a porthole; this is
the full name of the parent, with a period and the name of the object appended.

void setName(const char* name);

Set the name of the object. The string must live at least as long as the object.

void setParent(Block* parent);

Set the parent of the object, which is always a Block. The parent must live at least a
as the object.

void setNameParent (const char* my_name, Block* my_parent)

Change the name and parent pointer of the object.

virtual void initialize() = 0;

Initialize the object to prepare for system execution. This is a pure virtual method.

virtual StringList print (int verbose) const;

Return a description of the object. If the argumentverbose is 0, a somewhat more com-
pact form is printed than if the argument is non-zero.

virtual int isA(const char* cname) const;

Return TRUE if the argument is the name of the class or of one of its base classes.
U. C. Berkeley Department of EECS

The Almagest 1-9

asy to

ction

not

t invo-
lock.
ay be
ay can
ed. For
r class
at mul-

e
on-

ched-
s them
or of
method needs to be redefined for all classed derived from NamedObj. To make this e
do, a macroISA_FUNC is provided; for example, in the fileBlock.cc we see the line

ISA_FUNC(Block,NamedObj);

NamedObj is the base class from which Block is derived. This macro creates the fun
definition

int Block::isA(const char* cname) const {
if (strcmp(cname,"Block") == 0) return TRUE;

else return NamedObj::isA(cname);
}

MethodsisA andclassName are overridden in all derived classes; the redefinitions will
be described for each individual class.

1.8.3 Flags on named objects
FlagArray flags

Many schedulers and targets need to be able to mark blocks in various ways, to coun
cations, or flag that the block has been visited, or to classify it as a particular type of b
To support this, we provide an array of flags that are not used by class Block, and m
used in any way by a Target. The target may defer their use to its schedulers. The arr
be of any size, and the size will be increased automatically as elements are referenc
readability and consistency, the user should define an enum in the target or schedule
to give the indices, so that mnemonic names can be associated with flags, and so th
tiple schedulers for the same target are consistent. For instance, ifb is a pointer to a
Block, a target might contain the following:

private:
enum {

visited = 0,
fired = 1
}

which can then be used in code to set and read flags in a readable way,

 b->flags[visited] = TRUE;
...

 if (b->flags[visited]) { ... }

WARNING: For efficiency, there is no checking to prevent two different pieces of cod
(say a target and scheduler) from using the same flags (which are indexed only by n
negative integers) for different purposes. The policy, therefore, is thatthe target is in
charge. It is incumbent upon the writer of the target to know what flags are used by s
ulers invoked by that target, and to avoid corrupting those flags if the scheduler need
preserved. We weighed a more modular, more robust solution, but ruled in out in fav
something very lightweight and fast.
Ptolemy Last updated: 10/9/97

1-10 Basic concepts, classes, and facilities

 from
m it. It

cts are
ect by
mbers
ided.

at
ere is

t.

 list.

mes
1.8.4 NamedObj protected members
void setDescriptor(const char* desc);

Set the descriptor todesc. The string pointed to bydesc must live as long as the
NamedObj does.

1.9 Class NamedObjList
Class NamedObjList is simply a list of objects of class NamedObj. It is privately inherited
class SequentialList (see section 1.5), and, as a rule, other classes privately inherit fro
supports only a subset of the operations provided by SequentialList; in particular, obje
added only to the end of the list. It provides extra operations, like searching for an obj
name and deleting objects. This object enforces the rule that only const pointers to me
can be obtained if the list is itself const; hence, two versions of some functions are prov

1.9.1 NamedObjList information functions

The size and initialize functions of SequentialList are re-exported. Note th
initialize removes only the links to the objects and does not delete the objects. H
what’s new:

NamedObj* objWithName(const char* name);
const NamedObj* objWithName(const char* name) const;

Find the first NamedObj on the list whose name is equal toname, and return a pointer to
it. Return 0 if it is not found. There are two forms, one of which returns a const objec

NamedObj* head();
const NamedObj* head() const;

Return a pointer to the first object on the list (0 if none). There are two forms, one of
which returns a const object.

1.9.2 Other NamedObjList functions
void put(NamedObj& obj)

Add a pointer toobj to the list, at the end. The object must live at least as long as the

void initElements();

Apply theinitialize method to each NamedObj on the list.

int remove(NamedObj* obj);

Removeobj from the list, if present (this does not deleteobj). Return 1 if it was
present, 0 if not.

void deleteAll();

Delete all elements from the list, and reset it to be an empty list. WARNING: this assu
that the members of the list are on the heap (allocated bynew, so that deleting them is
valid)!
U. C. Berkeley Department of EECS

The Almagest 1-11

r and
ified).
 is not
tIter.

es such
ing at-
 by the
dicate
ory or

distinct
 request
nts of

r a given
 have

 a num-
teeing

bjects

 to the

uld be

 are
1.9.3 NamedObjList iterators

There are two different iterators associated with NamedObjList; class NamedObjListIte
class CNamedObjListIter. The latter returns const objects (which cannot then be mod
The former returns a non-const pointer, and can only be used if the NamedObjList itself
const. Both obey the standard iterator interface and are privately derived from class Lis

1.10 Attributes
Attributes represent logical properties that an object may or may not have. Certain class
as State and Porthole contain attributes and provide interfaces for setting and clear
tributes. For the State class, for instance, the initial value may or may not be settable
user; this is indicated by an Attribute. In code generation classes, attributes may in
whether an assembly-language buffer should be allocated to ROM or RAM, fast mem
slow memory, etc. The set of attributes of an object is stored in an entity called abitWord . At
present, a bitWord is represented as an unsigned long, which restricts the number of
attributes to 32; this may be changed in future releases. An Attribute object represents a
to turn certain attributes of an object off, and to turn other attributes on. As a rule, consta
class Attribute are used to represent attributes, and users have no need to know whethe
property is represented by a true or false bit in the bitWord. Although we would prefer to
a constructor for Attribute objects of the form

Attribute(bitWord bitsOn , bitWord bitsOff);

it has turned out that doing so presents severe problems with order of construction, since
ber of global Attribute objects are used and there is no simple, portable way of guaran
that these objects are constructed before any use. As a result, thebitsOn andbitsOff mem-
bers are public, but we forbid use of that fact except in one place: constant Attribute o
can be initialized by the C “aggregate form”, as in the following example:

extern const Attribute P_HIDDEN = {PB_HIDDEN, 0};

(This particular attribute is used by Porthole to indicate that a port should not be visible
user, i.e. should not appear on an icon.) The first word specified is thebitsOn field,
PB_HIDDEN, and the second word specified is thebitsOff field. Other than to initialize ob-
jects, we pretend that these data members are private.

1.10.1 Attribute member functions
Attribute& operator |= (const Attribute& arg);
Attribute& operator &= (const Attribute& arg);

These operations combine attributes, by applying the|= and&= operators to the bitsOn
and bitsOff fields. The first operation, as attributes are commonly used, represents a
requirement that two sets of attributes be met, so it has been argued that it really sho
the “and” operation. However, the current scheme has the virtue of consistency.

bitWord eval(bitWord defaultVal) const;

Evaluate an attribute given a default value. Essentially, bits corresponding to bitsOn
turned on, and then bits corresponding to bitsOff are turned off.
Ptolemy Last updated: 10/9/97

1-12 Basic concepts, classes, and facilities

n and

ay of

edulers
ations,
 class
-

ed
ments
of

ke this

ed

teger

 to the
bitWord clearAttribs(bitWord defaultVal) const;

This method essentially applies the attribute backwards, reversing the roles of bitsO
bitsOff in eval.

bitWord on() const;
bitWord off() const;

Retrieve the bitsOn and bitsOff values, respectively. Inline definitions of operators& and|
are also defined to implement nondestructive forms of the&= and|= operations.

1.11 FlagArray
FlagArray is a lightweight, self-expanding array of integers. It is meant to store an arr
flags or counters, and its main appearance in Ptolemy is as a public member of classNamed-
Obj , and therefore is available in most Ptolemy classes, which are derived fromNamedObj.
Targets and schedulers use this member to keep track of various kinds of data. Many sch
and targets need to be able to mark blocks in various ways, for example to count invoc
or flag that the block has been visited, or to classify it as a particular type of block. This
provides a simple mechanism for doing this. AFlagArray object is indexed like an array, us
ing square brackets. Ifx is aFlagArray andi is a non-negative integer, thenx[i] is a refer-
ence to an integer element of the array. Ifi is out of bounds (beyond the currently allocat
limits of the array), then the class automatically increases the size of the array. New ele
are filled with zeros. Thus, aFlagArray may be viewed as an infinite dimensional array
integers initialized with zeros. Ifi is a negative integer, thenx[i] is an error. For efficiency,
the class does not test for this error at run time, so you could get a core dump if you ma
error.

1.11.1 FlagArray constructors and destructor
FlagArray()

This constructor creates a zero-length flag array.

FlagArray(int size)

This constructor creates a flag array with the specified size already allocated and fill
with zeros.

FlagArray(int size , int fill_value)

This constructor creates a flag array with the specified size filled with the specified in
value. The destructor frees the memory allocated to store the array of integers.

1.11.2 FlagArray public methods
FlagArray & operator = (const FlagArray & v)

An assignment to oneFlagArray from another simply copies its size and data.

int size() const

Return the current allocated size of the array.

int & operator [] (int n)

If n is less than the currently allocated size of the array, then this returns a reference
U. C. Berkeley Department of EECS

The Almagest 1-13

the
 and a
e
his is
n-th element of the array. Ifn is greater than or equal to the currently allocated size of
array, then the size of the array is increased, the new elements are filled with zeros,
reference to the n-th element is returned. Indexing of elements begins with zero. Th
returned reference, of course, can be used on the left-hand side of an assignment. T
how values are written into an array.
Ptolemy Last updated: 10/9/97

1-14 Basic concepts, classes, and facilities
U. C. Berkeley Department of EECS

The Almagest 2-1

g is that
he Ptole-
CPU-
eight

. What

 used

ccess to
oes not
or use
ented

 for,
ld

e in

read
tes by

ection

rovide
ar-
en when
er than
Chapter 2. Support for multithreading

Authors: Joseph T. Buck

Multithreading means that there are multiplethreads of control, or lightweight processes, in
the same Ptolemy process. The principal consequence of the existence of multithreadin
it is necessary to provide mechanisms that guarantee exclusive access to resources. T
my kernel does not provide a multithreading library, as this is currently a very OS and
specific operation. There are a variety of such libraries that might be used; Sun’s lightw
processes library and the University of Colorado’s Awesime package are two examples
the kernel does provide is a locking mechanism for implementingcritical regions, noninter-
ruptable regions of code in which only one thread can be active at a time. This facility is
to protect critical resources in the kernel that might be accessed by multiple threads.

2.1 Class PtGate
Objects of classes derived from PtGate are used as semaphores to obtain exclusive a
some resource. PtGate is an abstract base class: it specifies certain functionality but d
provide an implementation. Derived classes typically provide the desired semantics f
with a particular threading library. PtGate has three virtual functions that must be implem
by each derived class. The first is a public method:

virtual PtGate* makeNew() const = 0;

ThemakeNew method returns a new object of the same class as the object it is called
which is created on the heap. For example, a hypothetical SunLWPGate object wou
return a new SunLWPGate. The other two methods are protected. They are:

virtual void lock() = 0;
virtual void unlock() = 0;

The first call requests access for a resource; the second call releases access. If cod
another thread callslock() on the same PtGate afterlock() has already been called on
it, the second call will block until the first thread does anunlock() call. Note that two
successive calls tolock() on the same PtGate from the same thread will cause that th
to hang. It is for this reason that these calls are protected, not public. Access to PtGa
user code is accomplished by means of another class, CriticalSection. The CriticalS
class is a friend of class PtGate.

2.2 Class CriticalSection
CriticalSection objects exploit the properties of constructors and destructors in C++ to p
a convenient way to implementcritical sections: sections of code whose execution can be gu
anteed to be atomic. Their use ensures that data structures can be kept consistent ev
accessed from multiple threads. The CriticalSection class implements no methods oth
constructors and a destructor. There are three constructors:

CriticalSection(PtGate *);
Ptolemy Last updated: 10/9/97

2-2 Support for multithreading

tor
ays

(dis-
tGate,

or

l not

 list, to-
ivation
to pay
 ability
ed only
rm

nstruc-
inter,
, by
r
ay be

ther-

ction
lti-
CriticalSection(PtGate &);
CriticalSection(GateKeeper &);

The function of all of these constructors is to optionally set a lock. The first construc
will set the lock on the given PtGate unless it gets a null pointer; the second form alw
sets the lock. The third form takes a reference to an object known as a GateKeeper
cussed in the next section) that, in a sense, may “contain” a PtGate. If it contains a P
a lock is set; otherwise no lock is set. The lock is set by callinglock() on the PtGate
object. The CriticalSection destructor frees the lock by callingunlock() on the PtGate
object, if a lock was set. CriticalSection objects are used only for their side effects. F
example:

PtGate& MyClass::gate;
...
void MyClass::updateDataStructure() {
 CriticalSection region(MyClass::gate);
 code;
 ...
}

The code between the declaration of the CriticalSection and the end of its scope wil
be interrupted.

2.3 Class GateKeeper
The GateKeeper class provides a means of registering a number of PtGate pointers in a
gether with a way of creating or deleting a series of PtGate objects all at once. The mot
for this is that most Ptolemy applications do not use multithreading, and we do not wish
the overhead of locking and unlocking where it is not needed. We also want to have the
to create a number of fine-grain locks all at once. GateKeeper objects should be declar
at file scope (never as automatic variables or on the heap). The constructor takes the fo

GateKeeper(PtGate *& gateToKeep);

The argument is a reference to a pointer to a GateKeeper, and the function of the co
tor is to add this reference to a master list. It will later be possible to “enable” the po
by setting it to point to a newly created PtGate of the appropriate type, or “disable” it
deleting the PtGate object and setting the pointer to null. The GateKeeper destructo
deletes the reference from the master list and also deletes any PtGate object that m
pointed to by the PtGate pointer. The public method

int enabled() const;

returns 1 if the GateKeeper’s PtGate pointer is enabled (points to a PtGate) and 0 o
wise (the pointer is null). There are two public static functions:

static void enableAll(const PtGate& master);

This function creates a PtGate object for each GateKeeper on the list, by callingmake-
New() on the master object.

static void disableAll();

This function destroys all the PtGate objects and sets the pointers to be null. This fun
must never be called from within a block controlled by a CriticalSection, or while mu
U. C. Berkeley Department of EECS

The Almagest 2-3

 Criti-
ed to

erived
ments.
ment to
threading operation is in progress. A GateKeeper may be used as the argument to a
calSection constructor call; the effect is the same as if the PtGate pointer were pass
the constructor directly.

2.4 Class KeptGate
A KeptGate object is simply a GateKeeper that contains its own PtGate pointer. It is d
from GateKeeper, has a private PtGate pointer member, and a constructor with no argu
Like a GateKeeper, it should be declared only at file scope and may be used as an argu
a CriticalSection constructor call.
Ptolemy Last updated: 10/9/97

2-4 Support for multithreading
U. C. Berkeley Department of EECS

The Almagest 3-1

d from
s col-
 doc-

j (see
 atomic
nd Uni-
o other
ections
s Block,
, port-
ugh the
rmore,
g func-

ture is

nd the

oying
c-

ber
Chapter 3. Block and related classes

Authors: Joseph T. Buck

Other Contributors: J. Liu

This section describes Block, the basic functional block class, and those objects derive
it. It is Blocks more than anything else that a user of Ptolemy deals with. Actors as well a
lections of actors are Blocks. Although the Target class is derived from class Block, it is
umented elsewhere, as it falls under control of execution .

3.1 Class Block
Block is the basic object for representing an actor in Ptolemy. It is derived from NamedOb
section 1.8). Important derived types of Block are Star (see section 3.2), representing an
actor; Galaxy , representing a collection of actors that can be thought of as one actor, a
verse , representing an entire runnable system. A Block has portholes (connections t
blocks — , states (parameters and internal states — , and multiportholes (organized coll
of portholes — . While the exact data structure used to represent each is a secret of clas
it is visible that there is an order to each list, in that iterators return the contained states
holes, and multiportholes in this order. Iterators are a set of helper classes that step thro
states, portholes, or multiportholes that belong to the Block, see the menu entry. Furthe
Blocks can be cloned, an operation that produces a duplicate block. There are two clonin
tions:makeNew, which resembles making a new block of the same class, andclone, which
makes a more exact duplicate (with the same values for states, for example). This fea
used by the KnownBlock class to create blocks on demand.

3.1.1 Block constructors and destructors

Block has a default constructor, which sets the name and descriptor to empty strings a
parent pointer to null, and a three-argument constructor:

Block(const char* name,Block* parent , const char* descriptor);

Block’s destructor is virtual and does nothing, except for the standard action of destr
the Block’s data members. In addition, Block possesses two types of “virtual constru
tors”, the public member functionsmakeNew andclone.

3.1.2 Block public “information” members
int numberPorts() const;
int numberMPHs() const;
int numberStates() const;

The above functions return the number of ports, the number of multiports, or the num
of states in the Block.

virtual int isItAtomic() const;
Ptolemy Last updated: 10/9/97

3-2 Block and related classes

 a

n

ect
ar
ect

cur-

ni-

gram

e pro-
virtual int isItWormhole() const;

These functions returnTRUE or FALSE , based on whether the Block is atomic or not, or
wormhole or not. The base implementations returnTRUE for isItAtomic, FALSE for isIt-
Wormhole.

virtual StringList print(int verbose) const;
OverridesNamedObj::print. This function gives a basic printout of the information i
the block.

GenericPort* genPortWithName(const char* name);
PortHole* portWithName(const char* name);
MultiPortHole* multiPortWithName(const char* name);
virtual State *stateWithName(const char* name);

These functions search the appropriate list and return a pointer to the contained obj
with the matching name.genPortWithName searches both the multiport and the regul
port lists (multiports first). If a match is found, it returns a pointer to the matching obj
as aGenericPort pointer.

int multiPortNames (const char** names , const char** types ,
 int* io , int nMax) const;

Get a list of multiport names.

StringList printPorts(const char* type , int verbose) const;

Print portholes as part of the info-printing method.

virtual Scheduler* scheduler() const;

Return the controlling scheduler for this block. The default implementation simply re
sively calls thescheduler() function on the parent, or returns 0 if there is no parent.
The intent is that eventually a block with a scheduler will be reached (the top-level u
verse has a scheduler, and so do wormholes).

virtual Star& asStar();
virtual const Star& asStar() const;

Return reference to me as a Star, if I am one. Warning: it is a fatal error (the entire pro
will halt with an error message) if this method is invoked on a Galaxy! Check withisIt-
Atomic before calling it.

virtual Galaxy& asGalaxy();
virtual const Galaxy& asGalaxy() const;

Return reference to me as a Galaxy, if I am one. Warning: it is a fatal error (the entir
gram will halt) if this method is invoked on a Star! Check withisItAtomic before call-
ing it.

virtual const char* domain() const;

Return my domain (e.g. SDF, DE, etc.)

3.1.3 Other Block public members
virtual void initialize();
U. C. Berkeley Department of EECS

The Almagest 3-3

thod
in ini-

 they
ialize

.

nd

lling

le

g.

r-

rt-
overridesNamedObj::initialize . Block::initialize initializes the portholes
and states belonging to the block, and callssetup(), which is intended to be the “user-
supplied” initialization function.

virtual void preinitialize();

Perform a "pre-initialization" step. The default implementation does nothing. This me
is redefined by HOF stars and other stars that need to rewire a galaxy before the ma
tialization phase starts. Blocks must act safely if preinitialized multiple times (unless
remove themselves from the galaxy when preinitialized, as the HOF stars do). Preinit
is invoked byGalaxy::preinitialize , which see.

virtual int run();

This function is intended to “run” the block. The default implementation does nothing

virtual void wrapup();

This function is intended to be run after the completion of execution of a universe, a
provides a place for wrapup code. The default does nothing.

virtual Block& setBlock(const char* name,Block* parent =0);

Set the name and parent of a block.

virtual Block* makeNew() const

This is a very important function. It is intended to be overloaded in such a way that ca
it produces a newly constructed object of the same type. The default implementation
causes an error. Every derived type should redefine this function. Here is an examp
implementation of an override for this function:

Block* MyClass::makeNew() const { return new MyClass;}
virtual Block* clone() const

The distinction betweenclone andmakeNew is that the former does some extra copyin
The default implementation callsmakeNew and thencopyStates, and also copies addi-
tional members likeflags; it may be overridden in derived classes to copy more info
mation. The intent is thatclone should produce an identical object.

void addPort(PortHole& port)
void addPort(MultiPortHole& port)

Add a porthole, or a multiporthole, to the block’s list of known ports or multiports.

int removePort(PortHole& port)
Removeport from the Block’s port list, if it is present.1 is returned ifport was present
and0 is returned if it was not. Note thatport is not deleted. The destructor for class Po
Hole calls this function on its parent block.

void addState(State& s);
Add the states to the Block’s state list.

virtual void initState();

Initialize the States contained in the Block’s state list.
Ptolemy Last updated: 10/9/97

3-4 Block and related classes

art of

nd it

teIter,
 They
e stan-
, etc)
onst

lock .
there is

 con-

in
StringList printStates(const char* type ,int verbose) const;

Return a printed representation of the states in the Block. This function is used as p
the Block’sprint method.

int setState(const char* stateName , const char* expression);

Search for a state in the block namedstateName. If not found, return0. If found, set its
initial value toexpression and return1.

3.1.4 Block protected members
virtual void setup();

User-specified additional initialization. By default, it does nothing. It is called by
Block::initialize (and should also be called if initialize is redefined).

Block* copyStates(const Block& src);
method for copying states during cloning. It is designed for use by clone methods, a
assumes that the src argument has the same state list as thethis object.

3.1.5 Block iterator classes

There are three types of iterators that may be used on Blocks: BlockPortIter, BlockSta
and BlockMPHIter. Each takes one argument for its constructor, a reference to Block.
step through the portholes, states, or multiportholes, of the Block, respectively, using th
dard iterator interface. There are also variant versions with a “C” prefix (CBlockPortIter
defined in the fileConstIters.h that take a reference to a const Block and return a c
pointer.

3.2 Class Star
Class Star represents the basic executable atomic version of Block. It is derived from B
Stars have an associated Target , an index value, and an indication of whether or not
internal state. The default constructor sets the target pointer toNULL, sets the internal state flag
to TRUE, and sets the index value to-1 .

3.2.1 Star public members
int run();

Execute the Star. This method also interfaces to the SimControl class to provide for
trol over simulations. All derived classes that override this method must invoke
Star::run.

StringList print(int verbose = 0) const;

Print out info on the star.

Star& asStar();
const Star& asStar() const;

These simply return a reference tothis, overridingBlock::asStar.

int index() const;

Return the index value for this star. Index values are a feature that assists with certa
U. C. Berkeley Department of EECS

The Almagest 3-5

ular

future

xecut-

un

tains
p-level
s iter-

of Star
 — are
ted do-
a rule,
ment.

al-
cks
ple,

e star
xy to
ck

oke
schedulers; the idea is to assign a numeric index to each star at any level of a partic
Universe or Galaxy.

virtual void setTarget(Target* t);
Set the target associated with this star.

void noInternalState();

Declare that this star has no internal state (This function may change to protected in
Ptolemy releases).

int hasInternalState();

ReturnTRUE if this star has internal state,FALSE if it doesn’t. Useful in parallel schedul-
ing.

3.2.2 Star protected members
virtual void go();

This is a method that is intended to be overridden to provide the principal action of e
ing this block. It is protected and is intended to be called from therun() member func-
tion. The separation is so that actions common to a domain can be provided in the r
function, leaving the writer of a functional block to only implementgo().

3.3 Class Galaxy
A Galaxy is a type of Block that has an internal hierarchical structure. In particular, it con
other Blocks (some of which may also be galaxies). It is possible to access only the to
blocks or to flatten the hierarchy and step through all the blocks, by means of the variou
ator classes associated with Galaxy. While we generally define a different derived type
for each domain, the same kinds of Galaxy (and derived classes such as InterpGalaxy
used in each domain. Accordingly, a Galaxy has a data member containing its associa
main (which is set to null by the constructor). PortHoles belonging to a Galaxy are, as
aliased so that they refer to PortHoles of an interior Block, although this is not a require

3.3.1 Galaxy public members
void initialize();

System initialize method. Derived Galaxies should not redefine initialize; they should
write asetup() method to do any class-specific startup.

virtual void preinitialize();

Preinitialization of a Galaxy invokes preinitialization of all its member blocks. Preiniti
ization of the member blocks is done in two passes: the first pass preinits atomic blo
only, the second all blocks. This allows clean support of graphical recursion; for exam
a HOFIfElseGr star can control a recursive reference to the current galaxy. The IfEls
is guaranteed to get control before the subgalaxy does, so it can delete the subgala
stop the recursion. The second pass must preinit all blocks in case a non-atomic blo
adds a block to the current galaxy.Galaxy::preinitialize is called fromGal-
axy::initialize . (It would be somewhat cleaner to have the various schedulers inv
preinitialize() separately frominitialize() , but that would require many more
Ptolemy Last updated: 10/9/97

3-6 Block and related classes

s in
 then
reini-
 so
pieces of the system to know about preinitialization.) Because of this decision, block
subgalaxies will see a preinitialize call during the outer galaxy’s preinitialize pass and
another one when the subgalaxy is itself initialized. Thus, blocks must act safely if p
tialized multiple times. (HOF stars generally destroy themselves when preinitialized,
they can’t see extra calls.)

void wrapup();

System wrapup method. Recursively calls wrapup in subsystems

void addBlock(Block& b,const char* bname);

Add block to the galaxy and set its name.

int removeBlock(Block& b);
Remove the blockb from the galaxy’s list of blocks, if it is in the list. The block is not
deleted. If the block was present,1 is returned; otherwise0 is returned.

virtual void initState();

Initialize states.

int numberBlocks() const;

Return the number of blocks in the galaxy.

StringList print(int verbose) const;

Print a description of the galaxy.

int isItAtomic() const;

ReturnsFALSE (galaxies are not atomic blocks).

Galaxy& asGalaxy();
const Galaxy& asGalaxy() const;

These return myself as a Galaxy, overridingBlock::asGalaxy.

const char* domain() const;

Return my domain.

void setDomain(const char* dom);
Set the domain of the galaxy (this may become a protected member in the future).

Block* blockWithName(const char* name);
Support blockWithName message to access internal block list.

3.3.2 Galaxy protected members
void addBlock(Block& b)

Add b to my list of blocks.

void connect(GenericPort& source , GenericPort& destination ,
 int numberDelays = 0)

Connect sub-blocks with a delay (default to zero delay).
U. C. Berkeley Department of EECS

The Almagest 3-7

e.

kIter,
ointer
 of the
r; if
inally,
lso a

t the

ed on
anner.
tions

een
r build-
d stars

ts with
mholes.
value
ived
ser-de-
ther fea-

fect of

 Error
void alias(PortHole& galPort , PortHole& blockPort);
void alias(MultiPortHole& galPort , MultiPortHole& blockPort);

Connect a Galaxy PortHole to a PortHole of a sub-block, or same for a MultiPortHol

void initSubblocks();
void initStateSubblocks();

Former: initialize subblocks only. Latter: initialize states in subblocks only.

3.3.3 Galaxy iterators

There are three types of iterators associated with a Galaxy: GalTopBlockIter, GalAllBloc
and GalStarIter. The first two iterators return pointers to Block; the final one returns a p
to Star. As its name suggests, GalTopBlockIter returns only the Blocks on the top level
galaxy. GalAllBlockIter returns Blocks at all levels of the hierarchy, in depth-first orde
there is a galaxy inside the galaxy, first it is returned, then its contents are returned. F
GalStarIter returns only the atomic blocks in the Galaxy, in depth-first order. There is a
const form of GalTopBlockIter, called CGalTopBlockIter. Here is a function that prints ou
names of all stars at any level of the given galaxy onto a given stream.

void printNames(Galaxy& g,ostream& stream) {
 GalStarIter nextStar(g);
 Star* s;
 while ((s = nextStar++) != 0)
 stream << s->fullName() << "\back n";
}

3.4 Class DynamicGalaxy
A DynamicGalaxy is a type of Galaxy for which all blocks, ports, and states are allocat
the heap. When destroyed, it destroys all of its blocks, ports, and states in a clean m
There’s not much more to it than that: it provides a destructor, class identification func
isA andclassName, and little else.

3.5 Class InterpGalaxy
InterpGalaxy is derived from DynamicGalaxy. It is the key workhorse for interfacing betw
user interfaces, such as ptcl or pigi, and the Ptolemy kernel, because it has commands fo
ing structures given commands specified in the form of text strings. These commands ad
and galaxies of given types and build connections between them. InterpGalaxy interac
the KnownBlock class to create stars and galaxies, and the Domain class to create wor
InterpGalaxy differs from other classes derived from Block in that the “class name” (the
returned byclassName()) is a variable; the class is used to create many different “der
classes” corresponding to different topologies. In order to use InterpGalaxy to make a u
fined galaxy type, a series of commands are executed that add stars, connections, and o
tures to the galaxy. When a complete galaxy has been designed, theaddToKnownList
member function adds the complete object to the known list, an action that has the ef
adding a new “class” to the system. InterpGalaxy methods that return an int return1 for success
and0 for failure. On failure, an appropriate error message is generated by means of the
class.
Ptolemy Last updated: 10/9/97

3-8 Block and related classes

 a single

 There

d.

nd
 form

y.
s
e gal-

g

n is

l value
belong-
3.5.1 Building structures with InterpGalaxy

The no-argument constructor creates an empty galaxy. There is a constructor that takes
const char * argument specifying the class name (the value to be returned byclassName().
The copy constructor creates another InterpGalaxy with the identical internal structure.
is also an assignment operator that does much the same.

void setDescriptor(const char* dtext)
Set the descriptor. Note that this is public, though the NamedObj function is protecte
dtext must live as long as the InterpGalaxy does.

int addStar(const char* starname , const char* starclass);

Add a new star or galaxy with class namestarclass to this InterpGalaxy, naming the
new instancestarname. The known block list for the current domain is searched to fi
starclass. Returns 1 on success, 0 on failure. On failures, an error message of the

No star/galaxy named ’starclass’ in domain ’current-domain’

 will be produced. The name is a misnomer sincestarclass may name a galaxy or a
wormhole.

int connect(const char* srcblock , const char* srcport ,
 const char* dstblock , const char* dstport ,
 const char* delay = 0);

This method creates a point-to-point connection between the portsrcport in the sub-
block srcblock and the portdstport in the subblockdstblock, with a delay value
represented by the expressiondelay. If the delay parameter is omitted there is no dela
The delay expression has the same form as an initial value for an integer state (clas
IntState), and is parsed in the same way as an IntState belonging to a subblock of th
axy would be.1 is returned for success,0 for failure. A variety of error messages relatin
to nonexistent blocks or ports may be produced.

int busConnect(const char* srcblock , const char* srcport ,
 const char* dstblock , const char* dstport ,
 const char* width , const char* delay = 0);

This method creates a point-to-point bus connection between the multiportsrcport in
the subblocksrcblock and the multiportdstport in the subblockdstblock, with a
width value represented by the expressionwidth and delay value represented by the
expressiondelay. If the delay parameter is omitted there is no delay. A bus connectio
a series of parallel connections: each multiport containswidth portholes and all are con-
nected in parallel. The delay and width expressions have the same form as an initia
for an integer state (class IntState), and are parsed in the same way as an IntState
ing to a subblock of the galaxy would be.1 is returned for success,0 for failure. A variety
of error messages relating to nonexistent blocks or multiports may be produced.

int alias(const char* galport , const char* block , const char * blockport);

Create a new port for the galaxy and make it an alias for the portholeblockport con-
tained in the subblockblock. Note that this is unlike the Galaxyalias method in that
this method creates the galaxy port.
U. C. Berkeley Department of EECS

The Almagest 3-9

ck, is

-
ide). It

 as a

, 0
int addNode(const char* nodename);
Create a node for use in netlist-style connections and name itnodename.

int nodeConnect(const char* blockname , const char* portname ,
 const char* node , const char* delay = 0);

Connect the porthole namedportname in the subblock namedblockname to the node
namednode. Return1 for success,0 and an error message for failure.

int addState(const char* statename , const char* stateclass ,
 const char* statevalue);

Add a new state namedstatename, of typestateclass, to the galaxy. Its default ini-
tial value is given bystatevalue.

int setState(const char* blockname , const char* statename ,
 const char* statevalue);

Change the initial value of the state namedstatename that belongs to the subblock
blockname to the string given bystatevalue. As a special case, ifblockname is the
stringthis, the state belonging to the galaxy, rather than one belonging to a subblo
changed.

int setDomain(const char* newDomain);
Change the inner domain of the galaxy tonewDomain. This is the technique used to cre
ate wormholes (that are one domain on the outside and a different domain on the ins
is not legal to call this function if the galaxy already contains stars.

int numPorts(const char* blockname , const char* portname , int numP);

Hereportname names a multiporthole andblockname names the block containing it.
numP portholes are created within the multiporthole; these become ports of the block
whole. The names of the portholes are formed by appending#1, #2, etc. to the name of
the multiporthole.

3.5.2 Deleting InterpGalaxy structures
int delStar(const char* starname);

Delete the instance namedstarname from the current galaxy. Ports of other stars that
were connected to ports ofstarname will become disconnected. Returns 1 on success
on failure. On failure an error message of the form

No instance of ‘‘starname’’ in ‘‘galaxyname’’

will be produced. The name is a misnomer sincestarclass may name a galaxy or a
wormhole.

int disconnect(const char* block , const char* port);

Disconnect the portholeport, in subblockblock, from whatever it is connected to.
This works for point-to-point or netlist connections.

int delNode(const char* nodename);
Delete the node nodename.
Ptolemy Last updated: 10/9/97

3-10 Block and related classes

al

), a

g
t
 this
nown

where
ilt by

elay

ation

ce to
3.5.3 InterpGalaxy and cloning
Block *makeNew() const;
Block *clone() const;

For InterpGalaxy the above two functions have the same implementation. An identic
copy of the current object is created on the heap.

void addToKnownList(const char* definitionSource,
 const char* outerDomain ,
 Target* innerTarget = 0);

This function adds the galaxy to the known list, completing the definition of a galaxy
class. The “class name” is determined by the name of the InterpGalaxy (as set by
Block::setBlock or in some other way). This class name will be returned by theclassName
function, both for this InterpGalaxy and for any others produced from it by cloning. Ifout-
erDomain is different from the system’s current domain (read from class KnownBlock
wormhole will be created. A wormhole will also be created ifinnerTarget is specified, or if
galaxies for the domainouterDomain are always wormholes (this is determined by askin
the Domain class). OnceaddToKnownList is called on an InterpGalaxy object, that objec
should not be modified further or deleted. The KnownBlock class will manage it from
point on. It will be deleted if a second definition with the same name is added to the k
list, or when the program exits.

3.5.4 Other InterpGalaxy functions
const char* className() const

Return the current class name (which can be changed). Unlike most other classes,
this function returns the C++ class name, we consider the class name of galaxies bu
InterpGalaxy to be variable; it is set byaddToKnownList and copied from one galaxy to
another by the copy constructor or by cloning.

void preinitialize();

OverridesGalaxy::preinitialize() . This re-executes initialization steps that
depend on variable parameters, such as delays and bus connections for which the d
value or bus width is an expression with variables.Galaxy::preinitialize is then
invoked to preinitialize the member blocks.

Block* blockWithDottedName(const char* name);
Returns a pointer to an inner block, at any depth, whose name matches the specific
name. For example,blockWithDottedName("a.b.c") would look first for a subgal-
axy named"a", then within that for a subgalaxy named"b", and finally with that for a
subgalaxy named"c", returning either a pointer to the final Block or a null pointer if a
match is not found.

3.6 Class Runnable
The Runnable class is a sort of “mixin class” intended to be used with multiple inheritan
create runnable universes and wormholes. It is defined in the fileUniverse.h. Constructors:

Runnable(Target* tar , const char* ty , Galaxy* g);
Runnable(const char* targetname , const char* dom, Galaxy* g);
U. C. Berkeley Department of EECS

The Almagest 3-11

n in

 that

dalone
erses,
 it has:

erfac-
 it pro-

cified,
void initTarget();

This function initializes target and/or generates the schedule.

int run();

This function causes the object to run, until the stopping condition is reached.

virtual void setStopTime(double stamp);
This function sets stop time. The default implementation just calls the identical functio
the target.

StringList displaySchedule();

Display schedule, if appropriate (some types of schedulers will return a string saying
compile-time scheduling is not performed, e.g. DE and DDF schedulers).

virtual ~Runnable();

The destructor deletes the Target.

A Runnable object has the following protected data members:

const char* type;
Galaxy* galP;

As a rule, when used as one of the base classes for multiple inheritance, thegalP pointer
will point to the galaxy provided by the other half of the object.

A Runnable object has the private data member:

Target* target;

3.7 Class Universe
Class Universe is inherited from both Galaxy and Runnable. It is intended for use in stan
Ptolemy applications. For applications that use a user interface to dynamically build univ
class InterpUniverse is used instead. In addition to the Runnable and Galaxy functions,

Universe(Target* s,const char* typeDesc);
The constructor specifies the target and the universe type.
Scheduler* scheduler() const;

Returns the scheduler belonging to the universe’s target.

int run();

ReturnRunnable::Run .

3.8 Class InterpUniverse
Class InterpUniverse is inherited from both InterpGalaxy and Runnable. Ptolemy user int
es build and execute InterpUniverses. In addition to the standard InterpGalaxy functions,
vides:

InterpUniverse (const char* name = "mainGalaxy");
This creates an empty universe with no target and the given name. If no name is spe
mainGalaxy is the default.
Ptolemy Last updated: 10/9/97

3-12 Block and related classes

sting

int newTarget(const char* newTargName = 0);

This creates a target of the given name (from the KnownTarget list), deleting any exi
target.

const char* targetName() const;

Return the name of the current target.

Scheduler* scheduler() const;

Return the scheduler belonging to the current target (0 if none).

Target* myTarget() const;

Return a pointer to the current target.

int run();

InvokesRunnable::run .

void wrapup();

Invokes wrapup on the target.
U. C. Berkeley Department of EECS

The Almagest 4-1

get and
es
 where
ecution
tion of
 Target
et takes
wnload-
eans to
e, but

f this
 simu-

fact that
execu-
at
ulers,

sor sys-
ole, and

bj
 the
t

Chapter 4. Control of Execution and
Error Reporting

Authors: Joseph T. Buck

Other Contributors: John S. Davis II

The principal classes responsible for control of the execution of the universe are the Tar
the Scheduler. The Target has high-level control over what happens when a user typrun
from the interface. Targets take on particular importance in code generation domains
they describe all the features of the target of execution, but they are used to control ex
in simulation domains as well. Targets use Schedulers to control the order of execu
Blocks under their control. In some domains, the Scheduler does almost everything; the
simply starts it up. In others, the Scheduler determines an execution order and the Targ
care of many other details, such as generating code in accordance with the schedule, do
ing the code to an embedded processor, and executing it. The Error class provides a m
format error messages and optionally to halt execution. The interface is always the sam
different user interfaces typically provide different implementations of the methods o
class. The SimControl class provides a means to register actions for execution during a
lation, as well as facilities to cleanly halt execution on an error.

4.1 Class Target
Class Target is derived from class Block; as such, it can have states and a parent (the
it can also have portholes is not currently used). A Target is capable of supervising the
tion of only certain types of Stars; thestarClass argument in its constructor specifies wh
type. A Universe or InterpUniverse is run by executing its Target. Targets have Sched
which as a rule control order of execution, but it is the Target that isin control. A Target can
have children that are other Targets; this is used, for example, to represent multi-proces
tems for which code is being generated (the parent target represents the system as a wh
child targets represent each processor).

4.1.1 Target public members
Target(const char* name, const char*starClass ,const char*desc = "");

This is the signature of the Target constructor.name specifies the name of the Target and
desc specifies its descriptor (these fields end up filling in the corresponding NamedO
fields). ThestarClass argument specifies the class of stars that can be executed by
Target. For example, specifyingDataFlowStar for this argument means that the Targe
can run any type of star of this class or a class derived from it. TheisA function is used to
perform the check. See the description ofauxStarClass below.
Ptolemy Last updated: 10/9/97

4-2 Control of Execution and Error Reporting

-
d from

lasses

r it
Or it
om-
amed

, call

 partic-
it

ass
. The
const char* starType() const;

Return the supported star class (thestarClass argument from the constructor).

Scheduler* scheduler() const;

Return a pointer to my scheduler.

Target* cloneTarget() const;

This simply returns the result of theclone function as a Target. It is used by the Known
Target class, for example to create a Target object corresponding to a name specifie
a user interface.

virtual StringList displaySchedule();

The default implementation simply passes this call along to the scheduler; derived c
may modify this.

virtual StringList pragma () const;

A Target may understand certain annotations associated with Blocks calledpragmas. For
example, an annotation may specify how many times a particular Star should fire. O
could specify that a particular Block should be mapped onto a particular processor.
could specify that a particular State of a particular Block should be settable on the c
mand line that invokes a generated program. The above method returns the list of n
pragmas that a particular target understands (e.g.firingsPerIteration or proces-
sorNumber). In derived classes, each item in the list is a three part string, "name type
value ", separated by spaces. Thevalue will be a default value. The implementation in
class Target returns a StringList with only a single zero-length string in it. Thetype can
be any type used in states.

virtual StringList pragma (const char* parentname ,
const char* blockname) const;

To determine the value of all pragmas that have been specified for a particular block
this method. In derived classes, it returns a list of "name value " pairs, separated by
spaces. In the base class, it returns an empty string. Theparentname is the name of the
parent class (universe or galaxy master name).

virtual StringList pragma (const char* parentname ,
const char* blockname ,
const char* pragmaname) const;

To determine the value of a pragma of a particular type that has been specified for a
ular block, call this method. In derived classes, it returns a value. In the base class,
returns a zero-length string.

virtual StringList pragma (const char* parentname ,
const char* blockname ,
const char* pragmaname ,
const char* value) const;

To specify a pragma to a target, call this method. The implementation in the base cl
“Target” does nothing. In derived classes, the pragma will be registered in some way
return value is always a zero-length string.
U. C. Berkeley Department of EECS

The Almagest 4-3

f 0
ned.

).

 virtual

irtual

ointer

eduler.

ple-

y may

 par-
Target* child(int n);
Return thenth child Target, null if no children or ifn exceeds the number of children.

Target* proc(int n);
This is the same aschild if there are children. If there are no children, an argument o
will return a pointer to the object on which it is called, otherwise a null pointer is retur

int nProcs() const;

Return the number of processors (1 if no children, otherwise the number of children

virtual int hasResourcesFor(Star& s ,const char*extra =0);
Determine whether this target has the necessary resources to run the given star. It is
in case this is necessary in child classes. The default implementation usesresources
states of the target and the star.

virtual int childHasResources(Star& s ,int childNum);
Determine whether a particular child target has resources to run the given star. It is v
in case later necessary.

virtual void setGalaxy(Galaxy& g);
Associate a Galaxy with the Target. The default implementation just sets its galaxy p
to point tog.

virtual void setStopTime(double when);
Set the stopping condition. The default implementation just passes this on to the sch

virtual void resetStopTime(double when);
Reset the stopping condition for the wormhole containing this Target. The default im
mentation just passes this on to the scheduler. In addition to the action performed byset-
StopTime, this function also does any synchronization required by wormholes.

virtual void setCurrentTime(double now);
Set the current time tonow.

virtual int run();
virtual void wrapup();

The following methods are provided for code generation; schedulers may call these. The
move to class CGTarget in a future Ptolemy release.

virtual void beginIteration(int repetitions , int depth);
Function called to begin an iteration (default version does nothing).

virtual void endIteration(int repetitions , int depth);
Function called to end an iteration (default version does nothing).

virtual void writeFiring(Star& s , int depth);
Function called to generate code for the star, with any modifications required by this
Ptolemy Last updated: 10/9/97

4-4 Control of Execution and Error Reporting

fault

. No
erent
into

long-
 is

 are

on of

 or
ticular Target (the default version does nothing).

virtual void beginIf(PortHole& cond , int truthdir ,
 int depth , int haveElsePart);
virtual void beginElse(int depth);
virtual void endIf(int depth);
virtual void beginDoWhile(PortHole& cond , int truthdir , int depth);
virtual void endDoWhile(PortHole& cond);

These above functions are used in code generation to generate conditionals. The de
implementations do nothing.

virtual int commTime(int sender ,int receiver ,int nUnits , int type);
Return the number of time units required to sendnUnits units of data whose type is the
code indicated bytype from the child Target numberedsender to the child target num-
beredreceiver. The default implementation returns 0 regardless of the parameters
meaning is specified at this level for the type codes, as different languages have diff
types; all that is required is that different types supported by a particular target map
distinct type codes.

Galaxy* galaxy();

Return my galaxy pointer (0 if it has not been set).

4.1.2 Target protected members
virtual void setup();

This is the main initialization function for the target. It is called by theinitialize func-
tion, which by default initializes the Target states. The default implementation callsgal-
axySetup(), and if it returns a nonzero value, then callsschedulerSetup().

virtual int galaxySetup();

This method (and overloaded versions of it) is responsible for checking the galaxy be
ing to the target. In the default implementation, each star is checked to see if its type
supported by the target (because theisA function reports that it is one of the supported
star classes). If a star does not match this condition an error is reported. In addition,set-
Target() is called for each star with a pointer to the Target as an argument. If there
errors, 0 is returned, otherwise 1.

virtual int schedulerSetup();

This method (and overloaded versions of it) are responsible for initializing an executi
the universe. The default implementation initializes the scheduler and callssetup() on it.

void setSched(Scheduler* sch);
The target’s scheduler is set tosch, which must either point to a scheduler on the heap
be a null pointer. Any preexisting scheduler is deleted. Also, the scheduler’ssetTarget
member is called, associating the Target with the Scheduler.

void delSched();

This function deletes the target’s scheduler and sets the scheduler pointer to null.
U. C. Berkeley Department of EECS

The Almagest 4-5

rgets

ces-
f pro-

ass
ux-

larly
turns

onger
f

ted and
ly deter-
ose for

abstract
the Tar-
hat the
 target,
void addChild(Target& child);
Add child as a child target.

void inheritChildren(Target* parent , int start , int stop);
This method permits two different Target objects to share child Targets. The child ta
numberedstart throughstop of the Target pointed to byparent become the children
of this Target (the one on which this method is called). Its primary use is in multi-pro
sor scheduling or code generation, in which some construct is assigned to a group o
cessors. It has a big disadvantage; the range of child targets must be continuous.

void remChildren();

Remove thechildren list. This does not delete the child targets.

void deleteChildren();

Delete all thechildren . This assumes that the child Targets were created withnew.

virtual const char* auxStarClass() const;

Auxiliary star class: permits a second type of star in addition to the supported star cl
(seestartType()). The default implementation returns a null pointer, indicating no a
iliary star class. Sorry, there is no present way to support yet a third type.

const char* writeDirectoryName(const char* dirName = 0);
This method returns a directory name that is intended for use in writing files, particu
for code generation targets. If the directory does not exist, it attempts to create it. Re
the fully expanded path name (which is saved by the target).

const char* workingDirectory() const;

Return the directory name previously set bywriteDirectoryName.

char* writeFileName(const char* fileName = 0);
Method to set a file name for writing.writeFileName prependsdirFullName (which
was set bywriteDirectoryName) to fileName with "/ " between. Always returns a
pointer to a string in new memory. It is up to the user to delete the memory when no l
needed. IfdirFullName or fileName is NULL then it returns a pointer to a new copy o
the string/dev/null .

4.2 Class Scheduler
Scheduler objects determine the order of execution of Stars. As a rule, they are crea
managed by Targets. Some schedulers, such as those for the SDF domain, complete
mine the order of execution of blocks before any blocks are executed; others, such as th
the DE domain, supervise the execution of blocks at run time. The Scheduler class is an
base class; you can’t have an object of class Scheduler. All schedulers have a pointer to
get that controls them as well as to a Galaxy. Usually the Galaxy will be the same one t
Target points to, but this is not a requirement. The Scheduler constructor just zeros its
galaxy pointers. The destructor is virtual and do-nothing.
Ptolemy Last updated: 10/9/97

4-6 Control of Execution and Error Reporting

uch as
imal

 deter-

lt

er

s for

 it had

oved
 be
4.2.1 Scheduler public members
virtual void setGalaxy(Galaxy& g);

This function sets the galaxy pointer to point tog.

Galaxy* galaxy();

This function returns the galaxy pointer.

virtual void setup() = 0;

This function (in derived classes) sets up the schedule. In compile-time schedulers s
those for SDF, a complete schedule is computed; others may do little more than min
checks.

virtual void setStopTime(double limit) = 0;
Set the stop time for the scheduler. Schedulers have an abstract notion of time; this
mines how long the scheduler will run for.

virtual double getStopTime() = 0;

Retrieve the stop time.

virtual void resetStopTime(double limit);
Reset the stopping condition for the wormhole containing this Scheduler. The defau
implementation simply callssetStopTime with the same argument. For some derived
types of schedulers, additional actions will be performed as well by derived Schedul
classes.

virtual int run() = 0;

Run the scheduler until the stop time is reached, an error condition occurs, or it stop
some other reason.

virtual void setCurrentTime(double val);
Set the current time for the scheduler.

virtual StringList displaySchedule();

Return the schedule if this makes sense.

double now() const;

Return the current time (the value of the protected membercurrentTime).

int stopBeforeDeadlocked() const;

Return the value of thestopBeforeDeadFlag protected member. It is set in timed
domains to indicate that a scheduler inside a wormhole was suspended even though
more work to do.

virtual const char* domain() const;

Return the domain for this scheduler. This method is no longer used and will be rem
from future releases; it dates back to the days in which a given scheduler could only
used in one domain.
U. C. Berkeley Department of EECS

The Almagest 4-7

class,

trol-

ys the

 Error
y:
o halt.

tions is

second
void setTarget(Target& t);
Set the target pointer to point tot.

Target& target ();

Return the target.

virtual void compileRun();

Call code-generation functions in the Target to generate code for a run. In the base
this just causes an error.

The following functions now forward requests to SimControl, which is responsible for con
ling the simulation.

static void requestHalt();

CallsSimControl::declareErrorHalt. NOTE:SimControl::requestHalt
only sets the halt bit, not the error bit.

static int haltRequested();

CallsSimControl::haltRequested. Returns TRUE if the execution should halt.

static void clearHalt();

CallsSimControl::clearHalt. Clears the halt and error bits.

4.2.2 Scheduler protected members

The following two data members are protected.

// current time of the scheduler
double currentTime;
// flag set if stop before deadlocked.
// for untimed domain, it is always FALSE.
int stopBeforeDeadlocked;

4.3 Class Error
Class Error is used for error reporting. While the interfaces to these functions are alwa
same, different user interfaces provide different implementations:ptcl connects to the Tcl er-
ror reporting mechanism,pigi pops up windows containing error messages, andinter-
preter simply prints messages on the standard error stream. All member functions of
are static. There are four “levels” of messages that may be produced by the error facilitEr-
ror::abortRun is used to report an error and cause execution of the current universe t
Error::error reports an error.Error::warn reports a warning, andError::message
prints an information message that is not considered an error. Each of these four func
available with two different signatures. For example:

static void abortRun (const char*, const char* = 0, const char* = 0);
static void abortRun (const NamedObj& obj , const char*, const char* = 0,
 const char* = 0);

The first form produces the error message by simply concatenating its arguments (the
Ptolemy Last updated: 10/9/97

4-8 Control of Execution and Error Reporting

 the full
argu-

c-

ue

gs that
d. It also
r in re-
ts with
f regis-
he Sim-
. Once
e pro-

t, and

 execu-
 a

its
and third arguments may be omitted); no space is added. The second form prepends
name of theobj argument, a colon, and a space to the text provided by the remaining
ments. If the implementation provides a marking facility, the object named byobj is marked
by the user interface (at present, the interface associated withpigi will highlight the object if
its icon appears on the screen). The remaining static Error functionserror, warn, andmes-
sage have the same signatures as doesabortRun (there are the same two forms for each fun
tion). In addition, the Error class provides access to the marking facility, if it exists:

static int canMark();

This function returns TRUE if the interface can mark NamedObj objects (generally tr
for graphic interfaces), and FALSE if it cannot (generally true for text interfaces).

static void mark (const NamedObj& obj);
This function marks the objectobj, if marking is implemented for this interface. It is a
no-op if marking is not implemented.

4.4 Class SimControl
The SimControl class controls execution of the simulation. It has some global status fla
indicate whether there has been an error in the execution or if a halt has been requeste
has mechanisms for registering functions to be called before or after star executions, o
sponse to a particular star’s execution, and responding to interrupts. This class interac
the Error class (which sets error and halt bits) and the Star class (to permit execution o
tered actions when stars are fired). Schedulers and Targets are expected to monitor t
Control halt flag to halt execution when errors are signaled and halts are requested
exceptions are commonplace in C++ implementations, a cleaner implementation could b
duced.

4.4.1 Access to SimControl status flags.

SimControl currently has four global status bits: the error bit, the halt bit, the interrupt bi
the poll bit. These functions set, clear, or report on these bits.

static void requestHalt ();

This function sets the halt bit. The effect is to cause schedulers and targets to cease
tion. It is important to note that this function does not alter flow of control; it only sets
flag.

static void declareErrorHalt ();

This is the same asrequestHalt except that it also sets the error bit. It is called, for
example, byError::abortRun.

static int haltRequested ();

This function returns true if the halt bit is set, false otherwise. If the poll or interrupt b
are set, it calls handlers for them (see the subsection describing these).

static void clearHalt ();

This function clears the halt and error flags.
U. C. Berkeley Department of EECS

The Almagest 4-9

artic-
tar is a
ve

ions

has

sed

en the
o

ys

 at this
that is

x
nal
esses
sim-

-

4.4.2 Pre-actions and Post-actions

SimControl can register a function that will be called before or after the execution of a p
ular star, or before or after the execution of all stars. A function that is called before a s
preaction; on that is called after a star is apost-action. The functions that can be registered ha
take two arguments: a pointer to a Star (possibly null), and aconst char* pointer that points
to a string (possibly null). The type definition

typedef void (*SimActionFunction)(Star*,const char*);

gives the name SimActionFunction to functions of this type; several SimControl funct
take arguments of this form.

static SimAction* registerAction(SimActionFunction action, int pre,
 const char* textArg = 0, Star* which = 0);

Register a pre-action or post-action. Ifpre is TRUE it is a preaction. IftextArg is given,
it is passed as an argument when the action function is called. Ifwhich is 0, the function
will be called unconditionally bydoPreActions (if it is a preaction) ordoPostAc-
tions (if it is a post-action; otherwise it will only be called if the star being executed
the same address aswhich. The return value represents the registered action; class
SimAction is treated as if it is opaque (I’m not telling you what is in it) which can be u
for cancel calls.

static int doPreActions(Star * which);
static int doPostActions(Star * which);

Execute all pre-actions, or post-actions, for a the particular Starwhich. Thewhich
pointer is passed to each action function, along with any text argument declared wh
action was registered. Return TRUE if no halting condition arises, FALSE if we are t
halt.

static int cancel(SimAction* action);
Cancelaction. Warning: argument is deleted. Future versions will provide more wa
of cancelling actions.

4.4.3 SimControl interrupts and polling

Features in this section will be used in a new graphic interface; they are mostly untested
point. The SimControl class can handle interrupts and can register a polling function
called for every star execution. It only provides one handler.

static void catchInt(int signo = -1, int always = 0);

This static member function installs a simple interrupt handler for the signal with Uni
signal numbersigno. If always is true, the signal is always caught; otherwise the sig
is not caught if the current status of the signal is that it is ignored (for example, proc
running in the background ignore interrupt signals from the keyboard). This handler
ply sets the SimControl interrupt bit; on the next call tohaltRequested, the user-speci-
fied interrupt handler is called.

static SimHandlerFunction setInterrupt(SimHandlerFunction f);
Set the user-specified interrupt handler tof, and return the old handler, if any. This func
Ptolemy Last updated: 10/9/97

4-10 Control of Execution and Error Reporting

l

tion is called in response to any signals specified incatchInt.

static SimHandlerFunction setPoll(SimHandlerFunction f);

Register a function to be called byhaltRequested if the poll flag is set, and set the pol
flag. Returns old handler if any.
U. C. Berkeley Department of EECS

The Almagest 5-1

omains
 oth-

inters
hrough
omain
n that
ss Uni-
a Target
on the
e ob-
orm-

derived
the SDF
ly the
ple in-
exactly
ally it
rget and

e
 and
Chapter 5. Interfacing domains –
wormholes and related classes

Authors: Joseph T. Buck

Other Contributors: J. Liu

This section describes the classes that implement the mechanism that allows different d
to be interfaced. It is this ability to integrate different domains that sets Ptolemy apart from
er systems.

5.1 Class Wormhole
A wormhole for a domain is much like a star belonging to that domain, but it contains po
to a subsystem that operates in a different domain. The interface to that other domain is t
a “universal event horizon”. The wormhole design, therefore, does not depend on the d
it contains, but only on the domain in which it is used as a block. It must look like a star i
outer domain. The base Wormhole class is derived from class Runnable , just like the cla
verse . Every member of the Runnable class has a pointer to a component Galaxy and
(\pxref class Target). Like a Universe, a Wormhole can perform the scheduling actions
component Galaxy. A Wormhole is different from a Universe in that it is not a stand-alon
ject. Instead, it is triggered from the outer domain to initiate the scheduling. Also, since W
hole is an abstract base class, you cannot create an object of class Wormhole; only
Wormholes can be created. Each domain has a derived Wormhole class. For example,
domain has class SDFWormhole. This domain-specific Wormhole is derived from not on
base Wormhole class but also from the domain-specific star class, SDFStar. This multi
heritance realizes the inherent nature of the Wormhole. First, the Wormhole behaves
like a Star from the outer domain (SDF) since it is derived from SDFStar. Second, intern
can encapsulate an entire foreign domain with a separate Galaxy and a separate Ta
Scheduler.

5.1.1 Wormhole public members
const char* insideDomain() const;

This function returns the name of the inside domain.

void setStopTime(double stamp);
This function sets the stop time for the inner universe.

Wormhole(Star& self , Galaxy& g, const char* targetName = 0);
Wormhole(Star& self , Galaxy& g, Target* innerTarget = 0);

The above two signatures represent the constructors provided for class Wormhole. W
never use plain Wormholes; instead we always have objects derived from Wormhole
some kind of Star. For example:
Ptolemy Last updated: 10/9/97

5-2 Interfacing domains – wormholes and related class-

lf, and
third
rget

 the

.

 the
 by

lled
o an
of

ust

ing
class SDFWormhole : public Wormhole, public SDFStar {
public:
 SDFWormhole(Galaxy& g,Target* t) : Wormhole(*this,g,t) {
 buildEventHorizons();
 }
};

The first argument to the constructor should always be a reference to the object itse
represents “the wormhole as a star”. The second argument is the inner galaxy. The
argument describes the target of the Wormhole, and may be provided either as a Ta
object or by name, in which case it is created by using the KnownTarget class.

Scheduler* outerSched();

This returns a pointer to the scheduler for the outer domain (the one that lives above
wormhole). The scheduler for the inner domain for derived wormhole classes can be
obtained from thescheduler() method.

5.1.2 Wormhole protected members
void setup();

The default implementation callsinitTarget.

int run();

This function executes the inside of the wormhole for the appropriate amount of time

void buildEventHorizons ();

This function creates the EventHorizon objects that connect the inner galaxy ports to
outside. A pair of EventHorizons is created for each galaxy port. It is typically called
the constructor for the XXXWormhole, where XXX is the outer domain name.

void freeContents();

This function deletes the event horizons and the inside galaxy. It is intended to be ca
from XXXWormhole destructors. It cannot be part of the Wormhole constructor due t
ordering problem (we want to assure that it is called before the destructor for either
XXXWormhole’s two base classes is called).

virtual double getStopTime() = 0;

Get the stopping condition for the inner domain. This is a pure virtual function and m
be redefined in the derived class.

virtual void sumUp();

This function is called byWormhole::run after running the inner domain. The default
implementation does nothing. Derived wormholes can redefine it to put in any “summ
up” work that is required after running the inner domain.

Galaxy& gal;

The membergal is a reference to the inner galaxy of the Wormhole.
U. C. Berkeley Department of EECS

The Almagest 5-3

 rela-
, repre-
 interior
s, we

ctually
r each
ori-
ther,
cific

ary be-
om
rom
ecific
e
-

ses
t-

fault
5.2 Class EventHorizon
Class EventHorizon is another example of a “mixin class”; EventHorizon has the same
tionship to PortHoles as Wormhole has to Stars. The name is chosen from cosmology
senting the point at which an object disappears from the outside universe and enters the
of a black hole, which can be thought of as a different universe entirely. As for wormhole
never consider objects that are “just an EventHorizon”. Instead, all objects that are a
used are multiply inherited from EventHorizon and from some type of PortHole class. Fo
type of domain we require two types of EventHorizon. The first, derived from ToEventH
zon, converts from a format suitable for a particular domain to the “universal form”. The o
derived from FromEventHorizon, converts from the universal form to the domain-spe
form.

5.2.1 How EventHorizons are used

Generally, EventHorizons are used in pairs to form a connection across a domain bound
tween domain XXX and domain YYY. An object of class XXXToUniversal (derived fr
XXXPortHole and ToEventHorizon) and an object of class YYYFromUniversal (derived f
YYYPortHole and FromEventHorizon) are inserted between the ordinary, domain-sp
PortHoles. Thefar() member of the XXXToUniversal points to the XXXPortHole; th
ghostAsPort() member points to the YYYFromUniversal object. Similarly, for the YYY
FromUniveral object,far() points to the YYYPortHole andghostAsPort() points to the
XXXToUniversal object. These pairs of EventHorizons are created by thebuildEventHo-
rizons member function of class Wormhole.

5.2.2 EventHorizon public members
EventHorizon(PortHole* self);

The constructor for EventHorizon takes one argument, representing (for derived clas
that call this constructor from their own), “myself” as a PortHole (a pointer to the Por
Hole part of the object). The destructor is declared virtual and does nothing.

PortHole* asPort();

This returns “myself as a PortHole”.

PortHole* ghostAsPort();

This returns a pointer to the “matching event horizon” as a porthole.

virtual void ghostConnect(EventHorizon& to);
This connects another EventHorizon to myself and makes it my “ghost port”.

virtual int isItInput() const;
virtual int isItOutput() const;

Say if I am an input or an output.

virtual int onlyOne() const;

Derived EventHorizon classes should redefine this method to returnTRUE for domains in
which only one particle may cross the event horizon boundary per execution. The de
implementation returns FALSE .
Ptolemy Last updated: 10/9/97

5-4 Interfacing domains – wormholes and related class-

 by

utside

may

 to a

n

virtual void setEventHorizon(inOutType inOut , const char* portName ,
 Wormhole* parentWormhole , Star* parentStar ,
 DataType type = FLOAT, unsigned numTokens = 1);

Sets parameters for the EventHorizon.

double getTimeMark();
void setTimeMark(double d);

Get and set the time mark. The time mark is an internal detail used for bookkeeping
schedulers.

virtual void initialize();
Scheduler *innerSched();
Scheduler *outerSched();

These methods return a pointer to the scheduler that lives inside the wormhole, or o
the wormhole, respectively.

5.2.3 EventHorizon protected members
void moveFromGhost(EventHorizon& from , int numParticles);

Move numParticles from the buffer offrom, another EventHorizon, to mine (the
object on which this function is called). This is used to implementToEventHori-
zon::transferData.

CircularBuffer* buffer();

Access the myBuffer of the porthole.

EventHorizon* ghostPort;

This is the peer event horizon.

Wormhole* wormhole;

This points to the Wormhole I am a member of.

int tokenNew;
double timeMark;

TimeMark of the current data, which is necessary for interface of two domains. This
become a private member in future versions of Ptolemy.

5.3 Class ToEventHorizon
A ToEventHorizon is responsible for converting from a domain-specific representation
universal representation. It is derived from EventHorizon.

ToEventHorizon(PortHole* p);
The constructor simply calls the base class constructor, passing along its argument.

void initialize();

The initialize function prepares the object for execution.

void getData();

This protected member transfers data from the outside to the universal event horizo
U. C. Berkeley Department of EECS

The Almagest 5-5

e

a do-

ed),

case

rthole.
(myself).

void transferData();

This protected member transfers data from myself to my peer FromEventHorizon (th
ghostPort).

5.4 Class FromEventHorizon
A FromEventHorizon is responsible for converting from a universal representation to
main-specific representation. It is derived from EventHorizon.

FromEventHorizon(PortHole* p);
The constructor simply calls the EventHorizon constructor.

void initialize();

The initialize function prepares the object for execution.

void putData();

This protected member transfers data from Universal EventHorizon to outside.

void transferData();

This protected member transfers data from peer event horizon to me.

virtual int ready();

This is a protected member. By default, it always returnsTRUE (1). Derived classes have it
returnTRUE if the event horizon is ready (there is enough data for execution to proce
andFALSE otherwise.

5.5 Class WormMultiPort
The class WormMultiPort, which is derived from MultiPortHole , exists to handle the
where a galaxy with a multiporthole is embedded in a wormhole. ItsnewPort function cor-
rectly creates a pair of EventHorizon objects when a new port is created in the multipo
Instances of this object are created byWormhole::buildEventHorizons when the inner
galaxy has one or more MultiPortHole objects. ItsnewConnection method always callsnew-
Port.
Ptolemy Last updated: 10/9/97

5-6 Interfacing domains – wormholes and related class-
U. C. Berkeley Department of EECS

The Almagest 6-1

ulation
lock to

ng and
lso re-

 pro-
of the

PortHole
 other;
ort is
which
ify the

e same
re auto-
. The
ort-
ype res-
o not

member
iport-
t into
onsid-
Chapter 6. Classes for connections
between blocks

Authors: Joseph T. Buck

Other Contributors: Tom Lane
Yuhong Xiong

This chapter describes the classes that implement connections between blocks. For sim
domains, these classes are responsible for moving objects called Particles from one B
another. For code generation domains, the Particles typically only move during scheduli
these objects merely provide information on the topology. Currently, class PortHole is a
sponsible for the type resolution algorithm that assigns specific types toANYTYPE portholes. It
would probably be better to put that function in Geodesic, which would make it simpler to
vide domain-specific type resolution rules. This improvement must await a redesign
PortHole/Geodesic structure.

6.1 Class GenericPort
The class GenericPort is a base class that provides common elements between class
and class MultiPortHole. Any GenericPort object can be assumed to be either one or the
we recommend avoiding deriving any new objects directly from GenericPort. GenericP
derived from class NamedObj . GenericPort provides several basic facilities: aliases,
specify that another GenericPort should be used in place of this port, types, which spec
type of data to be moved by the port, and typePort, which specifies that this port has th
type as another port. When a GenericPort is destroyed, any alias or typePort pointers a
matically cleaned up, so that other GenericPorts are never left with dangling pointers
type() andtypePort() functions belong to GenericPort, not PortHole, because multip
holes have a declared type and can be type-equivalenced to other portholes. However, t
olution is strictly a PortHole notion. Multiportholes need no resolved type because they d
themselves transport particles, and indeed the concept would be ambiguous since the
ports of a multiporthole might have different resolved types. The declared type of a mult
hole is automatically assigned to its children, and its children are automatically brough
any type equivalence set the multiporthole is made part of. Thereafter, type resolution c
ers only the member portholes and not the multiporthole itself.

6.1.1 GenericPort query functions
virtual int isItInput () const;
virtual int isItOutput () const;
virtual int isItMulti () const;

Each of the above functions returnsTRUE (1) orFALSE (0).

StringList print (int verbose = 0)const ;
Ptolemy Last updated: 10/9/97

6-2 Classes for connections between blocks

icle
ur-

ntime.

t if
n

e). If a
urns

”.
Print human-readable information on the GenericPort.

DataType type () const;

Return my DataType. This may be one of the DataType values associated with Part
classes, or the special type ‘ANYTYPE’, which indicates that the type must be resolved d
ing setup. Note thattype() returns the port’s declared type, as supplied tosetPort() .
This is not necessarily the datatype that will be chosen to pass through the port at ru
That type is available from thePortHole::resolvedType() function.

GenericPort* alias() const;

Return my alias, or a null pointer if I have no alias. Generally, Galaxy portholes have
aliases and Star portholes do not, but this is not a strict requirement.

GenericPort* aliasFrom() const;

Return the porthole that I am the alias for (a null pointer if none). It is guaranteed thagp
is a pointer to GenericPort and ifgp->alias() is non-null, then the boolean expressio
gp->alias()->aliasFrom() == gp
is always true.

bitWord attributes() const;

Return my attributes. Attributes are a series of bits.

GenericPort& realPort();
const GenericPort& realPort() const;

Return the real port after resolving any aliases. If I have no alias, then a reference to
myself is returned.

GenericPort* typePort() const;

Return another generic port that is constrained to have the same type as me (0 if non
non-null value is called, successive calls will form a circular linked list that always ret
to its starting point; that is, the loop

void printLoop(GenericPort& g) {
 if (g->typePort()) {
 GenericPort* gp = g;
 while (gp->typePort() != g) {
 cout << gp->fullName() << "\back n";
 gp = gp->typePort();
 }
 }
}

is guaranteed to terminate and not to dereference a null pointer.

inline int hidden(const GenericPort& p)
IMPORTANT: hidden is not a member function of GenericPort, but is a “plain function
It returnsTRUE if the port in question has theHIDDEN attribute.
U. C. Berkeley Department of EECS

The Almagest 6-3

es this

e
ia
rent

e

ort; as
 same

.
ed by

 peer),
e exe-
t port-
y are
has a
Port-
6.1.2 Other GenericPort public members
virtual PortHole& newConnection();

Return a reference to a porthole to be used for new connections. Class PortHole us
one unchanged; MultiPortHole has to create a new member PortHole.

GenericPort& setPort(const char* portName , Block * blk , DataType typ =FLOAT);
Set the basic PortHole parameters: the name, parent, and data type.

void inheritTypeFrom(GenericPort& p);
Link to another port for determining the type of ‘ANYTYPE’ connections. The "inherit-
ance" relationship is actually a completely symmetric constraint, and so this function
would have been better namedsameTypeAs() . Any number of portholes can be tied
together byinheritTypeFrom() calls. Internally this is represented by chaining all th
members of such a type equivalence set into a circular loop, which can be walked v
typePort() calls. If a multiporthole is made part of a type equivalence set, all its cur
and future children become part of the set automatically.

virtual void connect(GenericPort& destination ,int numberDelays,
 const char* initDelayValues = 0);

Connect me with the indicated peer.

bitWord setAttributes(const Attribute& attr);
Set my attributes (some bits are turned on and others are turned off).

void setAlias (GenericPort& gp);
Set gp to be my alias. The aliasFrom pointer of gp is set to point to me.

6.1.3 GenericPort protected members
GenericPort* translateAliases();

The above is a protected function. If this function is called on a port with no alias, th
address of the port itself is returned; otherwise,alias()->translateAliases() is
returned.

6.2 Class PortHole
PortHole is the means that Blocks use to talk to each other. It is derived from GenericP
such, it has a type, an optional alias, and is optionally a member of a ring of ports of the
type connected bytypePort pointers. It guarantees thatalias() always returns a PortHole
In addition, a PortHole has a peer (another port that it is connected to, which is return
far()), a Geodesic (a path along which particles travel between the PortHole and its
and a Plasma (a pool of particles, all of the same type). In simulation domains, during th
cution of the simulation objects known as Particles traverse a circular path: from an outpu
hole through a Geodesic to an input porthole, and finally to a Plasma, where the
recirculated back to the input porthole. Like all NamedObj-derived objects, a PortHole
parent Block. It may also be a member of a MultiPortHole, which is a logical group of
Holes.
Ptolemy Last updated: 10/9/97

6-4 Classes for connections between blocks

e Port-

ra-

ero
esic’s
s-

in

 Even-
t-

y asso-

or
6.2.1 PortHole public members

The constructor sets just about everything to null pointers. The destructor disconnects th
Hole, and if there is a parent Block, removes itself from the parent’s porthole list.

PortHole& setPort(const char* portName , Block* parent ,
 DataType type = FLOAT);

This function sets the name of the porthole, its parent, and its type.

void initialize();

This function is responsible for initializing the internal buffers of the porthole in prepa
tion for a run.

virtual void disconnect(int delGeo = 1);
Remove a connection, and optionally attempt to delete the geodesic. The is set to z
when the geodesic must be preserved for some reason (for example, from the Geod
destructor). The Geodesic is deleted only if it is “temporary”; we do not delete “persi
tent” geodesics when we disconnect them.

PortHole* far() const;

Return the PortHole we are connected to.

void setAlias (PortHole& blockPort);
Set my alias toblockPort.

int atBoundary() const;

ReturnTRUE if this PortHole is at the wormhole boundary (if its peer is an inter-doma
connection);FALSE otherwise.

virtual EventHorizon* asEH();

Return myself as an EventHorizon, if I am one. The base class returns a null pointer.
tHorizon objects (objects multiply inherited from EventHorizon and some type of Por
Hole) will redefine this appropriately.

virtual void receiveData();

Used to receive data in derived classes. The default implementation does nothing.

virtual void sendData();

Used to send data in derived classes. The default implementation does nothing.

Particle& operator % (int delay);
This operator returns a reference to a Particle in the PortHole’s buffer. Adelay value of 0
returns the “newest” particle. In dataflow domains, the argument represents the dela
ciated with that particular particle.

DataType resolvedType () const;

Return the data type computed by ‘PortHole::initialize’ to resolve type conversions. F
example, if anINT output porthole is connected to aFLOAT input porthole, the resolved
type (the type of the Particles that travel between the ports) will beFLOAT. Two connected
U. C. Berkeley Department of EECS

The Almagest 6-5

 the

which
 the
s may

Type

turns

king,

erse a

e a

ections
portholes will always return the same resolvedType. A null pointer will be returned if
type has not yet been resolved, e.g. before initialization.

DataType preferredType () const;

Return the "preferred" type of the porthole. This is the same as the declared type (Gener-
icPort::type()) if the declared type is notANYTYPE. If the declared type isANYTYPE,
the preferredType is the type of the connected porthole or type equivalence set from
theANYTYPE’s true type was determined. (If preferredType and resolvedType are not
same, the need for a run-time type conversion is indicated. Code generation domain
choose to splice in type conversion stars to ensure that preferredType and resolved
are the same at all ports.) A null pointer will be returned if the type has not yet been
resolved, e.g. before initialization.

int numXfer() const;

Returns the nominal number of tokens transferred per execution of the PortHole. It re
the value of the protected membernumberTokens.

int numTokens() const;

Returns the number of particles on my Geodesic.

int numInitDelays() const;

Returns the number of initial delays on my Geodesic (the initial tokens, strictly spea
are only delays in dataflow domains).

Geodesic* geo();

Return a pointer to my Geodesic.

int index() const;

Return the index value. This is a mechanism for assigning all the portholes in a univ
unique integer index, for use in table-driven schedulers.

MultiPortHole* getMyMultiPortHole() const;

Return the MultiPortHole that spawned this PortHole, orNULL if there is no such Multi-
PortHole.

virtual void setDelay (int newDelayValue);
Set the delay value for the connection.

virtual Geodesic* allocateGeodesic();

Allocate a return a Geodesic compatible with this type of PortHole. This may becom
protected member in future Ptolemy releases.

void enableLocking(const PtGate& master);

Enable locking on access to the Geodesic and Plasma. This is appropriate for conn
that cross thread boundaries. Assumption:initialize() has been called.

void disableLocking();

The converse.
Ptolemy Last updated: 10/9/97

6-6 Classes for connections between blocks

zed to

, not

lly this
r gen-

er.
 their
nt.
int isLockEnabled() const;

Returns the lock status.

6.2.2 PortHole protected members
Geodesic* myGeodesic;

My geodesic, which connects to my peer. Initialized toNULL.

PortHole* farSidePort;

The port on the far side of the connection.NULL for disconnected ports.

Plasma* myPlasma;

Pointer to the Plasma where we get our Particles or replace unused Particles. Initiali
NULL.

CircularBuffer* myBuffer;

Buffer where the Particles are stored. This is actually a buffer of pointers to Particles
to Particles themselves.

int bufferSize;

This gives the size of the CircularBuffer to allocate.

int numberTokens;

Number of Particles stored in the buffer each time the Geodesic is accessed. Norma
is one except for dataflow-type stars, where it is the number of Particles consumed o
erated.

void getParticle();

GetnumberTokens particles from the Geodesic and move them into my CircularBuff
Actually, only Particles move. The same number of existing Particles are returned to
Plasma, so that the total number of Particles contained in the buffer remains consta

void putParticle();

Move numberTokens particles from my CircularBuffer to the Geodesic. Replace them
with the same number of Particles from the Plasma.

void clearParticle();

ClearnumberTokens particles in the CircularBuffer. Leave the buffer position pointing
to the last one.

virtual int allocatePlasma();

 Allocate Plasma (default method uses global Plasma).

int allocateLocalPlasma();

 Alternate function allocates a local Plasma (for use in derived classes).

void deletePlasma();

Delete Plasma if local; detach other end of connection from Plasma as well.
U. C. Berkeley Department of EECS

The Almagest 6-7

e of
s

to Par-
n. This

lass also
ment,
ll. The
.

ters to

n.

his
void allocateBuffer();

 Allocate new buffer.

DataType SetPreferredType();

Function to determine preferred types during initialization. Returns the preferred typ
this porthole, or 0 on failure. Protected, not private, so that subclasses that override et-
ResolvedType() can call it.

6.2.3 CircularBuffer – a class used to implement PortHole

This class is misnamed; it is not a general circular buffer but rather an array of pointers
ticle that is accessed in a circular manner. It has a pointer representing the current positio
pointer can be advanced or backed up; it wraps around the end when this is done. The c
has a facility for keeping track of error conditions. The constructor takes an integer argu
the size of the buffer. It creates an array of pointers of that size and sets them all to nu
destructor returns any Particles in the buffer to their Plasma and then deletes the buffer

void reset();

Set the access pointer to the beginning of the buffer.

void initialize();

Zero out the contents of the buffer.

Particle** here() const;

Return the access pointer. Note the double indirection; since the buffer contains poin
Particles, the buffer pointer points to a pointer.

Particle** next();

Advance the pointer one position (circularly) and return the new value.

Particle** last();

Back up the pointer one position (circularly) and return the new value.

void advance(int n);
Advance the buffer pointer byn positions. This will not work correctly ifn is larger than
the buffer size.n is assumed positive.

void backup(int n);
Back up the buffer pointer byn positions. This will not work correctly ifn is larger than
the buffer size.n is assumed positive.

Particle** previous(int offset) const;

Find the position in the bufferoffset positions in the past relative to the current positio
The current position is unchanged.offset must not be negative, and must be less than
the buffer size, or a null pointer is returned an an appropriate error message is set; t
message can be accessed by theerrMsg function.

int size() const;

Return the size of the buffer.
Ptolemy Last updated: 10/9/97

6-8 Classes for connections between blocks

oles

d to
Port-
mber
nique
ort-
oles.

g bus
oles

t one;
static const char* errMsg();

Return the last error message (currently, onlyprevious() sets error messages).

6.3 Class MultiPortHole
A MultiPortHole is an organized connection of related PortHoles. Any number of PortH
can be created within the PortHole; their names have the formmphname#1, mphname#2, etc.,
wheremphname is replaced by the name of the MultiPortHole. When a PortHole is adde
the MultiPortHole, it is also added to the porthole list of the Block that contains the Multi
Hole. As a result, a Block that contains a MultiPortHole has, in effect, a configurable nu
of portholes. A pair of MultiPortHoles can be connected by a “bus connection”. This tech
createsn PortHoles in each MultiPortHole and connects them all “in parallel”. The MultiP
Hole constructor sets the “peer MPH” to 0. The destructor deletes any constituent PortH

6.3.1 MultiPortHole public members
void initialize();

Does nothing.

void busConnect (MultiPortHole& peer , int width , int delay = 0);

Makes a bus connection with another multiporthole,peer, with width width and delay
delay. If there is an existing bus connection, it is changed as necessary; an existin
connection may be widened, or, if connected to a different peer, all constituent porth
are deleted and a bus is made from scratch.

int isItMulti() const;

ReturnsTRUE.

MultiPortHole& setPort(const char* portName ,
 Block* parent ,DataType type = FLOAT);
int numberPorts() const;

Return the number of PortHoles in the MultiPortHole.

virtual PortHole& newPort();

Add a new physical port to the MultiPortHole list.

MultiPortHole& realPort();

Return the real MultiPortHole associated with me, translating any aliases.

void setAlias (MultiPortHole & blockPort);
Set my alias toblockPort.

virtual PortHole& newConnection();

Return a new port for connections. If there is an unconnected porthole, return the firs
otherwise make a new one.

6.3.2 MultiPortHole protected members
PortList ports;

The list of portholes (should be protected).
U. C. Berkeley Department of EECS

The Almagest 6-9

in the

n

 is a
in ap-
ons can
s. The
 con-

which it
d from
lf. The

sets the
. There

ther-

when
lti-way

 cre-

fines

ve been
const char* newName();

This function generates names to be used for contained PortHoles. They are saved
hash table provided by thehashstring function .

PortHole& installPort(PortHole& p);
This function adds a newly created port to the multiporthole. Derived MultiPortHole
classes typically redefinenewPort to create a porthole of the appropriate type, and the
use this function to register it and install it.

void delPorts();

This function deletes all contained portholes.

6.4 AutoFork and AutoForkNode
AutoForks are a method for implementing netlist-style connections. An AutoForkNode
type of Geodesic built on top of AutoFork. The classes are separate to allow a “mix
proach”, so that if a domain requires special actions in its Geodesics, these special acti
be written only once and be implemented in both temporary and permanent connection
implementation technique used is to automatically insert a Fork star to allow the n-way
nection; this Fork star is created by invokingKnownBlock::makeNew("Fork"), which
works only for domains that have a fork star.

6.4.1 Class AutoFork

An AutoFork object has an associated Geodesic and possibly an associated Fork star (
creates and deletes as needed). It is normally used in a multiply inherited object, inherite
AutoFork and some kind of Geodesic; hence the associated Geodesic is the object itse
constructor for class AutoFork takes a single argument, a reference to the Geodesic. It
pointer to the fork star to be null. The destructor removes the fork star, if one was created
are two public member functions,setSource andsetDest.

PortHole* setSource(GenericPort& port , int delay = 0);

If there is already an originating port for the geodesic, this method returns an error. O
wise it connects it to the node.

PortHole* setDest(GenericPort& port , int alwaysFork = 0);

This function may be used to add any number of destinations to the port. Normally,
there is more than one output, a Fork star is created and inserted to support the mu
connection, but if there is only one output, a direct connection is used. However, if
alwaysFork is true, a Fork is inserted even for the first output. When the fork star is
ated, it is inserted in the block list for the parent galaxy (the parent of the geodesic).

6.4.2 Class AutoForkNode

Class AutoForkNode is multiply inherited from Geodesic and AutoFork. This class rede
isItPersistent to returnTRUE, and redefines thesetSourcePort andsetDestPort
functions to call thesetSource andsetDest functions of AutoFork. The exact same form
could be used to generate other types of auto-forking nodes (that is, this class could ha
done with a template).
Ptolemy Last updated: 10/9/97

6-10 Classes for connections between blocks

 Parti-
f Par-
er end.
f Geo-

s cre-
ifies
 time.

st one
ated

ior is

o-

 type).

les. A
ents is
, tem-
6.5 Class ParticleStack
ParticleStack is an efficient base class for the implementation of structures that organize
cles. As Particles have a link field, ParticleStack is simply implemented as a linked list o
ticles. Strictly speaking, a dequeue is implemented; particles can be inserted from eith
ParticleStack has some odd attributes; it is designed for very efficient implementation o
desic and Plasma to move around large numbers of Particle objects very efficiently.

ParticleStack(Particle* h);
The constructor takes a Particle pointer. If it is a null pointer an empty ParticleStack i
ated. Otherwise the stack has one particle. Adding a Particle to a ParticleStack mod
that Particle’s link field; therefore a Particle can belong to only one ParticleStack at a

~ParticleStack();

The destructor deletes all Particles EXCEPT for the last one; we do not delete the la
because it is the “reference” particle (for Plasma) and is normally not dynamically cre
(this code may be moved in a future release to the Plasma destructor, as this behav
needed for Plasma and not for other types of ParticleStack).

void put(Particle* p);
Pushp onto the top (or head) of the ParticleStack.

Particle* get();

Pop the particle off the top (or head) of the ParticleStack.

void putTail(Particle* p);
Add p at the bottom (or tail) of the ParticleStack.

int empty() const;

ReturnTRUE (1) if the ParticleStack is empty, otherwise 0.

int moreThanOne() const;

ReturnTRUE (1) if the ParticleStack has two or more particles, otherwise 0. This is pr
vided to speed up the derived class Plasma a bit.

void freeup();

Returns all Particles on the stack to their Plasma (the allocation pool for that particle

Particle* head() const;

Return pointer to head.

Particle* tail() const;

Return pointer to tail.

6.6 Class Geodesic
A Geodesic implements the connection between a pair, or a larger collection, of PortHo
Geodesic may be temporary, in which case it is deleted when the connection it implem
broken, or it can be permanent, in which case it can live in disconnected form. As a rule
U. C. Berkeley Department of EECS

The Almagest 6-11

used for
 galaxy;
ry, suf-
mains
ntains
o port-
 have a
in its
ey will
signed
This is
ultiple
mmon

onnected
 allow
esic). It
le, and
ution
sed in

mined

turn
esti-
.

 con-

the
ction;
ne

ion
porary geodesics are used for point-to-point connections and permanent geodesics are
netlist connections. In the latter case, the Geodesic has a name and is a member of a
hence, Geodesic is derived from NamedObj . The base class Geodesic, which is tempora
fices for most simulation and code generation domains. In fact, in a number of these do
it contains unused features, so it is perhaps too “heavyweight” an object. A Geodesic co
a ParticleStack member which is used as a queue for movement of Particles between tw
holes; it also has an originating port and a destination port. A Geodesic can be asked to
specific number of initial particles. When initialized, it creates that number of particles
ParticleStack; these particles are obtained from the Plasma of the originating port (so th
be of the correct type). A severe limitation of the current Geodesic class is that it is de
around point-to-point connections, ie, a single source port to a single destination port.
a problem for domains that wish to support one-to-many geodesics (single source to m
receivers) or many-to-many geodesics (such as multiple in/out ports connected to a co
bus). Geodesic ought to be redesigned as a base class that supports any number of c
ports, with the restriction to point-to-point being a specialized subclass. This would also
a cleaner treatment of autofork (autoforking geodesics could just be a subclass of Geod
would be necessary to remove PortHole’s belief that there is a unique far-side portho
that would require rethinking the porthole type resolution algorithm; probably type resol
should become a Geodesic function, not a PortHole function. This area will be addres
some future version of Ptolemy.

6.6.1 Geodesic public members
virtual PortHole* setSourcePort (GenericPort & src , int delay = 0);

Set the source port and the number of initial particles. The actual source port is deter
by callingnewConnection onsrc; thus ifsrc is a MultiPortHole, the connection will
be made to some port within that MultiPortHole, and aliases will be resolved. The re
value is the “real porthole” used. In the default implementation, if there is already a d
nation port, any preexisting connection is broken and a new connection is completed

virtual PortHole* setDestPort (GenericPort & dp);
Set the destination port todp.newConnection() . The return value is the “real porthole”
used. In the default implementation, if there is already a source port, any preexisting
nection is broken and a new connection is completed.

virtual int disconnect (PortHole & p);
In the default implementation, ifp is either the source port or the destination port, both
source port and destination port are set to null. This is not enough to break a conne
as a rule,disconnect should be called on the porthole, and that method will call this o
as part of its work.

virtual void setDelay (int newDelay);
Modify the delay (number of initial tokens) of a connection. The default implementat
simply changes a count.

virtual int isItPersistent() const;

ReturnTRUE if the Geodesic is persistent (may exist in a disconnected state) andFALSE
otherwise. The default implementation returnsFALSE.
Ptolemy Last updated: 10/9/97

6-12 Classes for connections between blocks

iven

 zero
s.

r if

the

ny

 a run
PortHole* sourcePort () const;
PortHole* destPort () const;

Return my source and destination ports, respectively.

virtual void initialize();

In the default implementation, this function initializes the number of Particles to that g
by the numInitialParticles field (the value returned bynumInit(); these Particles are
obtained from the Plasma (allocation pool) for the source port. The particles will have
value for numeric particles, and will hold the “empty message” for message Particle

void put(Particle* p);
Put a particle into the Geodesic (using a FIFO discipline).

Particle* get();

Retrieve a particle from the Geodesic (using a FIFO discipline). Return a null pointe
the Geodesic is empty.

void pushBack(Particle* p);
Push a Particle back into the Geodesic (onto the front of the queue, instead of onto
back of the queue asput does).

int size() const;

Return the number of Particles on the Geodesic at the current time.

int numInit() const;

Return the number of initial particles. This call is valid at any time. Immediately after
initialize, size andnumInit return the same value (and this should be true for a
derived Geodesic as well), but this will not be true during execution (wherenumInit
stays the same andsize changes).

StringList print(int verbose = 0) const;

Print information on the Geodesic, overrides NamedObj function.

virtual void incCount(int);
virtual void decCount(int);

These methods are available for schedulers such as the SDF scheduler to simulate
and keep track of the number of particles on the geodesic.incCount increases the count,
decCount decreases it, They are virtual to allow additional bookkeeping in derived
classes.

int maxNumParticles() const;

Return maximum number of particles.

virtual void makeLock(const PtGate& master);

Create a lock for the Geodesic.

virtual void delLock();

Delete lock for the Geodesic.
U. C. Berkeley Department of EECS

The Almagest 6-13

up.

cating
n
ake
er. As
 of type
rticle’s
he con-
leStack,

uld not
re

 only
int isLockEnabled() const;

Return lock status.

const char * initDelayValues();

Return theinitValues string.

6.6.2 Geodesic protected members
void portHoleConnect();

This function completes a connection if the originating and destination ports are set

virtual Particle* slowGet();
virtual void slowPut(Particle*);

The “slow” versions ofget() andput() .

PortHole *originatingPort;
PortHole *destinationPort;

These protected members point to my neighbors.

6.7 Class Plasma
Class Plasma is a pool for particles. It is derived from ParticleStack . Rather than allo
Particles as needed withnew and freeing them withdelete, we instead provide an allocatio
pool for each type of particle, so that very little dynamic memory allocation activity will t
place during simulation runs. All Plasma objects known to the system are linked togeth
a rule, there is one Plasma for each type of particle; however, each of these objects is
Plasma, not a derived type. At all times, a Plasma has at least one Particle in it; that Pa
virtual functions are used to clone other particles as needed, determine the type, etc. T
structor takes one argument, a reference to a Particle. It creates a one-element Partic
and links the Plasma into a linked list of all Plasma objects. Theput function (for putting a
particle into the Plasma) adds a particle to the Plasma’s ParticleStack. As a rule, it sho
be used directly; the Particle’sdie method will automatically add it to the right Plasma (futu
releases may protect this method to prevent its general use).

Particle* get();

This function gets a Particle from the Plasma, creating a new one if the Plasma has
one Particle on it (we never give away the last Particle).

int isLocal() const;

ReturnslocalFlag.

static Plasma* getPlasma (DataType t);

Get the appropriate global Plasma object given a type.

static Plasma* makeNew (DataType t);

Create a local Plasma object given a type.

void makeLock(const PtGate& master);

Create a lock for the Plasma.
Ptolemy Last updated: 10/9/97

6-14 Classes for connections between blocks

New

a.
etend

 a

leStack
ent a
n the
ent by
r puts a

eceived
of Par-
m. The
 also a

chine
void delLock();

Delete lock for the Plasma. No effect on global plasmas.

short incCount();

Increase reference count, when adding reference from PortHole to a local Plasma.
count is returned. Global Plasmas pretend their count is always 1.

short decCount();

Decrease reference count, when removing reference from PortHole to a local Plasm
New count is returned. Idea is we can delete it if it drops to zero. Global Plasmas pr
their count is always 1.

DataType type();

Returns the type of the particles on the list (obtained by asking the head Particle).

static Plasma* getPlasma(DataType type);
Searches the list of Plasmas for one whose type matches the argument, and returns
pointer to it. A null pointer is returned if there is no match.

6.8 Class ParticleQueue
Class ParticleQueue implements a queue of Particles. It uses a member of class Partic
to store the particles; it is not implemented by deriving from ParticleStack. It can implem
queue with finite or unlimited capacity. Rather than placing user-supplied Particles o
queue and removing them directly, it takes over the responsibility for memory managem
allocating its own Particles from the Plasma and returning them as needed. When a use
Particle into the queue, the value of the Particle is copied (with the Particleclone method);
similarly, when a user gets a Particle from the queue, he or she supplies a Particle to r
the copied value. The advantage of this is that the user need not worry about lifetimes
ticles – when to create them, when it is safe to return them to the Plasma or delete the
ParticleQueue default constructor forms an empty, unlimited capacity queue. There is
constructor of the form

ParticleQueue(unsigned int cap);
This creates a queue that can hold at mostcap particles. The destructor returns all Parti-
cles in the queue to their Plasma.

int empty() const;

ReturnTRUE if the queue is empty, elseFALSE.

int full() const;

ReturnTRUE if the length equals the capacity, elseFALSE.

unsigned int capacity() const;

Return the queue’s capacity. If unlimited, the largest possible unsigned int on the ma
will be returned.

unsigned int length() const;
U. C. Berkeley Department of EECS

The Almagest 6-15

nfi-

omes

 Mul-
xy ports
ach of

 some-
havior
hoped
ed. The
t port-
es place
degen
ne that
me that
never

ply
the
 very
Return the number of particles in the queue.

int putq(Particle& p);
Put a copy of particlep into the queue, if there is room. ReturnsTRUE on success,FALSE
if the queue is already at capacity.

int getq(Particle& p);
Get a particle from the queue, and copy it into the user-supplied particlep. This returns
TRUE on success,FALSE (andp is unaltered) if the queue is empty.

void setCapacity(int sz);
Modify the capacity tosz, if sz is positive or zero. If negative, the capacity becomes i
nite.

void initialize();

Free up the queue contents. Particles are returned to their pools and the queue bec
empty.

void initialize(int n);
Equivalent toinitialize() followed bysetCapacity(n) .

6.9 Classes for Galaxy ports
Class GalPort is derived from class PortHole . Class GalMultiPort is derived from class
tiPortHole . These classes are used by InterpGalaxy , and in other places, to create gala
and multiports that are aliased to some port of a member block. The constructor for e
these classes takes one argument, the interior port that is to be the alias. TheisItInput()
andisItOutput() functions are implemented by forwarding the request to the alias.

6.10 The PortHole type resolution algorithm
The type resolution algorithm is concerned with assigning concrete types toANYTYPE port-
holes and resolving conflicts between the types of connected portholes. The algorithm is
what complex since it tries to produce convenient results in an area where the "right" be
is not always easy to define. Ptolemy 0.7 introduces a new resolution algorithm that is
to produce more convenient and less surprising results than the method previously us
problem of connecting ports of different types is simple to resolve: we say that the inpu
hole determines what particle type to use, and that any necessary type conversion tak
when the output porthole puts data into a particle (or buffer variable, in the case of co
domains). The opposite convention would be about equally defensible, but this is the o
has historically been used in Ptolemy. It has the advantage that star writers can presu
the declared type of an input porthole is the data type that will actually be received, whe
the declared type is notANYTYPE. ResolvingANYTYPE portholes is much more difficult. We
need to handle several fundamental cases:

1. Printer and similar polymorphic stars, which accept any input type. They sim
declare their inputs to beANYTYPE, and we need to resolve them to the type of
connected output. (Introducing any forced particle type conversion would be
Ptolemy Last updated: 10/9/97

6-16 Classes for connections between blocks

iven

input.

ltiple
utput
ingle
(since
cted
oose

onsider

r. Thus,
g but
rithm.
-

resting
utput
actual
pe, so
t port-

Pass
 is the
le. The

 an
nd is
pre-
p is
,
ll the

es
 If at
at com-
undesirable.)

2. Fork and similar stars, which want to bind multiple outputs to the type of a g
input. Here the input porthole and output portholes areANYTYPE, and are bound
into a type equivalence set byinheritTypeFrom() . If possible we want to
resolve all these portholes to the type of the output porthole connected to the

3. Merge and similar stars, which have a single output type-equivalenced to mu
inputs. If the inputs all receive the same type of data, we should resolve the o
to that type. If there is no common input type, but the input connected to the s
output has determinable type, we can resolve the output porthole to that type
the data would ultimately get converted to that type, anyway). If the conne
input isANYTYPE, we must declare error, because we have no good way to ch
a type for the Merge’s output.

We have to recursively propagate type information in order to deal with chains ofANYTYPE
stars, such as one Fork following another. In some cases the type is really undefined. C
this universe (using ptcl syntax):

star f Fork; star p Printer
connect f output f input 1
connect f output p input

There are no types anywhere in the system. We have little choice but to declare an erro
the fact that we will sometimes fail to assign a type is not an implementation shortcomin
an unavoidable property of the problem. These considerations lead to the following algo
We first perform a recursive scan to resolveANYTYPE portholes, the results of which are rep
resented by a "preferred" type assigned to each porthole. (A porthole of non-ANYTYPE declared
type always has that type as its preferred type; so preferred type assignment is only inte
for ANYTYPE portholes.) Then, the "resolved" type of each connected pair of input and o
portholes is the preferred type of the input porthole. This is the type that will be used for
data transported between those portholes. It is useful to explicitly store the preferred ty
that codegen domains can detect type mismatches just by looking at individual outpu
holes. A type conversion star can be spliced in wherever an output is found that haspre-
ferredType != resolvedType . Assignment of preferred types proceeds in two passes.
1 is "feed forward" from outputs to inputs. Pass 2 is "feed back" from inputs to outputs; it
dual of Pass 1. Pass 2 is invoked only if Pass 1 is unable to choose a type for a portho
details are:

Pass 1:

Non-ANYTYPE portholes are simply assigned their declared type as preferred type. If
ANYTYPE porthole is not a member of an equivalence group, but is an input porthole a
connected to a porthole of pass-1-assignable type, that porthole’s type becomes its
ferred type. When anANYTYPE porthole is a member of an equivalence group, the grou
scanned to see if it includes any non-ANYTYPE portholes; if so, they must all agree in type
and that type becomes the preferred type of all members of the group. But usually, a
members of an equivalence set will beANYTYPE. Then, pass 1 scans all the input porthol
of the group to see whether their connected portholes have pass-1-assignable type.
least one does, and all of the assignable ones have the same preferred type, then th
U. C. Berkeley Department of EECS

The Almagest 6-17

n-
e

ted
ll of the
 pre-

pe. Pass
 merge
e. An
urs if a
lvable)
a com-
ce that
 a
d to al-

t
ut, we
hematic

s this
simple
ned the

 is im-
ame pre-
rtholes
eferred
port an

 basis,
oles
e
d to
mon type becomes the preferred type of all the members of the equivalence group.

Pass 2:

If an unassignedANYTYPE porthole is not a member of an equivalence group, but is co
nected to a porthole of type assignable by either pass 1 or pass 2, that porthole’s typ
becomes its preferred type. When anANYTYPE porthole is a member of an equivalence
group, all the output portholes of the group are scanned to see whether their connec
portholes have type assignable by either pass 1 or pass 2. If at least one does, and a
assignable ones have the same preferred type, then that common type becomes the
ferred type of all the members of the equivalence group.

Pass 1 handles Fork-like stars as well as Merge stars whose inputs all have the same ty
2 does something reasonable with Merge stars that have inputs of different types: if the
output is going to a port of knowable type, we may as well just output particles of that typ
error is declared if a porthole’s type remains unassigned after both passes. This occ
Merge-like star has inputs of nonidentical types and an output connected to an (unreso
ANYTYPE input. The user must insert type conversion stars to coerce the Merge inputs to
mon type, so that the system can figure out what type to use for the Merge output. Noti
each pass will resolve an equivalence set if all theassignable connected portholes agree on
type; it is not required that all the connected portholes be assignable. This rule is neede
low resolution of schematics that contain type-free loops. Here is an example:

star imp Impulse; star f Fork; star d Delay; star p Printer
connect imp output f input#1
connect f output d input
connect d output f input#2
connect f output p input

This schematic will work if we resolve all the ports toFLOAT (the output type of Impulse). Bu
if we insist on both Fork inputs being resolved before we assign a type to the Fork outp
will be unable to resolve the schematic. So, once Pass 1 has recursively traversed the sc
and concluded that it can’t yet assign a type to Fork’sinput#2 , it uses theFLOAT type found
at input#1 to resolve the type of the Fork portholes. Further recursion then propagate
result around the schematic. This rather baroque-looking algorithm does have some
properties. In particular, all members of an equivalence set are guaranteed to be assig
same preferred type; an error will be reported if this is not possible. In some domains it
portant that members of an equivalence set have the same resolved type, not just the s
ferred type. (For example, the CGC Fork star fails if this is not so, because its various po
are all just aliases for a single variable.) The domain can check this by seeing whether pr
type equals resolved type for all portholes. If the types are not the same, it can either re
error or splice in a type-conversion star to make them the same.

Note:
It might be better to cause this to happen on a per-star-type basis, not a per-domain
since one can imagine that some CG blocks would need strict type equality of porth
while others would not. This improvement is not currently implemented. The porthol
type resolution algorithm is dependent on the notion that every porthole is connecte
Ptolemy Last updated: 10/9/97

6-18 Classes for connections between blocks

nec-
e
vior
t, pos-

ns used
s 2
ecide
iving
s-
rk, and
lves
uce

method
 of the

me re-
 mul-
ll
d type.
in the

 is done
 would
articles
ing able
 just a
added
 or port-
sulting
just one other porthole. If class Geodesic is ever redesigned to support multiple con
tions directly, some work would be needed. A likely tactic is to move some or all of th
resolution work into Geodesic. A one-to-one Geodesic could enforce the same beha
described above, but one-to-many or many-to-many Geodesics would need differen
sibly domain-dependent behavior.

6.11 Changes since Ptolemy0.6
Ptolemy 0.7 introduces several changes related to porthole type resolution. Older versio
a much simplerANYTYPE resolution algorithm, which essentially amounted to just pas
("feed back") of the present method. That had the serious deficiency that it couldn’t d
what to do with fork stars feeding inputs of multiple types. For example, a fork star rece
INT and outputting toINT andFLOAT portholes would lead to a type resolution error. In e
sence, the old code insisted on being able to push type conversions back across a fo
would fail if it couldn’t assign the same type to all the fork outputs. The new algorithm so
this problem by delaying type conversions until after a fork. Occasionally this will introd
some inefficiency. For example, if a fork receivesINT and feeds twoFLOATs, the new method
leads to a type conversion being done separately on each fork output, whereas the old
would have generated only one conversion at the fork input. The improved ease of use
new method is judged well worth this loss.

Formerly, the member ports of a multiporthole were always constrained to have the sa
solved type. This is no longer true, since it gets in the way for polymorphic stars. But if a
tiporthole is tied to another porthole viainheritTypeFrom , then each member porthole wi
still be constrained to match the type of that other porthole, at least in terms of preferre
Formerly, the HOF stars acted during the galaxy "setup" phase, in which each block with
galaxy receives its setup call. This proved inadequate because porthole type resolution
during setup; by the time a HOF star acted, the types of the portholes connected to it
already have been resolved. For example, a HOFNop star formerly constrained all the p
passing through it to be of the same type, because the porthole resolver insisted on be
to choose a unique type for the HOFNop’s output porthole, even though that porthole is
dummy that won’t even exist at runtime. In Ptolemy 0.7, a "preinitialize" phase has been
so that HOF stars can rewire the galaxy and remove themselves before any block setup
hole type resolution occurs. The constraints on porthole types are then only those re
from the rewired schematic.
U. C. Berkeley Department of EECS

The Almagest 7-1

cation
odesics;
; all real
llows
se class
essing
ly per-

values
hat the

arti-
y also

fault

ad the
Chapter 7. Particles and Messages

Authors: Joseph T. Buck

7.1 Class Particle
A Particle is a little package that contains data; they represent the principal communi
technique that blocks use to pass results around. They move through PortHoles and Ge
they are allocated in pools called Plasmas. The class Particle is an abstract base class
Particle objects are really of some derived type. All Particles contain a link field that a
queues and stacks of Particles to be manipulated efficiently (class ParticleStack is a ba
for everything that does this). Particles also contain virtual operators for loading and acc
the data in various forms; these functions permit automatic type conversion to be easi
formed.

7.2 Particle public members
virtual DataType type() const = 0;

Return the type of the particle. DataType is actually just a typedef forconst char*, but
when we use DataType, we treat it as an abstract type. Furthermore, two DataType
are considered the same if they compare equal, which means that we must assure t
same string is always used to represent a given type.

virtual operator int () const = 0;
virtual operator float () const = 0;
virtual operator double () const = 0;
virtual operator Complex () const = 0;

These are the virtual casting functions, which convert the data in the Particle into the
desired form. The arithmetic Particles support all these functions cleanly. Message p
cles may return errors for some of these functions (they must return a value, but ma
call Error::abortRun.

virtual StringList print () const = 0;

Return a printable representation of the Particle’s data.

virtual void initialize() = 0;

This function zeros the Particle (where this makes sense), or initializes it to some de
value.

virtual void operator << (int arg) = 0;
virtual void operator << (double arg) = 0;
virtual void operator << (const Complex& arg) = 0;

These functions are, in a sense, the inverses of the virtual casting operators. They lo
particle with data fromarg, performing the appropriate type conversion.

virtual Particle& operator = (const Particle& arg) = 0;
Ptolemy Last updated: 10/9/97

7-2 Particles and Messages

ther-
 vir-
.

T
n-

ype,

he par-

n

tation
uc-

mplex-
type int,
erator
e of the
the re-
at to
 dou-
bsolute
nearest
priate

LOAT,
M-

type (ob-
Copy a Particle. In general, we permit this only for Particles of the same type, and o
wise assert an error. But the arithmetic particle types invoke type conversion, via the
tual casting operators, so as to allow assignment from other arithmetic particle types
Without this exception, useful cases such as forking an INT output to INT and FLOA
inputs would fail in the simulation domains (because the fork stars use particle assig
ment).

virtual int operator == (const Particle&) = 0;

Compare two particles. As a rule, Particles will be equal only if they have the same t
and, in a sense that is separately determined for each type, the same value.

virtual Particle* clone() const = 0;

Produce a second, identical particle (as a rule, one is obtained from the Plasma for t
ticle if possible).

virtual Particle* useNew() const = 0;

This is similar toclone, except that the particle is allocated from the heap rather tha
from the Plasma.

virtual void die() = 0;

Return the Particle to its Plasma.

virtual void getMessage (Envelope&);
virtual void accessMessage (Envelope&) const;
virtual void operator << (const Envelope&);

These functions are used to implement the Message interface. The default implemen
returns errors for them; it is only if the Particle is really a MessageParticle that they s
cessfully send or receive a Message from the Particle.

7.3 Arithmetic Particle classes
There are three standard arithmetic Particle classes: IntParticle, FloatParticle, and Co
Particle. As their names suggest, each class adds to Particle a private data member of
double (not float!), and class Complex, respectively. When a casting operator or “<<” op
is used on a particle of one of these types, a type conversion may take place. If the typ
argument of cast matches the type of the particle’s data, the data is simply copied. If
quested operation involves a “widening” conversion (int to float, double, or Complex; flo
double or Complex; double to Complex), the “obvious” thing happens. Conversion from
ble to int rounds to the nearest integer; conversion from Complex to double returns the a
value (not the real part!), and Complex to int returns the absolute value, rounded to the
integer.initialize for each of these classes sets the data value to zero (for the appro
domain). The DataTypes returned by these Particle types are the global symbols INT, F
and COMPLEX, respectively. They have the string values “INT”, “FLOAT”, and “CO
PLEX”.

7.4 The Heterogeneous Message Interface
The heterogeneous message interface is a mechanism to permit messages of arbitrary
U. C. Berkeley Department of EECS

The Almagest 7-3

se mes-
essage;
essages
e same
ans that
les, there
essage

velope
on this

er-
ge
r or
velope
 these
r, both

er-

 the

 Enve-
 to the
rences
the
esult-
nsi-

ther
mory
jects of some derived type of class Message) to be transmitted by blocks. Because the
sages may be very large, facilities are provided to permit many references to the same M
Message objects are “held” in another class called Envelope. As the name suggests, M
are transferred in Envelopes. When Envelopes are copied, both Envelopes refer to th
Message. A Message will be deleted when the last reference to it disappears; this me
Messages must always be on the heap. So that Messages may be transmitted by portho
is a class MessageParticle whose data field is an Envelope. This permits it to hold a M
just like any other Envelope object.

7.4.1 Class Envelope

class Envelope has two constructors. The default constructor constructs an “empty” En
(in reality, the envelope is not empty but contains a special “dummy message” – more
later). There is also a constructor of the form

Envelope(Message& data);
This constructor creates an Envelope that contains the Messagedata, which MUST have
been allocated withnew. Message objects have reference counts; at any time, the ref
ence count equals the number of Envelope objects that contain (refer to) the Messa
object. When the reference count drops to zero (because of execution of a destructo
assignment operator on an Envelope object), the Message will be deleted. Class En
defines an assignment operator, copy constructor, and destructor. The main work of
functions is to manipulate reference counts. When one Envelope is copied to anothe
Envelopes refer to the same message.

int empty() const;

Return TRUE if the Envelope is “empty” (points to the dummy message), FALSE oth
wise.

const Message* myData() const;

Return a pointer to the contained Message. This pointer must not be used to modify
Message object, since other Envelopes may refer to the same message.

Message* writableCopy();

This method produces a writable copy of the contained Message, and also zeros the
lope (sets it to the empty message). If this Envelope is the only Envelope that refers
message, the return value is simply the contained message. If there are multiple refe
to the message, theclone method is called on the Message, making a duplicate, and
duplicate is returned. The user is now responsible for memory management of the r
ing Message. If it is put into another Envelope, that Envelope will take over the respo
bility, deleting the message when there is no more need for it. If it is not put into ano
Envelope, the user must make sure it is deleted somehow, or else there will be a me
leak.

int typeCheck(const char* type) const;
This member function asks the question “is the contained Message of classtype, or
derived fromtype” ? It is implemented by callingisA on the Message. Either TRUE or
FALSE is returned.
Ptolemy Last updated: 10/9/97

7-4 Particles and Messages

es-
fer that

g the

st all be
ix mes-
e Mes-
essages,
es have
nvelope
ce count
essage

s a new
hare the
 follow-

e
e or
tor

class.
all). A

wing

nta-
const char* typeError(const char* expected) const;
This member function may be used to format error messages for when one type of M
sage was expected and another was received. The return value points to a static buf
is wiped out by subsequent calls.

const char* dataType() const;
int asInt() const;
double asFloat() const;
Complex asComplex() const;
StringList print() const;

All these methods are “passthrough methods”; the return value is the result of callin
identically named function on the contained Message object.

7.4.2 Class Message

Message objects can be used to carry data between blocks. Unlike Particles, which mu
of the same type on a given connection, connections that pass Message objects may m
sage objects of many types on a given connection. The tradeoff is that blocks that receiv
sage objects must, as a rule, type-check the received objects. The base class for all m
named Message, contains no data, only a reference count (accordingly, all derived class
a reference count and a standard interface). The reference count counts how many E
objects refer to the same Message object. The constructor for Message creates a referen
that lives on the heap. This means that the reference count is non-const even when the M
object itself is const. The copy constructor for Message ignores its argument and create
Message with a new reference count. This is necessary so that no two messages will s
same reference count. The destructor, which is virtual, deletes the reference count. The
ing Message functions must be overridden appropriately in any derived class:

virtual const char* dataType() const;

This function returns the type of the Message. The default implementation returns
“DUMMY”.

virtual Message* clone() const;

This function produces a duplicate of the object it is called on. The duplicate must b
“good enough” so that applications work the same way whether the original Messag
one produced byclone() is received. A typical strategy is to define the copy construc
for each derived Message class and write something like

Message* MyMessage::clone() const { return new MyMessage(*this);}
virtual int isA(const char*) const;

The isA function returns true if given the name of the class or the name of any base
Exception: the base class function returns FALSE to everything (as it has no data at
macroISA_FUNC is defined to automate the generation of implementations of derived
classisA functions; it is the same one as that used for the NamedObj class. The follo
methods may optionally be redefined.

virtual StringList print() const;

This method returns a printable representation of the Message. The default impleme
tion returns a message like
U. C. Berkeley Department of EECS

The Almagest 7-5

 point
ense;

ected
r-
te con-

t is
ion is

ngly, it
nly pro-
ch be-

-
is
t is at

mmy
t pre-

e read
ge

hey are
Message class < type >: no print method
wheretype is the message type as returned by thedataType function.

virtual int asInt() const;
virtual double asFloat() const;
virtual Complex asComplex() const;

These functions represent conversions of the Message data to an integer, a floating
value, and a complex number, respectively. Usually such conversions do not make s
accordingly, the default implementations generate an error message (using the prot
member functionerrorConvert) and return a zero of the appropriate type. If a conve
sion does make sense, they may be overridden by a method that does the appropria
version. These methods will be used by the MessageParticle class when an attemp
made to read a MessageParticle in a numeric context. One protected member funct
provided:

int errorConvert(const char* cvttype) const;
This function invokesError::abortRun with a message of the form

Message class < msgtype >: invalid conversion tocvttype
wheremsgtype is the type of the Message, andcvttype is the argument.

7.4.3 Class MessageParticle

MessageParticle is a derived type of Particle whose data field is an Envelope; accordi
can transport Message objects. MessageParticle defines no new methods of its own; it o
vides behaviors for the virtual functions defined in class Particle. The most important su
haviors are as follows:

void operator << (const Envelope& env);
This method loads the Message contained inenv into the Envelope contained in the Mes
sageParticle. Since the Envelope assignment operator is used, after execution of th
method bothenv and the MessageParticle refer to the message, so its reference coun
least 2.

void getMessage(const Envelope& env);
This method loads the message contained in the MessageParticle into the Envelopeenv,
and removes the message from the MessageParticle (so that it now contains the du
message). Ifenv previously contained the only reference to some other Message, tha
viously contained Message will be deleted.

void accessMessage(const Envelope& env);
accessMessage is the same asgetMessage except that the message is not removed
from the MessageParticle. It can be used in situations where the same Particle will b
again. We recommend thatgetMessage be used where possible, especially for very lar
message objects, so that they are deleted as soon as possible.

7.5 Example Message types
The kernel provides two simple sample message types for transferring arrays of data. T
Ptolemy Last updated: 10/9/97

7-6 Particles and Messages

f single
 class
mmend
aps un-

or In-

d to
exist
pri-
almost identical except that one holds an array of integers and the other holds an array o
precision floating point data. The array contents live on the heap. Each is derived from
Message. Each provides a public data member that points to the data. As a rule, we reco
against public data members for classes, but an exception was made in this case, perh
wisely. This section will describe the interface of the FloatVecData class. The interface f
tVecData is almost identical. Three constructors are provided:

FloatVecData(int len);
This form creates an uninitialized array of lengthlen in the FloatVecData object. Since
the pointer to the data is public the array may easily be filled in.

FloatVecData(int len ,const float *srcData);
This form creates an array of lengthlen and initializes it withlen elements fromsrc-
Data.

FloatVecData(int len ,const double *srcData);
This form is the same, except that the source data is double precision (it is converte
single precision). This is the only function for which an analogous function does not
in IntVecData (an IntVecData can only be initialized from an integer array). An appro
ate copy constructor, assignment operator, and destructor are defined.

int length() const;

Return the length of the array.

float *data;

Public data member; points to the array. It is permissible to read or assign thelen ele-
ments starting atdata; the effect of altering thedata pointer itself is undefined.

const char* dataType() const;

Returns the string"FloatVecData".

int isA(const char* type) const;
TRUE for type equal to"FloatVecData", otherwise false.

StringList print() const;

Returns a comma-separated list of elements enclosed in curly braces.

Message* clone() const;

Creates an identical copy withnew.
U. C. Berkeley Department of EECS

The Almagest 8-1

wo dif-
ither a
f the
ing to
 to reg-
t) so
is

g.

 in .o
 This

namic
amic

 use.
t “see”

e sym-
evel-

. Code
 linked
ates
le
t. This
ocess
emen-
. With
ently
r not)
hen
Chapter 8. The incremental linker

Authors: Joseph T. Buck
Christopher Hylands

The incremental linker permits user written code to be added to the system at runtime. T
ferent mechanisms are provided, called a temporary link and a permanent link. With e
temporary link or a permanent link, code is linked using the incremental linking facilities o
Unix linker, the new code is read into the Ptolemy executable, and symbols correspond
C++ global constructors are located and called. This means that such code is expected
ister objects on Ptolemy’s known lists (e.g. KnownBlock, KnownState, or KnownTarge
that new classes become usable.Warning: if the executable containing the Linker class
stripped, the incremental linker will not work!

8.1 ld -A style linking vs. dlopen() style linking
There are two ways incremental linking is implemented: “ld -A” and “dlopen()” style linkin

The first type of implementation uses a BSD Sun-style loader with the -A flag to load
files. Usually, binaries that are to be dynamically linked must be built with the -N option.
is the older style of linking present in Ptolemy0.5 and earlier.

The second type of implementation uses the System V Release 4dlopen() call to load in
shared objects (.so files). SunOS4.1.x, Solaris2.x and Irix5.x support this style of dy
linking. In Ptolemy0.6, only the sol2, sol2.cfront, and hppa architectures support dyn
linking of shared objects.

The interface to both styles of linking is very similar, though there are differences.

8.2 Temporary vs. Permanent Incremental Linking
Code that is linked in by the “temporary link” technique does not alter the symbol table in
For that reason, subsequent incremental links, whether temporary or permanent, canno
any code that was linked in by previous temporary links. The advantage is that the sam
bols (for example, a Ptolemy star definition) may be redefined, which is useful in code d
opment, as buggy star definitions can be replaced by valid ones without exiting Ptolemy
that is linked in by the “permanent link” method has the same status as code that was
into the original executable. With “ld -A” style incremental linking, a permanent link cre
or replaces the.pt_symtable file in the directory in which Ptolemy was started. This fi
contains the current symbol table for use by subsequent links, temporary or permanen
file is deleted when the Ptolemy process exits normally. It is left around when the pr
crashes, as it is useful for debugging (as it contains symbols for object files that were incr
tally linked using the permanent method as well as those in the original executable)
dlopen() style incremental linking, we keep track of all the files that have been perman
linked in. After a file has been permanently linked in, each successive link (permanent o
includes all the permanently linking in files. That is, if we permanently link in foo.o, then w
Ptolemy Last updated: 10/9/97

8-2 The incremental linker

o, and

n, we
. This
 file

tly link

licate
. Cur-

 code

ro-

is

k.

e of
style.

rgu-
nix

 as
con-

tion
we link in bar.o, we will generate a shared object file that includes both foo.o and bar.
then calldlopen() on that shared object file. Note that withdlopen() style linking it is pos-
sible to relink in stars that have been permanently linked. When a file is to be linked i
check against the list of permanently linked in file names and remove any duplicates
method of checking will fail if one permanently links in a file, and then links in the same
as a different name, perhaps through the use of symbolic links. That is, if we permanen
in ./foo.o and./bar.o is a link to./foo.o, when we link in./bar.o, we will have
multiple symbols defined, and we will get an error. In other words, we only check for dup
file names, we do not check for duplicate symbols in any files, the loader does this for us
rently eachdlopen() style link generates a temporary shared object in/tmp. If you are doing
a large number ofdlopen() style permanent links, you will have many files in/tmp. We
hope to resolve this potential problem in a later release. Eventually, it would be nice if the
read the value of an optional environment variable, such asTMPDIR.

8.3 Linker public members
static void init(const char* execName);

This function initializes the linker module by telling it where the executable for this p
gram is. For most purposes, passing it the value ofargv[0] passed to themain function
will suffice.

static int linkObj(const char* objName);
Link in a single object module using the temporary link mechanism (this entry point
provided for backward compatibility).

static int multiLink(const char* args , int permanent);
static int multiLink(int argc , char** argv);

Both of these functions give access to the main function for doing an incremental lin
They permit either a temporary or a permanent link of multiple files; flags to the Unix
linker such as-l to specify a library or-L to specify a search directory for libraries are
permitted. For the first form,args are passed as part of a linker command that is
expanded by the Unix shell. A permanent link is performed ifpermanent is true (non-
zero); otherwise a temporary link is performed. The second form is provided for eas
interfacing to the Tcl interpreter, which likes to pass arguments to commands in this
In this case,argv[0] indicates the type of link: if it begins with the characterp, a per-
manent link is performed; otherwise a temporary link is performed. The remaining a
ments are concatenated (separated by spaces) and appear in the argument to the U
linker.

static int isActive();

This function returns TRUE if the linker is currently active (so objects can be marked
dynamically linked by the known list classes). Actually the flag it returns is set while
structors or other functions that have just been linked are being run.

static int enabled();

Returns true if the linker is enabled (it is enabled by callingLinker::init if that func-
tion returns successfully). On platforms that do not support dynamic linking, this func
U. C. Berkeley Department of EECS

The Almagest 8-3

e end

styles:

ced

aded.

is the

ared
nual
any
c-

file
rched

tforms.
,

always returns false (zero).

static const char* imageFileName();

Return the fully-expanded name of the executable image file (set byLinker::init).

static void setDefaultOpts(const char* newValue);
static const char* defaultOpts();

These functions set or return the linker’s default options, a set of flags appended to th
of the command line by all links.

8.4 Linker implementation
For each port of Ptolemy to a particular release, the Linker is implemented in one of two
“ld -A” style or “dlopen()” style. We discuss each style below.

8.4.1 Shared Objects and dlopen() style linking

If a Ptolemy release on a platform supportsdlopen style dynamic linking, then the ptcllink
command can be called with either a.o file or a.so file. If the link ptcl command is passed
a .o file, then a.so file will be generated. If link ptcl command is passed a.so file, then the
.so file will be loaded. If the.so file does not exist, then an error message will be produ
and the link will return. There are several ways to specify the path to a shared object.

1. Using just a file namelink foo.so will not work unless LD_LIBRARY_PATH
includes the directory wherefoo.so resides. The man pages fordlopen() and
ld discuss LD_LIBRARY_PATH Interestingly, usingputenv() to set
LD_LIBRARY_PATH from within ptcl has no effect on the runtime loader.

2. 2If the file name begins with./ , then the current directory is searched.link ./
foo.so should work, as willlink ./mydir/foo.so .

3. If the file name is an absolute path name, then the shared object will be lo
link /tmp/foo.so should work.

4. Dynamic programs can have a run path specified at link time. The run path
path searched at runtime for shared object. (Under Solaris2.3, the-R option told
controls the run path. Under Irix5.2, the-rpath option to ld controls the run
path). If ptcl or pigiRpc has been compiled with a run path built in, and the sh
object is in that path, then the shared object will be found. The Sun Linker Ma
says: “To locate the shared object foo.so.1, the runtime linker will use
LD_LIBRARY_PATH definition presently in effect, followed by any runpath spe
ified during the link-edit of prog and finally, the default location /usr/lib. If the
name had been specified ./foo.so.1, then the runtime linker would have sea
for the file only in the present working directory.”

8.4.2 Porting the Dynamic Linking capability

This section is intended to assist those that attempt to port the Linker module to other pla
The Linker class is implemented in three files:Linker.h, specifying the class interface
Linker.cc, specifying the implementation, andLinker.sysdep.h, specifying all the ma-
Ptolemy Last updated: 10/9/97

8-4 The incremental linker

run-

 of the
must,
 to how
-

com-

p. On
d that

 of the
 form

 link,
ul-
. For
st the
er a
d in
chine dependent parts of the implementation. To turn on debugging, compileLinker.cc with
the DEBUG flag defined. One way to do this would be:

cd $PTOLEMY/obj.$PTARCH/kernel; rm -f Linker.o; make OPTIMIZER=-DDEBUG

The Linker class currently uses “ld -A” style dynamic linking on the Sun4 (Sparc)
ning SunOS4.1 andg++, the Sun4 (Sparc) running SunOS4.1 and Sun’scfront port, DEC-
Stations running Ultrix, HP-PA runningg++ or HP’scfront port. The Linker class currently
uses “dlopen()” style dynamic linking on the Sun4 (Sparc) running Solaris2.4 andg++, the
Sun4 (Sparc) running Solaris2 and Sun’scfront port (SunCC-3.0), the Sun4 (Sparc) run-
ning Solaris2 and Sun’s native C++ compilerCC-4.0, and SGI Indigos running IRIX-5.2 and
g++. The intent is to structure the code in such a way that no#ifdefs appear in
Linker.cc; they should all be inLinker.sysdep.h.

8.4.3 ld -A Style Dynamic Linking

The linker reads all new code into a pre-existing large array, rather than creating blocks
right size withnew, because the right size is not known in advance but a starting location
as a rule, be passed to the loader in advance. This means that there is a wired-in limit
much code can be linked in. The symbolLINK_MEMORY, which is set to one megabyte by de
fault, is easily changed if required. Here are the steps taken by the linker to do its work:

1. Align the memory as required.

2. Form the command line and execute the Unix linker. Only certain flags in the
mand line will be system-dependent.

3. Read in the object file. This is heavily system-dependent.

4. Make the read-in text executable. On most systems this is a do-nothing ste
some platforms (such as HP) it is necessary to flush the instruction cache an
would be done at this point.

5. Invoke constructors in the newly read in code. Constructors are found by use
nm program; the output is parsed to search for constructor symbols, whose
depends on the compiler used.

6. If this is a permanent link, copy the linker output to file.pt_symtable; other-
wise delete it.

8.4.4 dlopen() Style Dynamic Linking

Here’s how we link in an object usingdlopen() style linking.

1. Generate a list of files to be linked in. If we have not yet done a permanent
then the list of files to be linked in will consist of only the files in this link or m
tilink command. If the link is a permanent link, then we save the object name
each successive link, we check the name of the object to be linked in again
list of objects permanently linked for duplicate file names. For each link aft
permanent link, we include the names of all the unique permanently linke
objects in the generation of a temporary shared object file.
U. C. Berkeley Department of EECS

The Almagest 8-5

ur-
.8 has
ot in

p or

. On
Linker
2. Generate a shared object.so file from all the objects to be linked in. The.so file
is created in /tmp.

3. Do adlopen() on the shared object.

4. Most architectures usenm to search for constructors, which are then invoked. C
rently, sol2.cfront does not need to search for, or invoke constructors. gcc-2.5
patches that allow similar functionality, but apparently these patches are n
gcc-2.6.0. Shared libraries in the SVR4 implementation contain optional__init
and__fini functions, called when the library is first connected to (at startu
dlopen()) and when the library is disconnected from (atdlclose() or program
exit), respectively. Some C++ implementations can arrange for these__init and
__fini functions to contain calls to all the global constructors or destructors
platforms where this happens, such as sol2.cfront, there is no need for the
class to explicitly call the constructors, as this will happen automatically.
Ptolemy Last updated: 10/9/97

8-6 The incremental linker
U. C. Berkeley Department of EECS

The Almagest 9-1

 one in-
 state

he ini-
 char-
 integer
ibutes,

 you can-

he con-
tes to a
 bit-

tate.
tate.

ated
o

Chapter 9. Parameters and States

Authors: Joseph T. Buck

Other Contributors: Neil Smyth

A State is a data structure associated with a block, used to remember data values from
vocation to the next. For example, the gain of an automatic gain controller is a state. A
need not be dynamic; for instance, the gain of fixed amplifier is a state. A parameter is t
tial value of a state. A State actually has two values: the initial value, which is always a
acter string, and a current value, whose type is different for each derived class of State:
for IntState, an array of real values for FloatArrayState, etc. In addition, states have attr
which represent logical properties the state either has or does not have.

9.1 Class State
Class State is derived from class NamedObj. The State base class is an abstract class;
not create a plain State. The base class contains the initial value, which is always aconst
char* ; the derived classes are expected to provide current values of appropriate type. T
structor for class State sets the initial value to a null pointer, and sets the state’s attribu
value determined by the constant AB_DEFAULT, which is defined in “State.h” to be the
wise or of AB_CONST and AB_SETTABLE. The destructor does nothing extra.

9.1.1 State public members
State& setState(const char* stateName , Block* parent ,
 const char* initValue , const char* desc = NULL);

This function sets the name, parent, initial value, and optionally the descriptor for a s
The character strings representing the initial value and descriptor must outlive the S

State& setState(const char* stateName , Block* parent ,
 const char* initValue , const char* desc ,
 Attribute attr);

This function is the same as the othersetState, but it also sets attributes for the state.
The Attribute object represents a set of attribute bits to turn on or off.

void setInitValue(const char* valueString);
This function sets the initial value tovalueString. This string must outlive the State.

const char* initValue () const;

Return the initial value.

virtual const char* type() const = 0;

Return the type name (for use in user interfaces, for example). When states are cre
dynamically (by theKnownState or InterpGalaxy class), it is this name that is used t
specify the type.
Ptolemy Last updated: 10/9/97

9-2 Parameters and States

turns

turns

ni-
 the

ir-

e

r

class

t parser
rseTo-
 a token
r value,
virtual int size() const;

Return the size (number of distinct values) in the state. The default implementation re
1. Array state types will return the number of elements.

virtual int isArray() const;

Return TRUE if this state is an array, false otherwise. The default implementation re
false.

virtual void initialize() = 0;

Initialize the state. Theinitialize function for a state is responsible for parsing the i
tial value string and setting the current value appropriately; errors are signaled using
Error::abortRun mechanism.

virtual StringList currentValue() const = 0;

Return a string representation of the current value.

void setCurrentValue(const char* newval);
Modify the current value, in a type-independent way. Notice that this function is not v
tual. It exploits the semantics ofinitialize to set the current value using other func-
tions; the initial value is not modified (it is saved and restored).

virtual State* clone() const = 0;

Derived state classes override this method to create an identical object to the one th
method is called on.

StringList print(int verbose) const;
Output all info. This is NOT redefined for each type of state.

bitWord attributes() const;

Return my attribute bits.

bitWord setAttributes(const Attribute& attr);
bitWord clearAttributes(const Attribute& attr);

Set or clear attributes.

const State* lookup(const char* name, Block* b);

This method searches for a state namedname in Blockb or one of its ancestors, and eithe
returns it or a null pointer if not found.

int isA(const char*) const;

This function returns true when given the name of the class or the name of any base

9.1.2 The State parser and protected members

Most of the protected interface in the State class consists of a simple recursive-descen
for parsing integer and floating expressions that appear in the initial value string. The Pa
ken class represents tokens for this parser. It contains a token type (an integer code) and
value, which is a union that represents either a character value, a string value, an intege
U. C. Berkeley Department of EECS

The Almagest 9-3

es an-
tokens.

ses use
ment

aring in

izer.
hen it
fer-
 capa-
n it
ted by

, sends
valua-
xter-

efore,
 the

 is
ed to
 of
all
er are
rent gal-

en
rent
 of an

e state
a double value, a Complex value, or a State value (for use when the initializer referenc
other state). Token types are equal to the ASCII character value for single-character
Other possible token values are:

 • T_EOF for end of file,

 • T_ERROR for error,

 • T_Float for a floating value,

 • T_Int for an integer value,

 • T_ID for a reference to a state, and

 • T_STRING for a string value.

For most of these, the token value holds the appropriate value. Most derived State clas
this parser to provide uniformity of syntax and error reporting; however, it is not a require
to use it. DerivedState classes are expected to associate aTokenizer object with their initial
value string. The functions provided here can then be used to parse expressions appe
that string.

ParseToken getParseToken(Tokenizer& tok , int stateType = T_Floa t);
This function obtains the next token from the input stream associated with the Token
If there is a pushback token, that token is returned instead. If it receives a ’<’ token, t
assumes that the next string delimited by white space is a file name. It substitutes re
ences to other parameters in the filename and then uses the Tokenizer’s include file
bility to insert the contents of the file into the input stream. If it receives a ’!’ token, the
assumes that that the next string delimited by white space is a command to be evalua
an external interpreter. It substitutes references to other parameters in the command
the resulting string to the interpreter defined by interp member described above for e
tion, and inserts the result into the input stream. The information both read from an e
nal file and returned from an external interpreter is also parsed by this function. Ther
the external interpreter can perform both numeric and symbolic computations. When
parser hits the end of the input stream, it returns T_EOF.

The characters in the set[]+*-/()^ are considered to be special and the lexical value
equal to the character value. Integer and floating values are recognized and evaluat
produce either T_Int or T_Float tokens. However, the decision is based on the value
stateType; if it is T_Float, all numeric values are returned as T_Float; if it is T_Int,
numeric values are returned as T_Int. Names that take the form of a C or C++ identifi
assumed to be names of states defined at a higher level (states belonging to the pa
axy or some ancestor galaxy). They are searched for usinglookup; if not found, an error
is reported usingparseError and an error token is returned. If a State is found, a tok
of type T_ID is returned if it is an array state or COMPLEX; otherwise the state’s cur
value is substituted and reparsed as a token. This means, for example, that a name
IntState will be replaced with a T_Int token with the correct value.

void parseError (const char* part1 , const char* part2 = "");

This method produces an appropriately formatted error message with the name of th
and the arguments and callsError::abortRun.
Ptolemy Last updated: 10/9/97

9-4 Parameters and States

n
, the

xpres-
er a
r a

 fol-
 reads

ed

 token
ROR.

y the
preter
.

n curly

cl.

r.
static ParseToken pushback();
static void setPushback(const ParseToken&);
static void clearPushback();

These functions manipulate the pushback token, for use in parsing. The first functio
returns the current pushback token, the second sets it to be a copy of the argument
third clears it. There is only one such token, so the state parser is not reentrant.

ParseToken evalIntExpression(Tokenizer& lexer);
ParseToken evalIntTerm(Tokenizer& lexer);
ParseToken evalIntFactor(Tokenizer& lexer);
ParseToken evalIntAtom(Tokenizer& lexer);

These four functions implement a simple recursive-descent expression parser. An e
sion is either a term or a series of terms with intervening ’+’ or ’-’ signs. A term is eith
factor or a series of factors with interventing ’*’ or ’/’ signs. A factor is either an atom o
series of atoms with intervening ’^’ signs for exponentiation. (Note, C fans! ^ means expo-
nentiation, not exclusive-or!). An atom is any number of optional unary minus signs,
lowed either by a parenthesized expression or a T_Int token. If any of these methods
too far, the pushback token is used. AllgetParseToken calls usestateType T_Int, so
any floating values in the expression are truncated to integer. The token types return
from each of these methods will be one of T_Int, T_EOF, or T_ERROR.

ParseToken evalFloatExpression(Tokenizer& lexer);
ParseToken evalFloatTerm(Tokenizer& lexer);
ParseToken evalFloatFactor(Tokenizer& lexer);
ParseToken evalFloatAtom(Tokenizer& lexer);

These functions have the identical structure as the corresponding Int functions. The
types returned from each of these methods will be one of T_Float, T_EOF, or T_ER

InvokeInterp interp;

An external interpreter for evaluating commands in a parameter definition preceded b
! character and surrounded in quotes. By default, no interpreter is defined. If the inter
were defined as the Tcl interpreter, then! "expr abs(cos(1.0))" would compute 0.540302
Other parameters can be referenced as usual by using curly braces, e.g.! "expr
abs(cos({gain}))".

StringList parseFileName(const char*);

This method parses filenames that have been inherited from state values enclosed i
braces.

StringList parseNestedExpression(const char* expression);

This method parses nested sub-expressions appearing in theexpression , e.g. {{{Filter-
TapFile}/{File}}}, that might be passed off to another interpreter for evaluation, e.g. T

Int mergeFileContents(Tokenizer& lexer , char* token);

This method treats the next token on thelexer as a filename.

Int sendToInterpreter(Tokenizer& lexer , char* token);

This method sends the next token on thelexer to be evaluated by an external interprete
U. C. Berkeley Department of EECS

The Almagest 9-5

al-
nother
rovid-
lso de-

r
e
ument

b-

 for ini-
tor that
g for a
a float-

 third

g
ds the
 by the

refix
ing val-

e. Class

to
Int getParameterName(Tokenizer& lexer , char* token);

This method looks for parameters of the form{name}.

9.2 Types of states

9.2.1 Class IntState and class FloatState

Class IntState , derived fromState , has an integer current value. Itsinitialize() func-
tion uses theevalIntExpression function to read an integer expression from the initial v
ue string. If successful, it attempts to read another token from the string; if there is a
token, it reports the error “extra text after valid expression”. An assignment operator is p
ed that accepts an integer value and loads it into the current value. A cast to integer is a
fined for accessing the current value. The virtual functioncurrentValue is overloaded to
return a printed version of the current value. In addition to thesetInitValue from class
State, a second form is provided that takes an integer argument. Standard overrides foisA,
className, andclone are provided. Class FloatState is almost identical to class IntStat
except that its data field is a double precision value; where IntState functions have an arg
or return value ofint, FloatState has a corresponding argument or return value ofdouble.
Both are generated from the same pseudo-template files. Thetype() function for IntState re-
turns"INT". For FloatState,"FLOAT" is returned. For both implementations, a prototype o
ject is added to the KnownState list.

9.2.2 Class ComplexState

ComplexState is much like FloatState and IntState, except in the expressions it accepts
tial values. Its data member is Complex and it accordingly defines an assignment opera
takes a complex value and a conversion operator that returns one. The initial value strin
ComplexState takes one of three forms: it may be the name of a galaxy ComplexState,
ing expression (of the form accepted byState::evalFloatExpression), or a string of
the form(floatexp1 , floatexp2) where bothfloatexp1 andfloatexp2 are float-
ing expressions. For the second form, the imaginary part will always be zero. For the
form, the first expression gives the real part and the second gives the imaginary part.

9.2.3 Class StringState

A StringState’s current value is a string (more correctly, of typeconst char*). The current
value is created by theinitialize() function by scanning the initial value string. This strin
is copied literally, except that curly braces are special. If a pair of curly braces surroun
name of a galaxy state, the printed representation of that state’s current value (returned
currentValue function) is substituted. To get a literal curly brace in the current value, p
it with a backslash. Class StringState defines assignment operators so that different str
ues can be copied to the current value; the value is copied withsaveString and deleted by
the destructor.

9.2.4 Numeric array states

Classes IntArrayState and FloatArrayState are produced from the same pseudo-templat
ComplexArrayState has a very similar design. All returnTRUE to isArray, provide an array
element selection operator (operator[](int)), and an operator that converts the state in
Ptolemy Last updated: 10/9/97

9-6 Parameters and States

r Floa-
r to get
gle

me type
lue, a
 in pa-

 integer
d Com-
rray-
ion (an

 White

 space.
yState
rray-
r mod-
a pointer to the first element of its data (much like arrays in C). The expression parser fo
tArrayState accepts a series of “subarray expressions”, which are concatenated togethe
the current value wheninitialize() is called. Subarray expressions may specify a sin
element, some number of copies of a single element, or a galaxy array state of the sa
(another FloatArrayState). A single element specifier may either be a floating point va
scalar (integer or floating) galaxy state name, or a general floating expression enclosed
rentheses. A number of copies of this single element can be specified by appending an
expression enclosed in square brackets. The expression parsers for IntArrayState an
plexArrayState differ only that where FloatArrayState wants a floating expression, IntA
State wants an integer expression and ComplexArrayState wants a complex express
expression suitable for initializing a ComplexState).

9.2.5 Class StringArrayState

As its name suggests, the current value for a StringArrayState is an array of strings.
space in the initial value string separates “words”, and Each word is assigned byinitial-
ize() into a separate array element. Quotes can be use to permit “words” to have white
Current values of galaxy states can be converted into single elements of the StringArra
value by surrounding their names with curly braces in the initial value. Galaxy StringA
State names will be translated into a series of values. There is currently no provision fo
ifying the current value of a StringArrayState other than calling ofinitialize to parse the
current value string.
U. C. Berkeley Department of EECS

The Almagest 10-1

nly the
ntaining
l rule,
me

k ob-
func-

or
re
sed

es

cted
all to
-
eeps
 to
tion,
is also
ntally
ept
nown-

n
 com-
Chapter 10. Support for known lists
and such

Authors: Joseph T. Buck

Other Contributors: Neil Smyth

Ptolemy is an extensible system, and in quite a few places it must create objects given o
name of that object. There are therefore several classes that are responsible for mai
lists: the list of all known domains, of all known blocks, states, targets, etc. As a genera
these classes support aclone or makeNew method to create a new object based on its na
(you cannot clone a domain, however).

10.1 Class KnownBlock
The KnownBlock class is responsible for keeping a master list of all known types of Bloc
jects in the system. All member functions of KnownBlock are static; the only non-static
tion of KnownBlock is the constructor. The KnownBlock constructor has the form

KnownBlock(Block& block , const char* name);

The only reason for constructing a KnownBlock object is for the side effects; the side
effect is to addblock to the known block list for its domain under the namename, using
addEntry. The reason for using a constructor for this purpose is that constructors f
global objects are called before execution of the main program; constructors therefo
serve as a mechanism for execution of arbitrary initialization code for a module (as u
here, “module” is an object file). Henceptlang, the Ptolemy star preprocessor, generat
code like the following for star definitions:

static XXXMyClass proto;
static KnownBlock entry(proto,"MyClass");

This code adds a prototype entry of the class to the known list. Dynamically constru
block types, such as interpreted galaxies, are added to the known list with a direct c
KnownBlock::addEntry. These cases should always supply an appropriate definition
source string so that conflicting block type definitions can be detected. KnownBlock k
track of the source of the definition of every known block type. This allows compile.c
determine whether an Oct facet needs to be recompiled (without the source informa
different facets that have the same base name could be mistaken for each other). Th
allows us to generate some helpful warning messages when a block name is accide
re-used. The source location information is currently rather crude for everything exc
Oct facets, but that’s good enough to generate a useful warning in nearly all cases. K
Block assigns a sequential serial number to each definition or redefinition of a know
block type. This can be used, for example, to determine whether a galaxy has been
Ptolemy Last updated: 10/9/97

10-2 Support for known lists and such

h

 defi-

 a
 string

ull

, and
 a

s,
ese,

,
g an

epa-

et to

d
ain.
piled more recently than any of its constituent blocks.

static void addEntry (Block & block , const char* name, int onHeap, const
char* definitionSource);

This function actually adds the block to the list. Separate lists are maintained for eac
domain; the block is added to the list corresponding to ‘block.domain() ’. If onHeap is
true, the block will be destroyed when the entry is removed or replaced from the list.
nitionSource should beNULL for any block type defined by C++ code (this is what is
passed by the KnownBlock constructor). It should be a hashstring’ed path name for
block defined by an identifiable file (such as an Oct facet), or a special case constant
for other cases such as the ptcldefgalaxy command.

static const Block* find (const char* name, const char*dom);
The find method returns a pointer the appropriate block in the specified domain. A n
pointer is returned if no match is found.

static Block* clone (const char* name, const char*dom);
static Block* makeNew (const char* name, const char*dom);

Theclone method takes a string, finds the appropriate block in the specified domain
returns a clone of that block (theclone method is called on the block. This method, as
rule, generates a duplicate of the block. ThemakeNew function is similar except thatmak-
eNew is called on the found block. As a rule,makeNew returns an object of the same clas
but with default initializations (for example, with default state values). For either of th
an error message is generated (withError::abortRun) and a null pointer is returned if
there is no match. To avoid a crash in the event of a self-referential galaxy definition
recursive clone or makeNew attempts are detected, and are terminated by generatin
error message and returning a null pointer.

static StringList nameList (const char* domain);
Return the names of known blocks in the given domain (second form). Names are s
rated by newline characters.

static const char* defaultDomain ();

Returns the default domain name. This is not used internally for anything; it is just s
the first domain seen during the building of known lists.

static int setDefaultDomain (const char* newval);

Set the default domain name. ReturnFALSE if the specified value is not a valid domain.

static int validDomain (const char* newval);

ReturnTRUE if the given name is a valid domain.

static int isDynamic (const char* type , const char* dom);

Return TRUE if the named block is dynamically linked. There is an iterator associate
with KnownBlock, called KnownBlockIter. It takes as an argument the name of a dom
The argument may be omitted, in which case the default domain is used. Itsnext function
returns the typeconst Block* ; it steps through the blocks on the known list for that
U. C. Berkeley Department of EECS

The Almagest 10-3

 its

 (or

 keeps
ne per
tor for

 of

 no

t, and

d (with

ompat-
domain.

static int isDefined (const char* type , const char* dom,
const char* definitionSource);

If there is a known block of the given name and domain, return TRUE and pass back
definition source string.

static long serialNumber (const char* name, const char* dom);

Look up a KnownBlock definition by name and domain, and return its serial number.
Returns 0 iff no matching definition exists.

static long serialNumber (Block& block);
Given a block, find the matching KnownBlock definition, and return its serial number
0 if no matching definition exists).

10.2 Class KnownTarget
The KnownTarget class keeps track of targets in much the same way that KnownBlock
track of blocks. There are some differences: there is only a single list of targets, not o
domain as for blocks. The constructor works exactly the same way that the construc
KnownBlock works; the code

static MyTarget proto(args);
static KnownTarget entry(proto,"MyTarget");

adds the prototype instance to the known list with a call toaddEntry.

static void addEntry (Target&target , const char*name, int onHeap);

This function actually adds the Target to the list. IfonHeap is true, the target will be
destroyed when the entry is removed or replaced from the list. There is only one list
Targets.

static const Target* find (const char* name);
The find method returns a pointer the appropriate target. A null pointer is returned if
match is found.

static Target* clone (const char* name);
Theclone method takes a string, finds the appropriate target on the known target lis
returns a clone of that target (thecloneTarget method is called on the target). This
method, as a rule, generates a duplicate of the target. An error message is generate
Error::abortRun) and a null pointer is returned if there is no match.

static int getList (const Block& b, const char** names, int nMax);

This function returns a list of names of targets that are compatible with the Blockb. The
return value gives the number of matches. Thenames array can holdnMax strings; if
there are more, only the firstnMax are returned.

static int getList (const char* dom, const char** names, int nMax);

This function is the same as above, except that it returns names of targets that are c
Ptolemy Last updated: 10/9/97

10-4 Support for known lists and such

erator
n tar-

st.

lar do-
domain.
 object.
 the list
r each

he

d

le for
ible with stars of a particular domain.

static int isDynamic (const char* type);
Return true if there is a target on the known list namedtype that is dynamically linked;
otherwise return false.

static const char* defaultName (const char* dom = 0);
Return the default target name for a domain (default: current domain). There is an it
associated with KnownTarget, called KnownTargetIter. Since there is only one know
get list, it is unusual for an iterator in that it takes no argument for its constructor. Itsnext
function returns the typeconst Target * ; it steps through the targets on the known li

10.3 Class Domain
The Domain class represents the information that Ptolemy needs to know about a particu
main so that it can create galaxies, wormholes, nodes, event horizons, and such for that
For each domain, the designer creates a derived class of Domain and one prototype
Thus the Domain class has two main parts: a static interface, which manages access to
of Domain objects, and a set of virtual functions, which provides the standard interface fo
domain to describe its requirements.

10.3.1 Domain virtual functions
virtual Star& newWorm (Galaxy& innerGal , Target* innerTarget = 0);

This function creates a new wormhole with the given inner galaxy and inner target. T
default implementation returns an error. XXXDomain might override this as follows:

Star& XXXDomain::newWorm(Galaxy& innerGal,Target* innerTar-
get) {
 LOG_NEW; return *new XXXWormhole(innerGal,innerTarget);
}

virtual EventHorizon& newFrom();
virtual EventHorizon& newTo();

These functions create event horizon objects to represent the XXXfromUniversal an
XXXtoUniversal functions. The default implementations return an error. XXXDomain
might override these as

EventHorizon& XXXDomain::newFrom() {
 LOG_NEW; return *new XXXfromUniversal;
}
EventHorizon& XXXDomain::newTo() {
 LOG_NEW; return *new XXXtoUniversal;
}

virtual Geodesic& newGeo(int multi =FALSE);

This function creates a new geodesic for point-to-point connection or a “node” suitab
multi-point connections.

virtual int isGalWorm();

This function returnsFALSE by default. If overridden by a function that returnsTRUE, a
U. C. Berkeley Department of EECS

The Almagest 10-5

the sys-
clared
 lists,

ee

 state

ist.
no

r null
wormhole will be created around every galaxy for this domain.

virtual const char* requiredTarget();

If non-null, this method returns requirement for targets for use with this domain.

10.4 Class KnownState
KnownState manages two lists of states, one to represent the types of states known to
tem (integer, string, complex, array of floating, etc.), and one to represent certain prede
global states. It is very much like KnownBlock in internal structure. Since it manages two
there are two kinds of constructors.

KnownState (State &state , const char* name);

This constructor adds an entry to the state type list. For example,

static IntState proto;
static KnownState entry(proto,"INT");

permits IntStates to be produced by cloning. Thetype argument must be in upper case,
because of the wayfind works (see below). The second type of constructor takes thr
arguments:

KnownState (State &state , const char* name, const char* value);

This constructor permits names to be added to the global state symbol list, for use in
expressions. For example, we have

static FloatState pi;
KnownState k_pi(pi,"PI","3.14159265358979323846");

static const State* find (const char* type);
The find method returns a pointer the appropriate prototype state in the state type l
The argument is always changed to upper case. A null pointer is returned if there is
match.

static const State* lookup (const char* name);
The lookup method returns a pointer to the appropriate state in the global state list, o
if there is no match.

static State* clone (const char* type);

The clone method takes a string, finds the appropriate state usingfind, and returns a
clone of that block. A null pointer is returned if there is no match, andError::error is
also called.

static StringList nameList();

Return the names of all the known state types, separated by newlines.

static int nKnown();

Return the number of known states.
Ptolemy Last updated: 10/9/97

10-6 Support for known lists and such
U. C. Berkeley Department of EECS

The Almagest 11-1

used

as a
oper-
o the
ion

he

d
o type

uctors:
ard

er
Chapter 11. I/O classes

Authors: Joseph T. Buck

Other Contributors: Bilung Lee

11.1 StringList, a kind of String class
ClassStringList provides a mechanism for organizing a list of strings. It can also be
to construct strings of unbounded size, but the classInfString is preferred for this. It is pri-
vately derived fromSequentialList . Its internal implementation is as a list ofchar*
strings, each on the heap. AStringList object can be treated either as a single string or
list of strings; the individual substrings retain their separate identity until the conversion
ator to typeconst char* is invoked. There are also operators that add numeric values t
StringList ; there is only one format available for such additions. WARNING: if a funct
or expression returns aStringList , and that value is not assigned to aStringList variable
or reference, and the(const char*) cast is used, it is possible (likely under g++) that t
StringList temporary will be destroyed too soon, leaving theconst char* pointer point-
ing to garbage. Always assign a temporaryStringList to aStringList variable or refer-
ence before using theconst char* conversion. Thus, instead of

function_name(xxx ,(const char*) functionReturningStringList (), yyy);

one should use

StringList temp_name = (const char*) functionReturningStringList ();
function_name(xxx , temp_name, yyy);

This includes code like

strcpy(destBuf , functionReturningStringList ());

which uses theconst char* conversion implicitly.

11.1.1 StringList constructors and assignment operators

The default constructor makes an emptyStringList . There is also a copy constructor an
five single-argument constructors that can function as conversions from other types t
StringList ; they take arguments of the typeschar, const char * , int, double, and
unsigned int . There are also six assignment operators corresponding to these constr
one that takes aconst StringList& argument and also one for each of the five stand
types:char, const char * , int, double, andunsigned int . The resulting object has
one piece, unless initialized from anotherStringList in which case it has the same numb
of pieces.

11.1.2 Adding to StringLists

There are six functions that can add a printed representation of an argument to aStringList :
one each for arguments of typeconst StringList& , char, const char * , int, dou-
Ptolemy Last updated: 10/9/97

11-2 I/O classes

uiva-

ard

s, a

re

-
c-

best

rning
-

tion
ble, andunsigned int . In each case, the function can be accessed in either of two eq
lent ways:

StringList& operator += (type arg);
StringList& operator << (type arg);

The second “stream form” is considered preferable; the “+=” form is there for backw
compatibility. If aStringList object is added, each piece of the addedStringList is
added separately (boundaries between pieces are preserved); for the other five form
single piece is added.

11.1.3 StringList information functions
const char* head() const;

Return the first substring on the list (the first “piece”). A null pointer is returned if the
are none.

int length() const;

Return the length in characters.

int numPieces() const;

Return the number of substrings in theStringList .

11.1.4 StringList conversion to const char *
operator const char* ();

This function joins all the substrings in theStringList into a single piece, so that after
wardsnumPieces will return 1. A null pointer is always returned if there are no chara
ters. Warning: if this function is called on a temporaryStringList , it is possible that the
compiler will delete theStringList object before the last use of the returnedconst
char * pointer. The result is that the pointer may wind up pointing to garbage. The
way to work around such problems is to make sure that anyStringList object “has a
name” before this conversion is applied to it; e.g., assign the results of functions retu
StringList objects to localStringList variables or references before trying to con
vert them.

char* newCopy() const;

This function makes a copy of theStringList ’s text in a single piece as achar* in
dynamic memory. The object itself is not modified. The caller is responsible for dele
of the returned text.

11.1.5 StringList destruction and zeroing
void initialize();

This function deallocates all pieces of theStringList and changes it to an empty
StringList .

~StringList();

The destructor calls theinitialize function.
U. C. Berkeley Department of EECS

The Almagest 11-3

ive use

es a
ce. As
nd. Upon
 that
 array
anged,

o-

d-

ix

ng to
of
11.1.6 Class StringListIter

ClassStringListIter is a standard iterator that operates onStringLists . Its next()
function returns a pointer of typeconst char* to the next substring of theStringList . It
is important to know that the operation of converting aStringList to aconst char* string
joins all the substrings into a single string, so that operation should be avoided if extens
of StringListIter is planned.

11.2 InfString, a class supporting unbounded strings
ClassInfString provides a mechanism for building strings of unbounded size. It provid
subset of the functions in a typical C++ String class. Strings can be built up piece by pie
segments are added, they are copied, so the caller need not keep the segments arou
casting to(char*), the strings are collapsed into one continuous string, and a pointer to
string is returned. The calling function can treat this as an ordinary pointer to an ordinary
of characters, and can modify the characters. But the length of the string should not be ch
nor should the string be deleted. TheInfString destructor is responsible for freeing the all
cated memory.InfString is publically derived fromStringList , adding only the cast
char* . Its internal implementation is as a list ofchar* strings, each on the heap. The indivi
ual substrings retain their separate identity until the conversion cast to typechar* is invoked,
although if access to the individual strings is needed, thenStringList should be used. There
are also operators that add numeric values to theStringList ; there is only one format avail-
able for each such addition. WARNING: if a function or expression returns anInfString ,
and that value is not assigned to anInfString variable or reference, and the(char*) cast is
used, it is possible (likely under g++) that theInfString temporary will be destroyed too
soon, leaving thechar* pointer pointing to garbage. Always assign temporaryInfString to
InfString variables or references before using thechar* conversion. Thus, instead of

function_name(xxx ,(char*) functionReturningInfString (), yyy);

one should use

InfString temp_name = (char*) functionReturningInfString ();
function_name(xxx , temp_name, yyy);

This includes code like

strcpy(destBuf , functionReturningInfString ());

which uses thechar* conversion implicitly.

11.2.1 InfString constructors and assignment operators

The default constructor makes an emptyInfString . There is also a copy constructor and s
single-argument constructors that can function as conversions from other types to typeInf-
String ; they take arguments of the typeschar, const char* , int, double, unsigned
int , andconst StringList& . There are also seven assignment operators correspondi
these constructors: one that takes aconst InfString& argument and also one for each
the six standard types:char, const char* , int, double, unsigned int , andconst
StringList& .
Ptolemy Last updated: 10/9/97

11-4 I/O classes

fString:

 ei-

ard

s, a

ters.

.

rning
t

 string
11.2.2 Adding to InfStrings

There are seven functions that can add a printed representation of an argument to a In
one each for arguments of typeconst InfString& , char, const char* , int, double,
unsigned int , andconst StringList& . In each case, the function can be accessed in
ther of two equivalent ways:

InfString& operator += (type arg);
InfString& operator << (type arg);

The second “stream form” is considered preferable; the “+=” form is there for backw
compatibility. If aInfString object is added, each piece of the addedInfString is
added separately (boundaries between pieces are preserved); for the other five form
single piece is added.

11.2.3 InfString information functions
int length() const;

Return the length in characters.

11.2.4 InfString conversion to char *
operator char* ();

This function joins all the substrings in theInfString into a single piece, a returns a
pointer to the resulting string. A null pointer is always returned if there are no charac
Warning: as pointed out above, if this function is called on a temporaryInfString , it is
possible that the compiler will delete theInfString object before the last use of the
returnedchar* pointer. The result is that the pointer may wind up pointing to garbage
The best work-around for such problems is to make sure that anyInfString object “has
a name” before this conversion is applied to it; e.g. assign the results of functions retu
InfString objects to localInfString variables or references before trying to conver
them.

char* newCopy() const;

This function makes a copy of theInfString ’s text in a single piece as achar* in
dynamic memory. TheInfString object itself is not modified. This is useful when the
caller wishes to be responsible for deletion of the returned text.

11.2.5 InfString destruction and zeroing
void initialize();

This function deallocates all pieces of theInfString and changes it to an emptyInf-
String .

~InfString();

The destructor calls theinitialize function.

11.2.6 Class InfStringIter

ClassInfStringIter is a standard iterator that operates onInfStrings . However, theIn-
fString class is not intended for use when access to the individual components of the
is desired. UseStringList for this.
U. C. Berkeley Department of EECS

The Almagest 11-5

kens.
ties. It
ace and
 strings
xical

ition of

,

ctor
ion of

.

w:
ith

ops
11.3 Tokenizer, a simple lexical analyzer class
TheTokenizer class is designed to accept input for a string or file and break it up into to
It is similar to the standard istream class in this regard, but it has some additional facili
permits character classes to be defined to specify that certain characters are white sp
others are “special” and should be returned as single-character tokens; it permits quoted
to override this, and it has a file inclusion facility. In short, it is a simple, reconfigurable le
analyzer.Tokenizer has a public const data member nameddefWhite that contains the de-
fault white space characters: space, newline, and tab. It is possible to change the defin
white space for a particular constructor.

11.3.1 Initializing Tokenizer objects

Tokenizer provides three different constructors:

Tokenizer();

The default constructor creates aTokenizer that reads from the standard input stream
cin. Its special characters are simply \key (and \key).

Tokenizer(istream& input ,const char* spec ,
 const char* w = defWhite);

This constructor creates aTokenizer that reads from the stream named byinput. The
other arguments specify the special characters and the white space characters.

Tokenizer(const char* buffer ,const char* spec ,
 const char* w = defWhite);

This constructor creates aTokenizer that reads from the null-terminated string in
buffer. Tokenizer ’s destructor closes any include files associated with the constru
and deletes associated internal storage. The following operations change the definit
white space and of special characters, respectively:

const char* setWhite(const char* w);
const char* setSpecial(const char* s);

In each case, the old value is returned. By default, the line comment character forToken-
izer is #. It can be changed by

char setCommentChar(char n);

Use an argument of 0 to disable the feature. The old comment character is returned

11.3.2 Reading from Tokenizers

The next operation is the basic mechanism for reading tokens from theTokenizer :

Tokenizer& operator >> (char* pBuffer);
HerepBuffer points to a character buffer that reads the token. There is a design fla
there isn’t a way to give a maximum buffer length, so overflow is a risk. By analogy w
streams, the following operation is provided:

operator void*();

It returns null ifEOF has already been reached and non-null otherwise. This permits lo
Ptolemy Last updated: 10/9/97

11-6 I/O classes

t line.

 of in-
eth-

ses

 file-

e name

e iden-
like

Tokenizer tin;
while (tin) { ... do stuff ... }
int eof() const;

Returns true if the end of file or end of input has been reached on theTokenizer . It is
possible that there is nothing left in the input but write space, so in many situationsskip-
white should be called before making this test.

void skipwhite();

Skip white space in the input.

void flush();

If in an include file, the file is closed. If at the top level, discard the rest of the curren

11.3.3 Tokenizer include files

Tokenizer can use include files, and can nest them to any depth. It maintains a stack
clude files, and asEOF is reached in each file, it is closed and popped off of the stack. The m
od

int fromFile(const char* name);
opens a new file and theTokenizer will then read from that. When that file ends,
Tokenizer will continue reading from the current point in the current file.

const char* current_file() const;
int current_line() const;

These methods report on the file name and line number whereTokenizer is currently
reading from. This information is maintained for include files. At the top level,
current_file returns a null pointer, butcurrent_line returns one more than the
number of line feeds seen so far.

int readingFromFile() const;

Returns true (1) if theTokenizer is reading from an include file, false (0) if not.

11.4 pt_ifstream and pt_ofstream: augmented fstream classes
The classespt_ifstream andpt_ofstream are derived from the standard stream clas
ifstream andofstream , respectively. They are defined in the header filept_fstream.h.
They add the following features: First, certain special “filenames” are recognized. If the
name used in the constructor or anopen call iscin>, cout>, cerr>, or clog> (the angle
brackets must be part of the string), then the corresponding standard stream of the sam
is used for input (pt_ifstream) or output (pt_ofstream). In addition, C standard I/O fans
can specifystdin>, stdout>, or stderr> as well. Second, the PtolemyexpandPath-
Name is applied to the filename before it is opened, permitting it to start with~user or $VAR.
Finally, if a failure occurs when the file is opened,Error::abortRun is called with an ap-
propriate error message, including the Unix error condition. Otherwise these classes ar
tical to the standard ifstream and ofstream classes and can be used as replacements.
U. C. Berkeley Department of EECS

The Almagest 11-7

-
n

m and

l

, and

1, 2,

e

11.5 XGraph, an interface to the xgraph program
TheXGraph class provides an interface for thexgraph program for plotting data on an X win
dow system display. The modifiedxgraph program provided with the Ptolemy distributio
should be used, not the contributed version from the X11R5 tape. The constructor forXGraph
does not completely initialize the object; initialization is completed by theinitialize()
method:

void initialize(Block* parent , int noGraphs ,
 const char* options , const char* title ,
 const char* saveFile = 0, int ignore = 0);

Theparent argument is the name of aBlock that is associated with theXGraph object;
thisBlock is used inError::abortRun messages to report errors.noGraphs specifies
the number of data sets that the graph will contain. Each data set is a separate strea
is plotted in a different color (a different line style for B/W displays).options is a series
of command line options that will be passed unmodified to thexgraph program. It is sub-
ject to expansion by the Unix shell.title is the title for the graph; it can contain specia
characters (it isnot subjected to expansion by the Unix shell).saveFile is the name of a
file to save the graph data into, in ASCII form. If it is not given, the data are not saved
a faster binary format is used.ignore specifies the number of initial points to ignore from
each data set.

void setIgnore(int n);

Reset the “ignore” parameter ton.

void addPoint(float y);
Add a single point to the first data set whose X value is automatically generated (0,
3... on successive calls) and whose Y value isy.

void addPoint(float x,float y);

Add the point (x, y) to the first data set.

void addPoint(int dataSet ,float x,float y);

Add the point (x, y) to the data set indicated bydataSet. Data sets start with 1.

void newTrace(int dataSet = 1);

Start a new trace for the nth dataset. This means that there will be no connecting lin
between the last point plotted and the next point plotted.

void terminate();

This function flushes the data out to disk, closes the files, and invokes thexgraph pro-
gram. If the destructor is called beforeterminate, it will close and delete the temporary
files.

11.6 Histogram classes
The Histogram class accepts a stream of data and accumulates a histogram. TheXHisto-
gram class uses aHistogram to collect the data and anXGraph to display it.
Ptolemy Last updated: 10/9/97

11-8 I/O classes

iples
ever,

m.

 0 to

 meth-

the
11.6.1 Class Histogram

TheHistogram class accumulates data in a histogram. Its constructor is as follows:

Histogram(double width = 1.0, int maxBins = HISTO_MAX_BINS);

The default maximum number of bins is 1000. The bin centers will be at integer mult
of the specified bin width. The total width of the histogram depends on the data; how
there will always be a bin that includes the first point.

void add(double x);

Add the pointx to the histogram.

int numCounts() const;
double mean() const;
double variance() const;

Return the number of counts, the mean, and the variance of the data in the histogra

int getData(int binno , int& count , double& binCenter);

Get counts and bin centers by bin number, where 0 indicates the smallest bin. ReturnTRUE
if this is a valid bin. Thus the entire histogram data can be retrieved by stepping from
the first failure.

11.6.2 Class XHistogram

An XHistogram object has a privateXGraph member and a privateHistogram member. The
functions

int numCounts() const;
double mean() const;
double variance();

simply pass through to theHistogram object, and

void addPoint(float y);

adds a point to the histogram and does other bookkeeping. There are two remaining
ods:

void initialize(Block* parent , double binWidth ,
 const char* options , const char* title ,
 const char* saveFile , int maxBins = HISTO_MAX_BINS

This method initializes the graph and histogram object.parent is the parentBlock , used
for error messages.binWidth andmaxBins initialize theHistogram object.options
is a string that is included in the command line to thexgraph program; other options,
including-bar -nl -brw value, are passed as well.title is the graph title, and
saveFile, if non-null, gives a file in which the histogram data is saved (this data is
histogram counts, not the data that was input withaddPoint).

void terminate();

This method completes the histogram, flushes out the temporary files, and executes
xgraph .
U. C. Berkeley Department of EECS

The Almagest 12-1

asses.
perators

hen
 using
pilers

ression

eam.
Chapter 12. Miscellaneous classes

Authors: Joseph T. Buck

Other Contributors: Yuhong Xiong

This section includes classes that did not fit elsewhere.

12.1 Mathematical classes

12.1.1 Class Complex

Class Complex is a simple subset of functions provided in the Gnu and AT&T complex cl
The standard arithmetic operators are implemented, as are the assignment arithmetic o
+=, -=, *=, and/=, and equality and inequality operators== and!=. There is alsoreal()
and imag() methods for accessing real and imaginary parts. It was originally written w
libg++ was subject to the GPL. The current licensing for libg++ does not prevent us from
it and still distributing Ptolemy the way we want, but having it makes ports to other com
(e.g. cfront) easier. The following non-member functions take Complex arguments:

Complex conj(const Complex& arg);
double real(const Complex& arg);
double imag(const Complex& arg);
double abs(const Complex& arg);

Return the conjugate, real part, imaginary part, or absolute value, respectively.

double arg(const Complex& arg);
Return the angle between the X axis and the vector made by the argument. The exp
abs(z)*exp(Complex(0.,1.)*arg(z))
is in theory always equal to z.

double norm(const Complex& arg);
return the absolute value squared.

Complex sin(const Complex& arg);
Complex cos(const Complex& arg);
Complex exp(const Complex& arg);
Complex log(const Complex& arg);
Complex sqrt(const Complex& arg);

Standard mathematical functions.log returns the principal logarithm.

Complex pow(double base ,const Complex& expon);
xpon);

Raise base to expon power. There is also an operator to print a Complex on an ostr
Ptolemy Last updated: 10/9/97

12-2 Miscellaneous classes

e
ns

e

nary

 also

intervals
 single
used to
nstruc-
ecord
 thank
Inter-
tervals
: 1-
alList
canon-
ppear

ethods
 of two

t, but
 an
12.1.2 class Fraction

Class Fraction represents fractions. The headerFraction.h also provides declarations for th
lcm (least common multiple) andgcd (greatest common divisor) functions, as these functio
are needed for Fraction but are generally useful.

Fraction ();
Fraction (int num, int den=1);

The default constructor produces a fraction with numerator 0 and denominator 1. Th
other constructor allows the numerator and denominator to be specified arbitrarily.

int num() const;
int den() const;

Return the numerator or denominator.

operator double() const;

Return the value of the fraction as a double. Class Fraction implements the basic bi
math operators+, -, *, /; the assignment operators=, +=, -=, *=, and/=, and the
equality test operators== and!=. The method

Fraction& simplify();

reduces the fraction to lowest terms, and returns a reference to the fraction. There is
an operator to print a Fraction on an ostream.

12.2 Class IntervalList
The IntervalList class represents a set of unsigned integers, represented as a series of
of integers that belong to the set. It is built on top of a class Interval that represents a
interval. There is also a text representation for IntervalLists. This representation can be
read or write IntervalList objects to streams, and also can be used in the IntervalList co
tor. This text representation looks exactly like the format the “rn” newsreader uses to r
which articles have been read in a Usenet newsgroup (which is where we got it from;
you, Larry Wall). In the text representation, an IntervalList is specified as one or more
vals, separated by commas. An Interval is either an unsigned integer or two unsigned in
with an intervening minus sign. Here is one possible IntervalList specification
1003,1006,1008-1030,1050 White space is not permitted in this representation. Interv
specifiers do not have to be in increasing order, but if they are not, they are changed to "
ical form", in which any overlapping intervals are merged and the intervals are sorted to a
in increasing order. An IntervalList is best thought of as a set of unsigned integers. Its m
in many cases perform set operations: forming the union, intersection, or set difference
IntervalLists.

12.2.1 class Interval and methods

The Interval class is in some ways simply an implementation detail of class IntervalLis
since its existence is exposed by public methods, it is documented here. An Interval hasor-
igin and alength, and represents the set oflength unsigned integers beginning withor-
igin. It also has a pointer that can point to another Interval. The constructor

Interval(unsigned origin =0, unsigned length =0,
U. C. Berkeley Department of EECS

The Almagest 12-3

th val-

 is
ing a

e

n is
Interval* nxt = 0);

permits all these members to be set. The copy constructor copies the origin and leng
ues but always sets the next pointer to null. A third constructor

Interval(const Interval& i1 ,Interval* nxt);

permits a combination of a copy and a next-pointer initialization. The members

unsigned origin() const;
unsigned length() const;

return the origin and length values.

unsigned end() const;

Theend function returns the last unsigned integer that is a member of the Interval; 0
returned for empty Intervals. There are a number of queries that are valuable for build
set class out of Intervals:

int isAfter(const Interval & i1) const;

isAfter returns true if this Interval begins after the end of intervali1 .

int endsBefore(const Interval & i1) const;

endsBefore returns true if this Interval ends strictly before the origin of interval i1.

int completelyBefore(const Interval & i1) const;

completelyBefore returns true ifendsBefore is true and there is space between th
intervals (they cannot be merged).

int mergeableWith(const Interval& i1) const;
mergeableWith returns true if two intervals overlap or are adjacent, so that their unio
also an interval.

int intersects(const Interval& i1) const;
intersects returns true if two intervals have a non-null intersection.

int subsetOf(const Interval& i1) const;
subsetOf returns true if the argument is a subset of this interval.

void merge(const Interval& i1);
merge alters the interval to the result of merging it withi1. It is assumed thatmerge-
ableWith is true.

Interval& operator&=(const Interval& i1);
This Interval is changed to the intersection of itself and ofi1.

12.2.2 IntervalList public members
IntervalList();

The default constructor produces the empty IntervalList.

IntervalList(unsigned origin ,unsigned length);
Ptolemy Last updated: 10/9/97

12-4 Miscellaneous classes

or, an

d.

ListI-
ts and
nd re-

leeping
neral.
uctors:
This constructor creates an IntervalList containinglength integers starting withori-
gin.

IntervalList(const char* definition);
This constructor takes a definition of the IntervalList from the string indefinition,
parses it, and creates the list of intervals accordingly. There is also a copy construct
assignment operator, and a destructor.

int contains(const Interval& i1) const;

Thecontains method returns 0 if no part ofi1 is in the IntervalList, 1 ifi1 is com-
pletely contained in the IntervalList, and -1 ifi1 is partially contained (has a non-null
intersection).

IntervalList& operator|=(const Interval& src);
Add a new interval to the interval list.

IntervalList& operator|=(const IntervalList& src);
Sets the IntervalList to the union of itself andsrc.

IntervalList operator&(const IntervalList& arg) const;

The binary& operator returns the intersection of its arguments, which are not change

IntervalList& subtract(const Interval& i1);
IntervalList& operator-=(const Interval& i1);

Subtract the Intervali1 from the list. That is, any intersection is removed from the set.
Both thesubtract and-= forms are equivalent.

IntervalList& operator-=(const IntervalList & arg);
This one subtracts the argumentarg from the list (removes any intersection).

int empty() const;

ReturnTRUE (1) for an empty IntervalList, otherwiseFALSE (0).

12.2.3 IntervalList iterator classes.

There are two iterator classes associated with IntervalList, IntervalListIter and CInterval
ter. The only difference is that the latter iterator can be used with const IntervalList objec
returns pointers to const Interval objects; the former requires a non-const IntervalIList a
turns pointers to Interval. These objects obey the standard iterator interface; thenext() or ++
function returns a pointer to the next contained Interval;reset goes back to the beginning.

12.3 Classes for interacting with the system clock
These classes provide simple means of interacting with the operating system’s clock – s
until a specified time, timing events, etc. They may be replaced with something more ge
Class TimeVal represents a time interval to microsecond precision. There are two constr

TimeVal();
TimeVal(double seconds);
U. C. Berkeley Department of EECS

The Almagest 12-5

ased
t to

lapsed

struc-
The first represents a time interval of zero. In the second case, theseconds argument is
rounded to the nearest microsecond. These classes rely on features found in BSD-b
Unix systems and newer System V Unix systems. Older System V systems tend no
provide the ability to sleep for a time specified more accurately than a second.

operator double() const;

This returns the interval value as a double.

TimeVal operator +(const TimeVal& arg) const;
TimeVal operator -(const TimeVal& arg) const;
TimeVal& operator +=(const TimeVal& arg);
TimeVal& operator -=(const TimeVal& arg);

These operators do simple addition and subtraction of TimeVals.

int operator >(const TimeVal& arg) const;
int operator <(const TimeVal& arg) const;

These operators do simple comparisons of TimeVals.

Class Clock provides a simple interface to the system clock for measurement of actual e
time. It has an internal TimeVal field that represents the starting time of a time interval.

Clock();

The constructor creates a Clock with starting time equal to the time at which the con
tor is executed.

void reset();

This method resets the start time to “now”.

TimeVal elapsedTime() const;

This method returns the elapsed time since the lastreset or the call to the constructor.

int sleepUntil(const TimeVal& howLong) const;

This method causes the process to sleep untilhowLong after the start time.
Ptolemy Last updated: 10/9/97

12-6 Miscellaneous classes
U. C. Berkeley Department of EECS

The Almagest 13-1

e start
n, we

get pa-
eration
d on the

dence
l prece-
APEG
heduling
here is
uling
he next

tars
end and
on rou-

n can
 code

ents.
Chapter 13. Overview of Parallel
Code Generation

Authors: Soonhoi Ha

This chapter describes the overall procedure of parallel code generation in Ptolemy. W
with an SDF program graph and a multiprocessor target description. In the target definitio
specify the number of processors and some information about the processors with tar
rameters. If the number of processor is given 1, it is classified as a sequential code gen
problem: a chosen SDF scheduler schedules the graph and code is generated base
scheduling result. Parallel code generation is a bit more complicated.

If the number of processor is greater than 1, we create an APEG (acyclic prece
expanded graph) associated with the SDF program graph. The APEG graph displays al
dence relations between invocations of the SDF stars. All parallel schedulers take this
graph as an input graph and generate the schedule. In Ptolemy, we can have many sc
algorithms (currently 3), and choose one by setting the appropriate target parameters. T
a common framework all parallel scheduling algorithm should be fit into . The sched
result indicates the assignment and the ordering of star invocations in the processors. T
step is to generate code for each processor based on the scheduling result.

We create an SDFsub-universe for each processor. The sub-universe consists of s
assigned to the processor and some other automatically inserted stars, for example s
receive stars for interprocessor communication. We apply the sequential code generati
tine for each processor with the associated sub-universe.

We may generate parallel code inside a wormhole so that the main workstatio
communicate with the target multiprocessor system. Then, the wormhole interface
should be added to the generated code.

The following chapter will explain each steps in significant detail with code segm
Ptolemy Last updated: 10/9/97

13-2 Overview of Parallel Code Generation
U. C. Berkeley Department of EECS

The Almagest 14-1

 needed
ched-

. Class
Flow-

s is sim-
odes.

aph is
e arc is

member

 gen-

lay on

lays

e can

EGG-

 the
Chapter 14. APEG generation

Authors: Soonhoi Ha

Since all code generation domains depends on the SDF domain, and the same routine is
by a specialized loop scheduler in the SDF domain ($PTOLEMY/src/domains/sdf/loopS
uler), the source of APEG generation is placed in $PTOLEMY/src/domains/sdf/kernel.

An APEG graph (an ExpandedGraph class) consists of EGNodes and EGGates
EGNode represents an object corresponding to an invocation of a DataFlowStar (Data
Star is a base class of SDFStar class). An EGNode has a list of EGGates. EGGate clas
ilar to PortHole class in the respect that it is an object for connection between EGN
Between two EGGates, there exists an EGArc object. All connections in an APEG gr
homogeneous. If there is a sample rate change on an arc in the SDF program graph, th
mapped to several homogeneous arcs. APEG generation routines are defined as
methods of the ExpandedGraph class.

Refer to “Class ExpandedGraph” on page 14-5, for he main discussion of APEG
eration.

14.1 Class EGArc
Class EGArc contains the information of (1) sample rate of the arc and (2) the initial de
the arc.

EGArc(int arc_samples , int arc_delay);
The constructor requires two arguments for sample rate and the number of initial de
on the arc.

int samples();
int delay();

These functions return the sample rate of the arc, and the initial delay on the arc. W
increase the sample rate of the arc using the following method

void addSamples(int increments);
There is no protected members in Class EGArc.

14.2 Class EGGate
Class EGGate is a terminal in an EGNode for connection with other EGNodes. A list of
ates will become a member of EGNode, calledancestors or descendants based on the di-
rection of connection.

14.2.1 EGGate public members
EGGate(EGNode* parent , PortHole*pPort);

Is a constructor. The first argument is the EGNode that this EGGate belongs to, and
Ptolemy Last updated: 10/9/97

14-2 APEG generation

e

r not.

llocat-
lled

eady

te,
mber

 and
 the

Gate
ds set

ence
remov-
f

second argument is the corresponding porthole of the original SDF graph.

const PortHole* aliasedPort();
const char* name() const;

The above methods returns the corresponding porthole of the original SDF graph, th
name of the porthole.

int isItInput();

Returns TRUE or FALSE based on whether the corresponding porthole is an input o

void allocateArc(EGGate* dest , int no_samples , int no_delay);
The method creates a connection between this EGGate and the first argument by a
ing an arc with information from the second and the third arguments. It should be ca
once per connection.

int samples();
int delay();
void addSamples(int increments);

These methods call the corresponding methods of the EGArc class if an arc was alr
allocated byallocateArc.

EGGate* farGate();
EGNode* farEndNode();
DataFlowStar* farEndMaster();
int farEndInvocation();

The above methods query information about the other side of the connection: EGGa
EGNode, the original DataFlowStar that the EGNode points to, and the invocation nu
of the EGNode.

StringList printMe();

It prints the information of the arc allocated: the sample rate and the initial delay.

void setProperty(PortHole* pPort , int index);
This method sets the pointer to the corresponding porthole of the original SDF graph
the index of the EGGate. Since multiple EGGates in an EGNode may be mapped to
same porthole in the original SDF graph, we order the EGGates by indices.

void setLink(EGGateLink* p);
EGGateLink* getLink();

Since the list of EGGates is maintained as a derived class of DoubleLinkList, an EG
is assigned an EGGateLink that is derived from the DoubleLink class. These metho
and get the assigned EGGateLink.

void hideMe(int flag);
If the initial delay is greater than or equal to the sample rate in an EGArc, the preced
relationship between the source and the destination of the arc disappears while not
ing the arc from the APEG. This method removes this EGGate from the access list o
EGGates (ancestors or descendants), and stores it in the list of hidden EGGates
U. C. Berkeley Department of EECS

The Almagest 14-3

e

G-

igned
d EGG-

e far-
nvoca-
delays

.

e

e
 the

ted
(hiddenGates) of the parent EGNode . If the argument flag is NULL, it calls the sam
method for the EGGate of the other side of connection. By default, the flag is NULL.

virtual ~EGGate();

Is a virtual destructor that deletes the allocated arc, removes itself from the list of EG
ates.

14.2.2 Class EGGateList

This class, derived from DoubleLinkList, contains a list of EGGates. An EGGate is ass
to an EGGateLink and the EGGateList class accesses an EGGate through the assigne
ateLink.

The following ordering is maintained in the precedence list: entries for the sam
end EGNode occur together (one after another), and they occur in order of increasing i
tion number. Entries for the same invocation occur in increasing order of the number of
on the arc.

class EGGateLink
EGGateLink(EGGate* e);

The constructor has an argument for an EGGate.

EGGate* gate();
EGGateLink* nextLink();

These methods return the corresponding EGGate and the next link in the parent list

void removeMeFromList();

Removes this link from the parent list.

EGGateList public members

Class EGGateList has a default constructor.

void initialize();

This method deletes all EGGates in the list and initialize the list. It is called inside th
destructor.

DoubleLink* createLink(EGGate* e);
Creates an EGGateLink for the argument EGGate.

void insertGate(EGGate* e, int update);
This method insert a new EGGate into the proper position in the precedence list. Th
update parameter indicates whether or not to update the arc data if an EGGate with
same far-end EGNode and delay, already exists. Ifupdate is 0, the argument EGGate will
be deleted if redundant. If 1, the arc information of the existing EGGate will be upda
(sample rate will be increased). When we insert an EGGate to thedescendants list of
the parent EGNode, we setupdate to be 1. If the EGGate will be added to theances-
tors, the variable is set 0.
Ptolemy Last updated: 10/9/97

14-4 APEG generation

ument
 special

r in the
 to the
cation
t does

ation
ber

umber

 is
StringList printMe();

Prints the list of EGGates.

Iterator for EGGateList

Class EGGateLinkIter is derived from class DoubleLinkIter. The constructor has an arg
of the reference to a constant EGGateList object. It returns EGGates. This class has a
method to return the next EGGate connected to a newfarEndMaster that is different from
the argument DataFlowStar.

EGGate* nextMaster(DataFlowStar* master);

14.3 Class EGNode
Class EGNode is a node in an APEG, corresponding to an invocation of a DataFlowSta
original SDF graph. The constructor has two arguments: the first argument is the pointer
original Star of which it is an invocation, and the second argument represents the invo
number. The default value for the invocation number is 1. It has a virtual destructor tha
nothing in this class.

An EGNode maintains three public lists of EGGates:ancestors, descendants,
andhiddenGates .

14.3.1 Other EGNode public members

Invocations of the same DataFlowStar are linked together.

void setNextInvoc(EGNode* next);
EGNode* getNextInvoc();
EGNode* getInvocation(int i);
void setInvocationNumber(int i);
int invocationNumber();

The first two methods sets and gets the next invocation EGNode. The third method
searches through the linked list starting from the current EGNode to return the invoc
with the argument invocation number. If the argument is less than the invocation num
of the current EGNode, returns 0. The other methods sets and gets the invocation n
of the current EGNode.

void deleteInvocChain();

Deletes all EGNodes linked together starting from the current EGNode. This method
usually called at the EGNode of the first invocation.

StringList printMe();
StringList printShort();

These methods print the name and the invocation number. In the first method, theances-
tors anddescendants lists are also printed.

DataFlowStar* myMaster();

Returns the original DataFlowStar of which the current EGNode is an invocation.

int root();
U. C. Berkeley Department of EECS

The Almagest 14-5

PEG.
ough

d an
e con-

, or

 Data-
depen-
.

es the

s the

 deletes

pro-
ions
 is as
This method returns TRUE or FALSE, based on whether this node is a root of the A
A node is a root if it either has no ancestors, or if each arc in the ancestor list has en
delay on it.

EGGate* makeArc(EGNode* dest , int samples , int delay);
Create a connection from this node to the first argument node. A pair of EGGates an
EGArc are allocated in this method. This EGNode is assumed to be the source of th
nection.

void resetVisit();
void beingVisited();
int alreadyVisited();

The above methods manipulates a flag for traversal algorithms: resets to 0, sets to 1
queries the flag.

void claimSticky();
int sticky();

These methods manipulates another flag to indicate that the invocations of the same
FlowStar may not be scheduled into different processors since there is a strong inter
dency between them. The first method sets the flag and the second queries the flag

14.3.2 EGNodeList

Class EGNodeList is derived from class DoubleLinkList.

void append(EGNode* node);
void insert(EGNode* node);

These methods appends or inserts the argument EGNode to the list.

EGNode* takeFromFront();
EGNode* headNode();

The above methods both returns the first EGNode in the list. The first method remov
node from the list while the second method does not.

There is a iterator class for the EGNodeList class, called EGNodeListIter. It return
EGNodes.

14.4 Class ExpandedGraph
Class ExpandedGraph has a constructor with no argument and a virtual destructor that
all EGNodes in the graph.

The major method to generate an APEG is
virtual int createMe(Galaxy& galaxy , int selfLoopFlag);

The first argument is the original SDF galaxy of which the pointer will be stored in a
tected membermyGal. The second argument enforces to make arcs between invocat
of the same star regardless of the dependency. The procedure of APEG generation
follows.

5. Initialize the APEG graph.
Ptolemy Last updated: 10/9/97

14-6 APEG generation

eep

t. The
 since
Node

ondi-
rnal
le. The
ut the
h this
 con-
ch
aral-

nnec-
SDF
EG is

d, the
mple
virtual void initialize();

Does nothing here, but will be redefined in the derived class if necessary.

6. Allocate all invocations (EGNodes) of the blocks in the original SDF graph. K
the list of the first invocations of all blocks in the protected membermasters.

virtual EGNode *newNode(DataFlowStar* star , int invoc_index);

Is used to create an invocation of a DataFlowStar given as the first argumen
second argument is the invocation number of the node. This method is virtual
the derived ExpandedGraph class may have derived classes from the EG
class.

7. For each star in the original SDF graph,

(3-1) Make connections between invocations of the star if any one of the c
tions is met:selfLoopFlag is set in the second argument, the star has inte
states, the star accesses past values on its portholes, or the star is a wormho
connection made in this stage does not indicate the flow path of samples, b
precedence relation of two EGNodes. Therefore, EGGates associated wit
connection are not associated with portholes in the original SDF graph. If the
nections are made, theclaimSticky method of EGNode class is called for ea
invocation EGNode. If any such connection is made, the APEG is said not-p
lelizable as a whole: A protected member,parallelizable, is set FALSE.

(3-2) For each input porthole, get the far-side output porthole and make co
tions between invocations of two DataFlowStars. A connection in the original
graph may be mapped to several connections in the APEG since the AP
homogeneous.

8. Find the root nodes in the APEG and stored in its protected membersources.

void insertSource(EGNode* node);

Inserts the argument EGNode into the source list,sources, of the graph.

All protected members are explained above.

14.4.1 Other ExpandedGraph public members
int numNodes();

This method returns the number of total nodes in the APEG.

virtual StringList display();

Displays all EGNodes by callingprintMe method of EGNode class.

virtual void removeArcsWithDelay();

This method hide all connections that have delays on them. When an APEG is create
number of initial delays on an arc, if exists, is always greater than or equal to the sa
rate of the arc. Therefore, this method is used to make the APEG actually acyclic.
U. C. Berkeley Department of EECS

The Almagest 14-7

GSour-

er, is
ion of
. Thus
14.4.2 Iterators for ExpandedGraph

There are three types of iterators associated with an ExpandedGraph: EGMasterIter, E
ceIter, and EGIter. As its name suggests, EGMasterIter returns the EGNodes inmasters list
of the graph. EGSourceIter returns the EGNodes insources list of the graph. Finally, EGIter
returns all EGNodes of the ExpandedGraph.

EGMasterIter and EGSourceIter are derived from EGNodeListIter. EGIter, howev
not derived from any class. Instead, EGIter uses EGMasterIter to get the first invocat
each DataFlowStar in the original SDF graph and traverse the linked list of invocations
invocations are traversed master by master.
Ptolemy Last updated: 10/9/97

14-8 APEG generation
U. C. Berkeley Department of EECS

The Almagest 15-1

hed-
derived

Sched-
heduler
heduling
rocessor
in the

e any
rpro-

. Refer

l mem-
e two-

ot par-
ons by
the

struc-

 static
Chapter 15. Parallel Schedulers

Authors: Soonhoi Ha

Base classes for parallel schedulers can be found in$PTOLEMY/src/domains/cg/par-
Scheduler . All parallel schedulers use an APEG as the input. The APEG for parallel sc
ulers is called ParGraph, which is derived from class ExpandedGraph. Class ParNode,
from class EGNode, is a node in a ParGraph.

The base scheduler object is ParScheduler. Since it is derived from class SDF
uler, it inherits many methods and members from the SDFScheduler class. The ParSc
class has a ParProcessors class that has member methods to implement the main sc
algorithm. The ParProcessors class has an array of UniProcessor classes. The UniP
class, privately derived from class DoubleLinkList, is mapped to a processing element
target architecture.

Note that all parallel scheduling algorithms are retargettable: they do not assum
specific topology while they take the effect of topology into account to estimate the inte
cessor communication overhead.

Refer to class ParScheduler, to see the overall procedure of parallel scheduling
to class UniProcessor, to see the procedure of sub-universe generations.

15.1 ParNode
This class represents a node in the APEG for parallel schedulers, thus contains additiona
bers for parallel scheduling besides what are inherited from class EGNode. It has the sam
argument constructor as class EGNode.

ParNode(DataFlowStar* Mas, int invoc_no);

Initializes data members. If the argument star is at the wormhole boundary, we do n
allelize the invocations. Therefore, we create precedence relations between invocati
callingclaimSticky of EGNode class in the constructor. If this constructor is called,
type protected member is set 0.

The ParNode class has another constructor with one argument.
ParNode(int type);

The scheduling result is stored in UniProcessor class as a list of ParNodes. This con
tor is to model idle time (type = 1), or communication time (type = -1 for sending time,
type = -2 for receiving time) as a ParNode. It initializes data members.

15.1.1 ParNode protected members
int StaticLevel;

Is set to the longest execution path to a termination node in the APEG. It defines the
level (or priority) of the node in Hu’s scheduling algorithm. Initially it is set to 0.
Ptolemy Last updated: 10/9/97

15-2 Parallel Schedulers

ing the
, we

 EGG-
-

ri-

 fin-
int procId

Is the processor index on which this ParNode is scheduled. Initially it is set to 0.

int scheduledTime;
int finishTime;

Indicate when the node is scheduled and finished, respectively.

int exTime;

Is the execution time of the node. If it is a regular node (type = 0), it is set to the execu-
tion time of the original DataFlowStar. Otherwise, it is set to 0.

int waitNum;

Indicates the number of ancestors to be scheduled before scheduling this node. dur
scheduling procedure. Initially it is set to 0. At a certain point of scheduling procedure
can schedule a ParNode only when all ancestors are already assigned, orwaitNum is 0.

EGNodeList tempAncs;
EGNodeList tempDescs;

These list members are copies of the ancestors and descendants of the node. While
ateLists,ancestors anddescendants, may not be modified during scheduling proce
dure, these lists can be modified.

15.1.2 Other ParNode public members
void assignSL(int SL);
int getSL();
virtual int getLevel();

The first two methods set and get theStaticLevel member. The last one returns the p
ority of the node, which is justStaticLevel by default. In the derived classes, this
method can be redefined, for example in Dynamic Level Scheduling, to return the
dynamic level of the node.

int getType();

Returns the type of the node.

void setProcId(int i);
int getProcId();

These two methods set and get theprocId member.

void setScheduledTime(int i);
int getScheduledTime();
void setFinishTime(int i);
int getFinishTime();

These methods are used to set or get the time when the node is scheduled first and
ished.

void setExTime(int i);
int getExTime();

These methods are used to set and get the execution time of the node.
U. C. Berkeley Department of EECS

The Almagest 15-3

porary

 as the
 current

node is

f the

e
eeps
con-
 than

hedules

tar
od que-
void resetWaitNum();
void incWaitNum();

Resets thewaitNum variable to the number of ancestors, and increases it by 1.

int fireable();

This method decreaseswaitNum by one, and returnTRUE or FALSE, based on whether
waitNum reaches zero or not. If it reaches 0, the node is declared "fireable".

void copyAncDesc(ParGraph* g, int flag);
void removeDescs(ParNode* n);
void removeAncs(ParNode* n);
void connectedTo(ParNode* to);

The first method initializes the lists of temporary ancestors and descendants,tempAncs
andtempDescs, from ancestors anddescendants that are inherited members from
EGNode class. ListtempAncs is sorted smallestStaticLevel first while listtemp-
Descs is sorted largestStaticLevel first. The first argument is necessary to call the
sorting routine which is defined in the ParGraph class . By virtue of sorting, we can
traverse descendant with largerStaticLevel first. If the second argument is not 0, we
switch the lists: copyancestors to tempDescs anddescendants to tempAncs.

The second and the third methods remove the argument node from the tem
descendant list or from the temporary ancestor list. In the latter case, we decreasewaitNum by
one.

The last method above is to make a temporary connection between the node
source and the argument node as the destination. The temporary descendant list of the
node is added the argument node while the temporary ancestor list of the argument
added the current node (also increasewaitNum of the argument node by 1).

CGStar* myStar();

Returns the original DataFlowStar after casting the type to CGStar, star class type o
CG domain.

int amIBig();

ReturnsTRUE or FALSE, based on whethermyStar is a wormhole or not. Before the
scheduling is performed in the top-level graph, the wormhole executes scheduling th
inside galaxy and stores the scheduling results in the Profile object . The ParNode k
the pointer to the Profile object if it is an invocation of the wormhole. In the general
text, the node will be considered "Big" if the master star can be scheduled onto more
one processors. Then, the star is supposed to keep the Profile object to store the sc
on the processors. A wormhole is a special case of those masters.

void setOSOPflag(int i);
int isOSOP();

After scheduling is performed, we set a flag to indicate whether all invocations of a s
are assigned to the same processor or not, using the first method. The second meth
ries the flag. Note that only thefirst invocation has the valid information.
Ptolemy Last updated: 10/9/97

15-4 Parallel Schedulers

rse, we
hen,
e

given
he first
hird
ethod
r of

wo
muni-
unica-

 to
n the

escen-
porary

orary

dulers.

 the

rce
 a pro-
void setCopyStar(DataFlowStar* s, ParNode* prevN);
DataFlowStar* getCopyStar();
ParNode* getNextNode();
ParNode* getFirstNode();
int numAssigned();

The above methods are used to create sub-universes . When we create a sub-unive
make a copy of the master star if some invocations are assigned to the processor. T
these invocations keep the pointer to the cloned star. Since all invocations may not b
assigned to the same processor, we maintain the list of invocations assigned to the
processor. The first and second methods set and get the pointer to the cloned star. T
method also make a chain of the invocations assigned to the same processor. The t
method returns the next invocation chained from the current node, while the fourth m
returns the starting invocation of the chain. The last method returns the total numbe
invocations in the chain. It should be called at the starting invocation of the chain.

void setOrigin(EGGate* g);
EGGate* getOrigin();
void setPartner(ParNode* n);
ParNode* getPartner();

These methods manipulate the connection information of communication nodes. If t
adjacent nodes in an APEG are assigned to two different processors, we insert com
cation nodes between them: Send and Receive nodes. As explained earlier, a comm
tion node is created by one-argument constructor. The first two methods are related
which EGGate the communication node is connected. The last two methods concer
other communication node inserted.

15.1.3 Iterators for ParNode

There are two types of iterators associated with ParNode class: ParAncestorIter, ParD
dantIter. As their names suggest, ParAncestorIter class returns the ParNodes in the tem
ancestor list (tempAncs), and ParDescendantIter class returns the ParNodes in the temp
descendant list (tempDescs).

15.2 Class ParGraph
Class ParGraph, derived from class ExpandedGraph, is an APEG graph for parallel sche
It has a constructor with no argument.

int createMe(Galaxy& g, int selfLoopFlag = 0);

Is the main routine to create and initialize the APEG of the argument Galaxy. Usingcre-
ateMe method of the ExpandedGraph class, it creates an APEG. After that, it resets
busy flags of the ParNodes, and calls

virtual int initializeGraph();

This is a protected method. It performs 4 main tasks as follows. (1) Call a protected
methodremoveArcsWithDelay to remove the arcs with delays, and to store the sou
and the destination nodes of each removed arc into the list of NodePairs . The list is
tected member, namednodePairs of SequentialList class.
U. C. Berkeley Department of EECS

The Almagest 15-5

cted

bound-
rst.

on of

s in

ance
void removeArcsWithDelay();
SequentialList nodePairs;

(2) For each node, compute the static level (StaticLevel) by calling a protected method
SetNodeSL.

int SetNodeSL(ParNode* n);
(3) Sum the execution times of all nodes and save the total execution time to a prote
memberExecTotal.

int ExecTotal;

(4) Assign the larger static level than any other nodes to the nodes at the wormhole
ary. This let the parallel scheduler schedules the nodes at the wormhole boundary fi

15.2.1 Other ParGraph protected members
EGNode* newNode(DataFlowStar*, int);

Redefines the virtual method to create a ParNode associated with the given invocati
the argument star.

ostream* logstrm;

This is a stream object for logging information.

15.2.2 Other ParGraph public members
EGNodeList runnableNodes;
void findRunnableNodes();

The list of runnable (or fireable) nodes are stored inrunnableNodes. The above method
is to initialize the list with all root ParNodes.

int getExecTotal();
Galaxy* myGalaxy();

Returns the total execution time of the graph and the original graph.

void setLog(ostream* l);
Sets the stream objectlogstrm.

void replenish(int flag);
This method initialize the temporary ancestor list and descendant list of all ParNode
the graph.

void sortedInsert(EGNodeList& l , ParNode*n, int flag);
Insert a ParNode,n, into the EGNodeList,l, in sorted order. It sorts nodes of highest
StaticLevel first if flag = 1, or lowestStaticLevel first if flag = 0.

void restoreHiddenGates();

This method restores the hidden EGGates fromremoveArcsWithDelay method to the
initial list, eitherancestors or descendants of the parent node.

int pairDistance();

After scheduling is completed, it is supposed to return the maximum scheduling dist
Ptolemy Last updated: 10/9/97

15-6 Parallel Schedulers

ile the

of all

proce-

ns.

le pro-
 of

f the

ally. If
roces-

rm-
tected

is, do
between node pairs innodePairs list. Currently, however, it just returns -1, indicating
the information is not available.

~ParGraph();

The destructor initializes thenodePairs list.

15.2.3 Class NodePair

Class NodePair saves the source and the destination ParNodes of an arc.

NodePair(ParNode* src , ParNode*dest);
ParNode* getStart();
ParNode* getDest();

The constructor requires two arguments of the source and the destination nodes, wh
next two methods return the node.

15.3 Class ParScheduler
Class ParScheduler is derived from class SDFScheduler, thus inherits the most parts ofsetup
method. They include initialization of galaxy and computation of the repetition counters
stars in the SDF graph. It redefines the scheduling part of the set-up stage (computeSched-
ule).

int computeSchedule(Galaxy& g);
Is a protected method to schedule the graph with given number of processors. The
dure is

(1) Let the target class do preparation steps if necessary before scheduling begi

(2) Check whether the number of processors is 1 or not. If it is 1, we use the sing
cessor scheduling (SDFScheduler :: computeSchedule). After we set the target pointer
each star, return.

(3) Form the APEG of the argument galaxy, and set the total execution time o
graph to a protected membertotalWork.

(4) Set the target pointer of each UniProcessor class .

void mapTargets(IntArray*array = 0);

If no argument is given, assign the child targets to the UniProcessors sequenti
the IntArray argument maps the child targets to the UniProcessors. If array[1] = 2, UniP
sor 1 is assigned Target 2.

(5) Before the main scheduling begins, complete the profile information of wo
holes. Since we may want to perform more tasks before scheduling, make this pro
method virtual. Be default, returnTRUE to indicate no error occurs.

virtual int preSchedule();

(6) Perform scheduling by callingmainSchedule.

int mainSchedule();

This public method first checks whether manual assignment is requested or not. If it
U. C. Berkeley Department of EECS

The Almagest 15-7

de-
et the
 be

 pro-
mber

 The
e

 By
ne

hedul-
 will

oces-

he
 of the
manual assignment. Otherwise, call an automatic scheduling routine which will be re
fined in each derived class, actual scheduling class. After scheduling is performed, s
procId parameter of the stars in the original galaxy if all invocations are enforced to
assigned to the same processor .

int assignManually();

Is a protected method to returnTRUE if manual assignment is requested, or returnFALSE
otherwise.

virtual int scheduleManually();

Is a public virtual method. This method first checks whether all stars are assigned to
cessors (procId parameter of a star should be non-negative and smaller than the nu
of processors). If there is any star unassigned, returnFALSE. All invocations of a star is set
the sameprocId parameter. Based on that assignment, perform the list scheduling .
procId of a Fork star is determined by its ancestor. If the ancestor is a wormhole, th
procId of the Fork should be given explicitly as other stars.

virtual int scheduleIt();

Is a public virtual method for automatic scheduling. Refer to the derived schedulers.
default, it does nothing and returnFALSE to indicate that the actual scheduling is not do
in this class.

int OSOPreq();

Is a protected method to returnTRUE or FALSE, based on whether all invocations are
enforced to be scheduled on the same processor.

Now, all methods necessary for step (5) are explained. Go back to the next step.

(7) As the final step, we schedule the inside of wormholes based on the main sc
ing result if automatic scheduling option is taken. In the main scheduling routine, we
determine how many processors will be assigned to a wormhole.

int finalSchedule();

If scheduling of wormholes succeeds, returnTRUE. Otherwise, returnFALSE.

15.3.1 compileRun method
void compileRun();

Is a redefined public method of SDFScheduler class. It first checks the number of pr
sors. If the number is 0, it just callsSDFScheduler :: compileRun. This case occurs
inside a wormhole. Otherwise,

(1) Set the target pointer of UniProcessors.

(2) Create sub-universes for each processors.
int createSubGals(Galaxy& g);

Is a public method. It first checks whether all invocations of stars are scheduled on t
same processor, and set the flag if it is the case. After restoring all hidden EGGates
APEG, create sub-universes.
Ptolemy Last updated: 10/9/97

15-8 Parallel Schedulers

cludes
m the

a-

er

ole

 set
 that
imita-

. The
(3) Prepare each processor (or UniProcessor class) for code generation. It in
sub-universe initialization, and simulation of the schedule on the processor obtained fro
parallel scheduling.

(4) Let the target do something necessary, if any, before generating code.

(5) Generate code for all processors.

15.3.2 Other ParScheduler protected members
const char* logFile;
pt_ofstream logstrm_real;
ostream* logstrm;

These are for logging information.logFile indicates where to store the logging inform
tion.

MultiTarget* mtarget;

Is the pointer to the target object, which is MultiTarget type.

int numProcs;

Is the total number of processors.

ParGraph *exGraph

Is the pointer to the APEG used as the input graph to the scheduler.

ParProcessors* parProcs;

This member points the actual scheduler object. It will be set up in thesetUpProcs
method of the derived class.

IntArray avail;

This array is to monitor the pattern of processor availability during scheduling.

int inUniv;

This flag is setTRUE when it is the scheduler of a universe, not a wormhole. In the latt
case, it is setFALSE. By default, it is setTRUE.

int withParallelStar();

This method returnsTRUE or FALSE, based on whether the galaxy contains any wormh
or data-parallel star, or not.

int overrideSchedule();

If the user wants to override the scheduling result after automatic scheduling, he can
theadjustSchedule parameter of the target object. This method pokes the value of
parameter. This is one of the future feature, not implemented yet in Ptolemy due to l
tion of the graphical interface, pigi.

15.3.3 Other ParScheduler public members
ParScheduler(MultiTarget* t , const char*log = 0);
virtual ~ParScheduler();

The constructor has two arguments: the target pointer and the name of log file name
U. C. Berkeley Department of EECS

The Almagest 15-9

e

is
dex is

rm-
rofile

lasses to
rs and

e
 for all

de, on

g

consid-
 one
l of the
tage, all

edule.
virtual destructor does nothing.

virtual void setUpProcs(int num);
The number of processors is given as an argument to this method. It will initialize th
avail array. In the derived class, this method will create a ParProcessors class (setpar-
Procs member).

ParProcessors* myProcs();
UniProcessor* getProc(int n);

These methods will return the pointer to the ParProcessors object associated with th
scheduler and the UniProcessor object indexed by the argument. The range of the in
0 tonumProcs-1.

void ofWorm();

ResetsinUniv flag toFALSE.

int getTotalWork();

Returns the total execution time of the graph.

void setProfile(Profile* profile);
Copy the scheduling results to the argument Profile . If the scheduling is inside a wo
hole, the scheduling results should be passed to the outside of the wormhole by a P
object.

15.4 class ParProcessors
Class ParProcessors is the base class for all actual scheduler object. Refer to derived c
see how scheduling is performed. This class just provide the set of common membe
methods. Among them, there is a list scheduling routine.

int listSchedule(ParGraph* graph);
This method performs the list scheduling with the input argument APEG. It should b
called after all nodes are assigned to the processors. It is the last routine to be called
parallel schedulers. It adds communication nodes to the APEG (findCommNodes) and
schedule them with the regular ParNodes. It returns the makespan of the schedule.

void findCommNodes(ParGraph* graph);
This method puts a pair of communication ParNodes, a send node and a receive no
the arc between two nodes assigned to the different processors. Note that we usetem-
pAncs andtempDescs list of ParNode class to insert these nodes instead of modifyin
the APEG. We store the newly created communication ParNodes inSCommNodes. The
procedure consists of two stages. In the first stage, all regular arcs in the APEG are
ered. TheStaticLevel of the send node is assigned to that of the source node plus
to ensure that the send node is scheduled right after the source node. The static leve
receive node is assigned to the same value as the destination node. In the second s
hidden arcs are considered. In this case, theStaticLevel of communication nodes are
assigned to 1, the minimum value since they may be scheduled at the end of the sch
The number of interprocessor requirements are saved in a protected member,com-
Ptolemy Last updated: 10/9/97

15-10 Parallel Schedulers

 target

e
.

since

essor.

r. It cre-

r
from
mCount.

int getMakespan();

Returns the longest scheduled time among all UniProcessors.

15.4.1 Other ParProcessors protected members
int numProcs;
MultiTarget* mtarget;
EGNodeList SCommNodes;

These members specify the number of processors, the pointer to the multiprocessor
class, and the list of communication nodes added duringlistSchedule.

IntArray pIndex;

Is used to access the processors in the order of available time.

void scheduleParNode(ParNode* node);
This method schedules a parallel node (a wormhole or a data-parallel star) inside th
listSchedule method. Note that the processors are already assigned for the node

virtual ParNode* createCommNode(int i);
Is a virtual method to create a ParNode with type given as an argument. It is virtual
the derived scheduler may want to create a node of derived class of ParNode.

void removeCommNodes();

Clears theSCommNodes list.

void sortWithAvailTime(int guard);
Sort the processors with their available times unless no node is assigned to the proc
All idle processors are appended after the processors that are available atguard time and
before the processor busy atguard time. Store the results topIndex array.

int OSOPreq();

ReturnsTRUE or FALSE, based on whether all invocations of a star are enforced to be
scheduled on the same processor or not.

15.4.2 Other ParProcessors public members
ParProcessors(int , MultiTarget*);
virtual ~ParProcessors();

The constructor has two arguments: the number of processors and the target pointe
atespIndex array and initialize other data structures. The destructor clearsSCommN-
odes.

void mapTargets(IntArray* array);
void prepareCodeGen();
void createSubGals();
void generateCode();

The above methods perform the actual action defined in the ParScheduler class. Fo
description, refer to class ParScheduler. The last method deliver the generate code
U. C. Berkeley Department of EECS

The Almagest 15-11

ed

erse

tion
rpro-

 com-

ame
 to
 is the
-

d from
ched-

niPro-
each processor to the target class.

int size();

returns the number of processors.

virtual UniProcessor* getProc(int num);
This method returns the UniProcessor with a given index. It is virtual since the deriv
class wants to return it own specific class derived from UniProcessor class.

void initialize();

InitializespIndex, SCommNodes, and processors.

StringList display(NamedObj* gal);
StringList displaySubUnivs();

These methods return the StringList contains the scheduling result and the sub-univ
description.

ParNode* matchCommNodes(DataFlowStar*, EGGate*, PortHole);

This method is used in sub-universe generation. The first argument is a communica
star, either a send star or a receive star, that the system automatically inserts for inte
cessor communication. The second argument is the EGGate that the interprocessor
munication (IPC) occurs. If the second argument isNULL, the third argument indicates the
porthole that the IPC occurs. In case all invocations of any star are assigned to the s
processor, the sub-universe creation procedure is greatly simplified: we do not need
look at the APEG, rather look at the original SDF graph to create the sub-universe. It
case when the second argument becomesNULL. This method sets the pointer of the com
munication star to the corresponding ParNode that are inserted duringlistSchedule
method.

15.5 UniProcessor
Class UniProcessor simulates a single processing element, or a processor. It is derive
class DoubleLinkList to hold the list of ParNodes from parallel scheduling. Class NodeS
ule is derived from class DoubleLink to register a ParNode into the DoubleLinkList.

A UniProcessor keeps two target pointers: one for multiprocessor target (mtarget),
and the other for the processor (targetPtr). They are both protected members.
MultiTarget* mtarget;
CGTarget* targetPtr;

The pointer to the processor can be obtained by a public method:

CGTarget* target();

The pointers to the multiprocessor target and to the ParProcessors class that this U
cessor belongs to, are set by the following method:

void setTarget(MultiTarget* t , ParProcessors*p);
Ptolemy Last updated: 10/9/97

15-12 Parallel Schedulers

 node
rotect-

 dura-
g is

ation,

ched-
essor

public

 There

nt to

liest
is
15.5.1 Class NodeSchedule

A NodeSchedule is an object to link a ParNode to a linked list. It indicates whether the
represents an idle time slot or not. It also contains the duration of the node. There is no p
ed member in this class.

void resetMembers();
void setMembers(ParNode* n, int dur);

These methods set the information for the associated node: the pointer to the node,
tion, and a flag to tell whether it is an idle node or not. In the first method, the idle fla
setFALSE. The constructor also resets all internal information of the class.

ParNode getNode();
int getDuration();
int isIdleTime();

The above methods return the pointer to the node associated with this class, its dur
and the flag to sayTRUE if it represents an idle time slot.

NodeSchedule* nextLink();
NodeSchedule* previousLink();

These methods return the next and the previous link in the linked list.

15.5.2 Members for scheduling

Since a list scheduling (with fixed assignment) will be performed as the last stage of all s
uling algorithms in Ptolemy , basic methods for list scheduling are defined in the UniProc
class. In list scheduling, we need the available time of the processor.

int availTime;

Is a protected member to indicate the time when the processor available. There are
methods to access this member:

void setAvailTime(int t);
int getAvailTime();
NodeSchedule* curSchedule;

This protected member points to the NodeSchedule appended last to the linked list.
are two public methods to access a NodeSchedule:

NodeSchedule* getCurSchedule();
NodeSchedule* getNodeSchedule(ParNode* n);

The first method just returnscurSchedule member while the second one returns the
NodeSchedule associated with the argument ParNode.

When a ParNode is runnable earlier than the available time of the processor, we wa
check whether there is an idle slot beforeavailTime to fit the ParNode in the middle of
the schedule:

int filledInIdleSlot(ParNode*, int start , int limit = 0);

The first two arguments are the pointer to the ParNode to be scheduled and the ear
time when the node can be scheduled. Without the third argument given explicitly, th
U. C. Berkeley Department of EECS

The Almagest 15-13

. If the

 it

 the

 slot

 inside
d

r that
hether

r and

ing the
 the as-
ty of the
ocessor
reate a
ote that
al pro-
rs. This
method returns the earliest time that the processor is available to schedule the node
third argument is given, the available time of the processor should be less thanlimit. If
this method could not find an idle slot to schedule the node, it returns -1. Otherwise,
returns the possible scheduling time of the node.

int schedInMiddle(ParNode* n, int when, int);

Schedule the node,n, atwhen inside an idle-time slot of the processor. The third argu-
ment indicates the duration of the node. This method returns the completion time of
schedule if scheduling is succeeded. If it fails to find an idle-time slot atwhen to accom-
modate the node, it returns -1.

If a node is to be appended at the end of the schedule in a processor,
void appendNode(ParNode* n, int val);

Does that blindly. To schedule a non-idle node, we have to use

int schedAtEnd(ParNode* n, int start , int leng);

In casestart is larger than the processor available time, this method put an idle time
in the processor and callsappendNode. And, it sets the schedule information of the
node, and increasesavailTime of the processor.

void addNode(ParNode* node , int start);

This method is given a ParNode and its runnable time, and schedule the node either
an idle time slot if possible, or at the end of the schedule list. The methods describe
above are used in this method.

void scheduleCommNode(ParNode* n, int start);

When we schedule the given communication node,n, available atstart, we also have
to check the communication resource whether the resources are available or not. Fo
purpose, we detect the time slot in this processor to schedule the node, and check w
the same time slot is available in the communication resources: we usescheduleComm of
the multiprocessor target to check it. If we find a time slot available for this processo
the communication resources, we schedule the communication node.

int getStartTime();

Returns the earliest time when the processor is busy.

All methods described in this sub-section are public.

15.5.3 Sub-Universe creation

After scheduling is performed, a processor is given a set of assigned ParNodes. Us
scheduling result, we will generate code for the target processor. To generate code for
signed nodes, we need to allocate resources for the nodes and examine the connectivi
nodes in the original graph. These steps are common to the generic routine for single pr
code generation in which a processor target is given a galaxy. Therefore, we want to c
sub-galaxy that consists of stars of which any invocation is assigned to the processor. N
a sub-galaxy is NOT a subgraph of the original SDF graph. Besides the stars in the origin
gram graph, we include other stars such as communication stars and spread/collect sta
Ptolemy Last updated: 10/9/97

15-14 Parallel Schedulers

cture,
s is
each
or a
tar
 by
r with

 a star
 same
b-uni-
 (or not

 will be

proces-
ssor. If

 cloned
is case,
tar

tion of
r of the
 If
he send

ed over
cessor,

ssor,
source
ation
r and
tput
the

r

subsection will explain some details of sub-universe creation.

void createSubGal();

Is the main public method for sub-universe creation. It first creates a galaxy data stru
subGal, a private member. Then, it clones stars of at least one of whose invocation
assigned to the processor. Make a linked list for all assigned invocations (nodes) of
star in order of increasing invocation number, and set the pointer of cloned star. As f
wormhole, we create a CGWormStar instead of cloning the wormhole. A CGWormS
class will replace a wormhole in the sub-universe. If an original star is not supported
the processor target (for example, with heterogeneous scheduling), we create a sta
the same name as the original star in the target domain.

In the next step, we connect the cloned stars by referring to the original galaxy. If
is at the wormhole boundary in the original graph, we connect the cloned star to the
event horizon; by doing so the wormhole in the original graph is connected to the su
verse. If the star at the wormhole boundary is scheduled on more than one processors
all invocations are assigned to the same processor), the wormhole in the original graph
connected to the last created sub-universe.

If an arc connects two stars who have some invocations assigned to the same
sor, we examine whether all of the two stars’ invocations are assigned to the same proce
they are, we just connect the cloned stars in the sub-universe. If they aren’t, we have a
star of either one star whose invocations are assigned to the current sub-universe. In th
we create a send star (createSend method of the multiprocessor target) or a receive s
(createReceive of the target), based on whether the cloned star is a source or destina
the connection . We create a communication star and set the communication star pointe
communication nodes in the APEG , bymatchCommNodes method of ParProcessors class.
the partner communication star was already created in another sub-universe, we pair t
and receive stars bypairSendReceive method of the multiprocessor target .

The last case is when an arc connects two stars whose invocations are distribut
more than one processor. If no invocation of the destination star is assigned to this pro
we call themakeBoundary method.

void makeBoundary(ParNode* src , PortHole* orgP);

The first argument points to the earliest invocation of the star assigned to this proce
and the second is the pointer to the output porthole in the original SDF graph as the
of the connection. We examine all assigned invocations to check whether the destin
invocations are assigned to the same processor. If they are, we create one send sta
connect it to the cloned star. Otherwise, we create a Spread star to distribute the ou
samples to multiple processors. We connect the cloned star to the Spread star, and
Spread star to multiple send stars.

Otherwise, we call themakeConnection method.

void makeConnection(ParNode* dest , ParNode * src , PortHole * ref , ParNode *
firstS);

The first argument is the pointer to the first assigned invocation of the destination sta
U. C. Berkeley Department of EECS

The Almagest 15-15

rgu-
. The
t argu-

 be
n one,

n the
 connect
r to
essor.
t it to
and con-
b-uni-

ollect

s two
invoca-
ed to
ub-uni-
amples
 a send
e Spread
ile the

h. The
ing the
nor B
f data in

o that

ched-
cessor

llected
while the second one is the source node connected to the first argument. The third a
ment is the pointer to the destination porthole of the connection in the original graph
last argument is the pointer to the first invocation of the source star. Note that the las
ment node may not be assigned to the current processor. This method examines all
assigned invocations of the destination star to identify the sources of the samples to
consumed by the cloned star in this processor. If the number of sources are more tha
we create a Collect star and connect the Collect star to the cloned destination star i
sub-universe. For each source in the other processors, we create a receive star and
it to the Collect star. Similarly, we examine all assigned invocations of the source sta
identify the destinations of the samples to be produced by the source star in this proc
If the number of destinations is more than one, we create a Spread star and connec
the source star. For each destination in the other processors, we create a send star
nect it to the Spread star. As a result, it may occur that to connect two stars in the su
verse, we need to splice a Spread and a Collect star on that connection.

Spread and Collect stars

A Spread or a Collect star is created bycreateSpread or createCollect method of the
multiprocessor target. The following illustrates when we need to create a Spread or a C
star in a sub-universe.

Suppose we have star A connected to star B in original graph. Star A produce
samples and star B consumes one. Then, one invocation of star A is connected to two
tions of star B. If one invocation of star A and only one of invocation of star B are assign
the current processor. Then, we need to connect the cloned stars of A and B in the s
verse. We can not connect stars A and B in the sub-universe directly since among two s
generated by star A, one sample should be transferred to another processor through
star. In this case, we connect a Spread star to star A, and one send star and star B to th
star in the sub-universe. Then, star A produces two samples to the Spread star wh
Spread starspread the incoming two samples to the send star and star B one sample eac
number of output portholes and the sample rate of each porthole are determined dur
sub-universe creation. If there is no initial delay on the connection and neither star A
needs to access the past samples, the Spread star does not imply additional copying o
the generated code.

Similarly, we need to connect a Collect star to the destination star if samples t
star come from more than one sources.

15.5.4 Members for code generation
void prepareCodeGen();

This method performs the following tasks before generating code.

(1) Initialize the sub-universe, which also initialize the cloned stars.

(2) Convert a schedule (or a linked list of ParNodes) obtained from the parallel s
uler to a SDFSchedule class format (list of stars). The code generation routine of the pro
target assumes the SDFSchedule class as the schedule output.

(3) Simulate the schedule to compute the maximum number of samples to be co
Ptolemy Last updated: 10/9/97

15-16 Parallel Schedulers

ize to

ss. It

emory

jects.
d ini-

alid

r to de-

roces-
pleted

d ini-
at runtime if we follow the schedule. This information is used to determine the buffer s
be allocated to the arcs.
void simRunSchedule();

Performs the step (3). It is a protected member.

StringList& generateCode();

This method generate code for the processor target by callingtargetPtr->generate-
Code() .

int genCodeTo(Target* t);
This method is used to insert the code of the sub-universe to the argument target cla
performs the almost same steps asprepareCodeGen and then callsinsertGalaxy-
Code of the processor target class instead ofgenerateCode method.

15.5.5 Other UniProcessor protected members

There are a set of methods to manage NodeSchedule objects to minimize the runtime m
usage as well as execution time.

void putFree(NodeSchedule* n);
NodeSchedule* getFree();
void clearFree();

If a NodeSchedule is removed from the list, it is put into a pool of NodeSchedule ob
When we need a NodeSchedule object, a NodeSchedule in the pool is extracted an
tialized. We deallocate all NodeSchedules in the pool by the third method.

void removeLink(NodeSchedule* x);
Removes the argument NodeSchedule from the scheduled list.

int sumIdle;

Indicates the sum of the idle time slots after scheduling is completed. The value is v
only afterdisplay method is called.

15.5.6 Other UniProcessor public members

There are a constructor with no argument to initialize all data members and a destructo
letesubGal and to delete all NodeSchedule objects associated with this processor.

Galaxy* myGalaxy();
int myId();
DoubleLinkList :: size;
int getSumIdle();

The above methods return the pointer to the sub-universe, the index of the current p
sor, the number of scheduled nodes, and the sum of idle time after scheduling is com
(or sumIdle).

void initialize();

This method puts all NodeSchedules in the list to the pool of free NodeSchedules an
tialize protected members.
U. C. Berkeley Department of EECS

The Almagest 15-17

 in the
ram.

turned

 node
ed in
m
LNode

ost

y the
 best
on into

 level

s.

le
void copy(UniProcessor* org);
Copies the schedule from the argument UniProcessor to the current processor.

StringList displaySubUniv();
StringList display(int makespan);
int writeGantt(ostream& os , const char* universe , int numProcs , int
span);

The first method display the sub-universe. The second method displays the schedule
textual form while the third one forms a string to be used by Gantt-chart display prog

15.5.7 Iterator for UniProcessor

Class ProcessorIter is the iterator for UniProcessor class. A NodeSchedule object is re
by next and++ operator.

ParNode* nextNode();

Returns the ParNode in the list.

15.6 Dynamic Level Scheduler
Dynamic Level Scheduling is one of the list scheduling algorithms where the priority of a
is not fixed during the scheduling procedure. The scheduling algorithm is implement
$PTOLEMY/src/domains/cg/dlScheduler . All classes in that directory are derived fro
the base parallel scheduling classes described above in this chapter. For example, D
class is derived from class ParNode, and redefinesgetLevel method to compute thedynamic
level of the node.

int getLevel();

This method returns the sum of the static node and the worst case communication c
between its ancestors and this DLNode.

Class DLNode has the same constructors as class ParNode.

The dynamic level scheduler maintains a list of runnable nodes sorted b
getLevel value of the DLNodes. It fetches a node of highest priority and choose the
processor that can schedule the node earliest while taking interprocessor communicati
account.

15.7 Class DLGraph
Class DLGraph, derived from class ParGraph, is the input APEG graph to the dynamic
scheduler. It consists of DLNode objects created by redefining the following method:

EGNode* newNode(DataFlowStar* s , int i);
This method creates a node in the APEG graph. Here, it creates a DLNode.

DLGraph has a protected member maintaining the number of unscheduled node

int unschedNodes;

We may check whether the scheduler is deadlocked or not by examining this variab
Ptolemy Last updated: 10/9/97

15-18 Parallel Schedulers

his

 argu-

 file,
 the
en

 case,
access

et.

edul-
when the scheduler halts. This can be manipulated by the public methods

void decreaseNodes();
int numUnSchedNodes();

The first method decrementsunschedNodes and the second method returns it.

The DLGraph class redefinesresetGraph method.
void resetGraph();

This makes the initial list of runnable nodes and sets the variable described above. T
method internally calls the following protected method:

virtual void resetNodes();

This method resets the busy flag and thewaitNum member of DLNodes.

There are three other public members.
DLNode* fetchNode();

Fetches a DLNode from the head of the list of runnable nodes.

StringList display();

Displays the APEG and the list of source nodes.

15.8 class DLScheduler
Class DLScheduler is derived from class ParScheduler. It has a constructor with three
ments.

DLScheduler(MultiTarget* t , const char* log , int i);
The arguments are the pointer to the multiprocessor target, the name of the logging
and a flag to indicate whether the communication overhead can be ignored or not. If
processor target has special hardware for communication separate from the CPU, th
most of the communication can be simultaneous with processor computation. In this
we do not reserve the communication time slot in the processor schedule but in the
schedule of the communication resources only. This mode of operation is selecte ifi is set
TRUE. This is not implemented since we haven’t dealt with that kind of architecture y

There is a protected member to point to a ParProcessor class:

DLParProcs* parSched;

This pointer is set in the following redefined method:

void setUpProcs(int num);
This method first performsParScheduler::setUpProcs, and then create a DLPar-
Procs object. While this class defines the overall procedure of the dynamic level sch
ing algorithm, the DLParProcs class provides the details of the algorithm .

~DLScheduler();

Deallocate the DLParProcs object.
U. C. Berkeley Department of EECS

The Almagest 15-19

ation

 in the

 We

 dead-
uling
rmined

orm the

target.
ors

n one
hedul-

ion of
ogeneous
er invo-
candi-

le this
ould be
The main procedure of the dynamic level schedule is defined in
int scheduleIt();

This method does the following:

(1) Initializes the DLParProcs and resets the DLGraph and the communic
resources of the multiprocessor target.

(2) Fetch a node from the list of runnable nodes until there are no more nodes
list.

(2-1) If the node is not a parallel node, callscheduleSmall method of the DLPar-
Procs class to schedule the node.

(2-2) If the node is the first invocation of a parallel-star node, we give up. NOTE:
do not support parallel stars since we haven’t had to deal with them yet.

(3) When there are no more runnable nodes, we check whether the graph is
locked. In case of successful completion, we perform an additional list sched
(listSchedule of the ParProcessors class), based on the processor assignment dete
by the above procedure.
StringList displaySchedule();

Displays the final schedule results.

15.9 Class DLParProcs
Class DLParProcs, derived from the ParProcessors class, defines a main object to perf
dynamic level scheduling algorithm. It has a constructor with two arguments:

DLParProcs(int pNum, MultiTarget * t);
The arguments are the number of processors and the pointer to the multiprocessor
This method createspNum UniProcessors for processing elements. These UniProcess
are deallocated in the destructor~DLParProcs().

Based on the type of node described inscheduleIt method of the DLScheduler class,
we call one of the following methods to schedule the node.scheduleSmall, sched-
uleBig, copyBigSchedule.

virtual void scheduleSmall(DLNode* n);
This method is a public method to schedule an atomic node that will be scheduled o
processor. This is virtual since the HuParProcs class redefines this method. The sc
ing procedure is as follows:

(1) Obtain the list of processors that can schedule this node. Refer tocandi-
dateProcs method of the CGMultiTarget class . Here, we examine the resource restrict
the processor, as well as the types of stars that a processor supports, in case of a heter
target. If all invocations of a star should be scheduled to the same processor and anoth
cation of the star is already scheduled, we put only that processor only into the list of
date processors that can schedule this node.

(2) Among all candidate processors, we select the processor that can schedu
node the earliest. In this stage, we consider all communication overhead if ancestors w
Ptolemy Last updated: 10/9/97

15-20 Parallel Schedulers

ica-

ants

aining

sched-
cessor
e pro-

de is
tter, we
.

e and

 of

s as-
edure.
-
dulers.

erived
 node
assigned to the different processors.

(3) Assign the node to that processor:
void assignNode(DLNode* n, int destP , int time);

Is a protected method to assign an atomic node (n) to the processor of indexdestP at
time. This method also schedules the communication requirements in the commun
tion resources.

(4) Indicate that the node was fired:
virtual void fireNode(DLNode* node);

It is a virtual and protected method. It fires the argument node and insert its descend
into the list of runnable nodes if they become runnable after this node is fired.

(5) Finally, we decrease the number of unscheduled nodes and the total rem
work of the DLGraph class.

The DLNode class has the pointer to the Profile class that determines the inside
ule of the node. We insert idle time slots to the processors to match the pattern of pro
availability with the starting pattern of the profile and append the node at the end of th
cessors. We record the assignment of the profile to the processors inassignedId array of the
Profile class . We also save the scheduling information in the DLNode: when the no
scheduled and completed, and on which processor it is scheduled. To determine the la
select the processor that the inside scheduler assumes the first processor it is assigned

After appending the profile at the end of the available processors, we fire the nod
update the variables of the DLGraph.

void initialize(DLGraph* graph);
This method callsParProcessors :: initialize and resets thecandidate member to the
index of the first UniProcessor, andmyGraph member tograph argument.

DLGraph* myGraph;

A protected members to store the pointer to the input APEG.

int costAssignedTo(DLNode* node , int destP , int start);
This method is a protected method to compute the earliest time when the processor
indexdestP could schedule the nodenode that is runnable at timestart.

15.10 Hu Level Scheduler
Hu’s level scheduling algorithm is a simple list scheduling algorithm, in which a node i
signed a fixed priority. No communication overhead is considered in the scheduling proc
The code lies in$PTOLEMY/src/domains/cg/HuScheduler . All classes, except the HuS
cheduler class in this directory, are derived from the classes for the dynamic level sche

15.10.1 Class HuNode

Class HuNode represents a node in the APEG for Hu’s level scheduling algorithm. It is d
from the DLNode class so that it has the same constructors. The level (or priority) of a
does not depend on the communication overhead.
U. C. Berkeley Department of EECS

The Almagest 15-21

r the
ants to
estor is

 given
e
e node

thods

t, and

r class

for the

e the

ed in
int getLevel();

Just returnsStaticLevel of the node.

A HuNode has two private variables to indicate the available time of the node (o
time the node becomes runnable) and the index of the processor on which the node w
be assigned. The latter is usually set to the index of the processor that its immediate anc
assigned. There are five public methods to manipulate these private variables.
int availTime();
void setAvailTime(int t);
void setAvailTime();
void setPreferredProc(int i);

The first three methods get and set the available time of the node. If no argument is
in setAvailTime, the available time is set to the earliest time when all ancestors ar
completed. The last two methods get and set the index of the processor on which th
is preferred to be scheduled.

15.10.2 Class HuGraph

Class HuGraph is the input APEG for Hu’s level scheduler. It redefines three virtual me
of its parent classes.

EGNode* newNode(DataFlowStar* s , int invoc);
Creates a HuNode as a node in the APEG.

void resetNodes();

This method resets the variables of the HuNodes: visit flag,waitNum, the available time,
and the index of the preferred processor.

void sortedInsert(EGNodeList& nlist , ParNode * n, int flag);
In the ParGraph class, this method sorts the nodes in order of decreasingStaticLevel of
nodes. Now, we redefine it to sort the nodes in order of increasing available time firs
decreasing the static level next.

15.10.3 Class HuScheduler

Class HuScheduler, derived from the ParScheduler class, is parallel to the DLSchedule
in its definition.

HuScheduler(MultiTarget* t , const char * log);
The constructor has two arguments: one for the multiprocessor target and the other
log file name.

The HuScheduler class has a pointer to the HuParProcs object that will provid
details of the Hu’s level scheduling algorithm.
HuParProcs* parSched;

This is the protected member to point to the HuParProcs object. That object is creat
the following method:

void setUpProcs(int num);
This method first callsParScheduler::setUpProcs and next creates a HuParProcs
Ptolemy Last updated: 10/9/97

15-22 Parallel Schedulers

xcept
 a

 first.

r. While
ethods
er the

t. And it
sched-
 global
node at

roces-

ne
e node.
ode
eady
or not.
e

nodes.
gn and
ion

m only
nor par-

e the
step. It
ns of
 sched-
object. The HuParProcs is deallocated in the destructor.

int scheduleIt();

The scheduling procedure is exactly same as that of the Dynamic Level Scheduler e
that the actual scheduling routines are provided by a HuParProcs object rather than
DLParProcs object. Refer to thescheduleIt method of class DLScheduler . Also note
that the runnable nodes in this scheduling algorithm are sorted by their available time

StringList displaySchedule();

Displays the scheduling result textually.

15.10.4 Class HuParProcs

Class HuParProcs is derived from class DLParProcs so that it has the same constructo
many scheduling methods defined in the DLParProcs class are inherited, some virtual m
are redefined to realize different scheduling decisions. For example, it does not consid
communication overhead to determine the processor that can schedule a node earlies
does not schedule communication resources. Another big difference is that Hu’s level
uling algorithm has a notion of global time clock. No node can be scheduled ahead of the
time. At each scheduling step, the global time is the same as the available time of the
the head of the list of runnable nodes.

void fireNode(DLNode* n);
This redefined protected method sets the available time and index of the preferred p
sor of the descendants, if they are runnable after noden is completed. This is done before
putting them into the list of runnable nodes (sortedInsert method of the HuGraph
class).

void scheduleSmall(DLNode* n);
When this method is called, the noden is one of the earliest runnable nodes. We exami
a processor that could schedule the node at the same time as the available time of th
If the node is at the wormhole boundary, we examine the first processor only. If the n
should be assigned to the same processor on which any earlier invocations were alr
assigned, we examine that processor whether it can schedule the node at that time
If no processor is found, we increase the available time of the node to the earliest tim
when any processor can schedule it, and put the node back into the list of runnable
If we find a processor to schedule the node at the available time of the node, we assi
fire the node, then update the variables of the HuGraph. Recall that no communicat
overhead is considered.

15.11 Declustering Scheduler
Declustering scheduler is the most elaborate scheduler developed by Sih . This algorith
applies to the homogeneous multiprocessor targets and it does not support wormholes
allel stars. Since it takes into account the global information of the graph, it may overcom
weaknesses of list schedulers which consider only local information at each scheduling
turns out that this scheduling algorithm is very costly since it involves recursive executio
the list scheduler with various assignment, and choosing the best scheduling result. The
U. C. Berkeley Department of EECS

The Almagest 15-23

C++.
ged to

r with
sed in
rProcs
 sched-
cs are

ine the
rc) and
. Those
ication

luster
ed at

stars.

p. We
hen, we
a larger
cluster.
n save
to stop
ompare
e ele-

r.

sters.
oaded

iously
onally
e make
uling routine was originally written in LISP for the Gabriel system and was translated into
Since the algorithm itself is very complicated, the reader of the code is highly encoura
read Sih’s paper on the scheduling algorithm.

Class DeclustScheduler is derived from class ParScheduler. It has a constructo
two arguments as the ParScheduler class. The subclass of ParProcessors u
DeclustScheduler is DCParProcs. The DeclustScheduler maintains two kinds of DCPa
instances, one to save the best scheduling result so far, and the other is for retrying list
uling whose results will be compared with the best result so far. These two DCParPro
created in
void setUpProcs(int num);

They are deleted in the destructor.

StringList displaySchedule();

Displays the best scheduling result obtained so far.

The overall procedure of the declustering algorithm is:

(1) Make elementary clusters of nodes. To make elementary clusters, we exam
output arcs of all branch nodes (a branch node is a node with more than one output a
the input arcs of all merge nodes (a merge node is a node with more than one input arc)
arcs are candidates to be cut to make clusters. An arc is cut if the introduced commun
overhead can be compensated by exploiting parallelism.

(2) We make a hierarchy of clusters starting from elementary clusters up to one c
which includes all nodes in the APEG. Clusters with the smallest work-load will be plac
the bottom level of the hierarchy.

The above two steps are performed in the following protected method:
int preSchedule();

Before making clusters, it first checks whether the APEG has wormholes or parallel
If it finds any, it returnsFALSE.

(3) We decompose the cluster hierarchy. We examine the hierarchy from the to
assign two processors to each branch (son cluster) of the top node at the next level. T
execute list scheduling and save the scheduling result. We choose a son cluster with
work-load. Then, we introduce another processor to schedule two branches of the son
Execute a different list scheduling to compare the previously best scheduling result, the
the better result. Repeat this procedure until all processors are consumed. It is likely
traversing the cluster hierarchy since all processors are consumed. At this stage, we c
the loads of processors and try to balance the loads within a certain ratio by shifting som
mentary clusters from the most heavily loaded processor onto a lightly loaded processo

(4) In some cases, we can not achieve our load-balancing goals by shifting clu
We try to breakdown some elementary clusters in heavily loaded processors to lightly l
clusters. This is cluster "breakdown".

(5) In each step of (3) and (4), we execute list scheduling to compare the prev
best scheduling result. This is the reason why the declustering algorithm is computati
expensive. Finally, we get the best scheduling result. Based on that scheduling result, w
a final version of the APEG including all communication nodes (in thefinalizeGalaxy
Ptolemy Last updated: 10/9/97

15-24 Parallel Schedulers

in the
ted that

ining

eduler.
rotected

wning

ling
letion
e cur-

 node

thod

list,
method of DCParProcs class). Note that we do not call the list scheduling algorithm
ParProcessors class after we find out the best scheduling result since we already execu
routine for that result.

Steps (3), (4), and (5) are performed in the following public method:
int scheduleIt();

Many details of the scheduling procedure are hidden with private methods. The rema
section will describe the classes used for Declustering scheduling one by one.

15.11.1 Class DCNode

Class DCNode, derived from class ParNode, is an APEG node for the declustering sch
It has the same constructors with the ParNode class. This class does not have any p
members.

int amIMerge();
int amIBranch();

These methods returnTRUE if this node is a merge node or a branch node.

DCCluster* cluster;
DCCluster* elemDCCluster;

These pointers point to the highest-level cluster and the current elementary cluster o
this node.

void saveInfo();
int getBestStart();
int getBestFinish();

The first method saves the scheduling information of this node with the best schedu
result, which includes the processor assignment, the scheduled time, and the comp
time. The next two methods return the scheduled time and the completion time of th
rent node.

int getSamples(DCNode* destN);
Returns the number of samples transferred from the current node to the destination
destN. If no sample is passed, it returns 0 with an error message.

DCNode* adjacentNode(DCNodeList& nlist , int direction);
DCNodeList is derived from class EGNodeList just to perform type casting. This me
returns an adjacent node of the current node in the given node list. Ifdirection is 1,
look at the ancestors, if -1, look at the descendants.

StringList print();

Prints the master star name and the invocation number of the node.

There are three iterators defined for DCNode class:DCNodeListIter, DCAnces-
torIter, andDCDescendantIter. As names suggest, they return the DCNode in the
in the ancestors of a node, and in the descendants of a node.
U. C. Berkeley Department of EECS

The Almagest 15-25

lusters.

main-
t. We
d two

is ben-
c,
r
is

ods:

nt

 star.

 has
rcs in
15.11.2 Classes DCArc and DCArcList

Class DCArc represents an candidate arc in the APEG to be cut in making elementary c
It has a constructor with five arguments.

DCArc(DCNode* src , DCNode* sink , int first , int second ,int third);
The first two arguments indicate the source and destination nodes of the arc. The re
ing three arguments define a triplet of information used to help find the arcs to be cu
call these arcs "cut-arcs". We consider a pair of a branch node and a merge node an
paths between them to determine if a pair of cut-arcs to parallelize these two paths
eficial. Thefirst argument is the sum of execution times of nodes preceding this ar
starting from the branch node. Thesecond argument is the communication overhead fo
this arc. Thethird argument is the sum of execution times of nodes following from th
arc to the merge node.

The five arguments given to the constructor can be retrieved by the following meth
DCNode* getSrc();
DCNode* getSink();
int getF();
int getS();
int getT();

They can be printed by

StringList print();

The sink and the source nodes can be reversed, and can be copied from an argume
DCArc by the following methods:

void reverse();
int operator==(DCArc& arc);

There are other public methods as follow:

DCArcList* parentList();

A DCArc will be inserted to a list of DCArcs, call DCArcList. This method returns the
pointer to the list structure.

int betweenSameStarInvoc();

ReturnsTRUE or FALSE, based on whether this arc is between invocations of the same

Class DCArcList is derived from class SequentialList to make a list of DCArcs. It
a constructor with no argument and a copy constructor. The destructor deletes all DCA
the list.
void insert(DCArc* arc);
void append(DCArc* arc);

These methods to putarc at the front and the back of the list, respectively.

DCArc* head();

Returns the DCArc at the front of the list.

int remove(DCArc* arc);
Ptolemy Last updated: 10/9/97

15-26 Parallel Schedulers

. It has

nd

mallest

odes

he

h
t

Removesarc from the list.

int member(DCArc* arc);
ReturnsTRUE if the given DCArc is a member of the list.

int mySize();

Returns the number of DCArcs in the list.

StringList print();

It prints a list of DCArcs in the list.

There is a iterator for DCArcList, called DCArcIter, which returns a DCArc.

15.11.3 Class DCGraph

Class DCGraph, derived from class ParGraph, is an input APEG for DeclustScheduler
no explicit constructor.

EGNode* newNode(DataFlowStar* , int);
Creates a DCNode as an APEG node for DCGraph.

DCNodeList BranchNodes;
DCNodeList MergeNodes;

These lists store the branch nodes and merge nodes.

int initializeGraph();

This protected method initializes the DCGraph. It sets up the lists of branch nodes a
merge nodes (BranchNodes, MergeNodes), and the list of initially runnable nodes.
We sort these lists by the static levels of the nodes: the branch nodes are sorted by s
static level first while the merge nodes are sorted by largest static level first. In this
method, we also initialize the DCNodes, which includes the detection of the merge n
that are reachable from the node and the branch nodes reachable to the node.

The remaining methods are all public.
const char* genDCClustName(int type);

Generate a name for the cluster. Iftype = 0, we prefix with "ElemDCClust" to represent
an elementary cluster. Otherwise, we prefix with "MacroDCClust".

StringList display();

Displays the APEG with the lists of initially runnable nodes, the branch nodes, and t
merge nodes.

DCNode* intersectNode(DCNode* d1 , DCNode* d2 , int direction);
This method returns a merge node with the smallest static level, reachable from botd1
andd2 if direction = 1. If direction = 0, it returns a branch node with the smalles
static level, that can reach bothd1 andd2 nodes.

DCArcList* traceArcPath(DCNode* branch , DCNode* src , DCNode* dest , int direc-
tion);
U. C. Berkeley Department of EECS

The Almagest 15-27

onent
e

pute
 num-
side the
f shift-

tter

no pro-
 make
d

he
ng the

nt
This method makes a list of candidate cut-arcs betweenbranch anddest nodes, and
returns the pointer to the list. The second argument,src, is an immediate descendant of
thebranch node on the path to thedest node. Ifdirection = 1, we reverse all arcs and
find cut-arcs fromdest to branch nodes.

void addCutArc(DCArc* arc);
This method adds a DCArc to a list of cut-arcs in DCGraph.

void formElemDCClusters(DCClusterList& EClusts);
In this method, we remove all cut-arcs in the APEG and make each connected comp
an elementary cluster. The argumentEClusts is the list of those elementary clusters. W
connect these clusters at the end.

void computeScore();

In scheduling stage (3) of the DeclustScheduler, we may want to shift clusters from
heavily loaded processors to lightly loaded processors. To prepare this step, we com
the score of top-level clusters in that scheduling phase. The score of a cluster is the
ber of samples passed to other processors minus the number of samples passed in
same processor along the cut-arcs within that cluster. The score indicates the cost o
ing a cluster due to communication.

void commProcs(DCCluster* clust , int* procs);
This method finds processors thatclust communicates with. We set the component of
the second argument array to 1 if that processor communicates with the cluster.

void copyInfo();

Used for saving the scheduling information if the most recent scheduling result is be
than the previous ones.

15.11.4 Class DCCluster

Class DCCluster represents a cluster of nodes in the declustering algorithm. There is
tected member in this class. It consists of two DCClusters, called component clusters, to
a hierarchy of clusters. An elementary cluster hasNULL component clusters. It is constructe
by a one-argument constructor.

DCCluster(DCNodeList* node-list);
Makes the cluster contain all nodes from the list.

To make a macro cluster, we use the following constructor:
DCCluster(DCCluster* clust1 , DCCluster * clust2);

The argument clusters become the component clusters of this higher level cluster. T
cluster-arcs are established from the cluster-arcs of two component clusters by calli
following method:

void fixArcs(DCCluster* clust1 , DCCluster * clust2);
In this method, arcs put inside this cluster are removed from the arcs of two argume
clusters.
Ptolemy Last updated: 10/9/97

15-28 Parallel Schedulers

 clus-

ple

 the

, and

be

ompo-
t it

score to
In both constructors, we compute the sum of execution times of all nodes in the
ter, which can be obtained by
int getExecTime();
DCCluster* getComp1();
DCCluster* getComp2();

The last two methods above return two component clusters.

void setName(const char* name);
const char* readName();

The above methods set and get the name of the cluster.

void addArc(DCCluster* adj , int numSample);
This method adds a cluster-arc that is adjacent to the first argument cluster with sam
ratenumSample.

void setDCCluster(DCCluster* clust);
Sets thecluster pointer of the nodes in this cluster to the argument cluster.

void assignP(int procNum);
int getProc();

The first method assigns all nodes in the cluster to a processor. The second returns
processor that this cluster is assigned to.

void switchWith(DCCluster* clust);
Switches the processor assignment of this cluster with the argument cluster.

DCCluster* pullWhich();

Returns the cluster with the smaller execution time between two component clusters
pull it out.

DCCluster* findCombiner();

This method returns the best cluster, in terms of cluster-arc communication cost, to
combined. We break ties by returning the cluster with smallest execution time.

void broken();
int getIntact();

These methods indicate whether the cluster or its subclusters were broken into its c
nents in the scheduling stage (3) of DeclustScheduler. The first method indicates tha
happens. The second method queries whether it happens or not.

int getScore();
int setScore(int score);
void resetMember();

These methods get and set the score of the cluster. Refer to thecomputeScore method of
the DCGraph class to see what the score of a cluster is. The last method resets the
0.

StringList print();

Prints the name of this cluster and the names of component clusters.
U. C. Berkeley Department of EECS

The Almagest 15-29

 clus-

o pro-

 the

 The
rived

blic

lares
des of

ers is

 that
~DCCluster();

The destructor deletes the nodes in the cluster and cluster-arcs if it is an elementary
ter.

15.11.5 Class DCClusterList

Class DCClusterList, derived from class DoubleLinkList, keeps a list of clusters. It has n
tected members. It has a default constructor and a copy constructor.

void insert(DCCluster* clust);
void append(DCCluster* clust);
void insertSorted(DCCluster* clust);

These methods putclust at the head and the back of the list. The last method inserts
cluster in order of increasing execution time.

DCClusterLink* firstLink();
DCCluster* firstDCClust();
DCCluster* popHead();

The above methods return the DCClusterLink and DCCluster at the head of the list.
last method removes and returns the cluster from the list. Class DCClusterLink is de
from class DoubleLink as a container of DCCluster in the DCClusterList. It has a pu
method to access the cluster called

DCCluster* getDCClustp();
DCClusterLink* createLink(DCCluster* clust);
void removeDCClusters();

Create a DCClusterLink and removes all clusters in the list, respectively.

void resetList();
void resetScore();
void setDCClusters();

The first two methods reset the scores of all clusters to 0. The first method also dec
that each cluster is not broken. The third method resets the cluster pointer of the no
the clusters in the list.

int member(DCCluster* clust);
ReturnsTRUE or FALSE, based on whether the argument cluster is in the list or not.

void findDCClusts(DCNodeList& nlist);
Add to the list clusters that own the nodes of the argument list. If the number of clust
1, we break the cluster into two component clusters and put them into the list.

int listSize();

Returns the number of clusters in the list.

StringList print();

Prints the list of clusters.

There is an iterator associated with the DCClusterList called DCClusterListIter
returns a DCCluster. It can return a DCClusterLink by thenextLink method.
Ptolemy Last updated: 10/9/97

15-30 Parallel Schedulers

t sets

.

ster-

ound

Iter,

 destruc-

type of

cribed
15.11.6 Class DCClustArc and class DCClustArcList

Class DCClustArc represents a cluster-arc. It has a constructor with two arguments:

DCClustArc(DCCluster* neighbor , int nsamples);
The first argument is the pointer to the neighboring cluster while the second argumen
the sample rate of the connection.

DCCluster* getNeighbor();
void changeNeighbor(DCCluster* clust);

These methods return the neighbor cluster and change to it.

void changeSamples(int newsamps);
void addSamples(int delta);
int getSamples();

The above methods modify, increment, and return the sample rate of the current arc

StringList print();

Prints the name of the neighbor cluster and the sample rate.

Class DCClustArcList is derived from class SequentialList to make a list of clu
arcs. It has four public methods.
DCClustArc* contain(DCCluster* clust);

Returns the DCClustArc that is adjacent to the argument cluster. If no cluster-arc is f
in the list, return 0.

void changeArc(DCCluster* oldC , DCCluster*newC);
This method changes the pointer of neighbor cluster,oldC, in all cluster-arcs in the list to
newC.

void removeArcs();

Deletes all cluster-arcs in the list.

StringList print();

Prints the list of DCClustArcs.

There is an iterator associated with the DCClustArcList, called DCClustArcList
which returns a DCClustArc.

15.11.7 Class DCParProcs

Class DCParProcs is derived from class ParProcessors. It has the same constructor and
tor with the ParProcessors class.

There is one protected method:
ParNode* createCommNode(int i);

Creates a DCNode to represent a communication code. The argument indicates the
the node.

The other methods are all public, and support the main scheduling procedure des
U. C. Berkeley Department of EECS

The Almagest 15-31

duling

om-

n inte-
ro-

 We

ule

ors
in the DeclustScheduler class .
int commAmount();

Returns the communication overhead of the current schedule.

void saveBestResult(DCGraph* graph);
This method saves the current scheduling information of the nodes as the best sche
result.

void finalizeGalaxy(DCGraph* graph);
After all scheduling is completed, we make a final version of the APEG including all c
munication loads based on the best scheduling result obtained.

void categorizeLoads(int procs);
This method categorizes each processor as either heavily or lightly loaded. It sets a
ger array,nprocs, 1 for heavy and -1 for light processors. The initial threshold is 50 p
cessors are heavily loaded if all processors are loaded beyond a 75 maximum load.
regard at most one idle processor as lightly loaded.

int findSLP(DCNodeList* nlist);
This method finds the progression of nodes (regular or communication) in the sched
which prevents the makespan from being any shorter. We call this set of nodes andsched-
ule limiting progression: SLP (refer to Sih’s paper). The SLP can span several process
and can’t contain idle times. If there are several SLPs it will return just one of them.
Ptolemy Last updated: 10/9/97

15-32 Parallel Schedulers
U. C. Berkeley Department of EECS

The Almagest 16-1

 in the
v-
de, and
 which

he pur-
te code

et will
tar uses
tream of

o vari-
 to the

uential
o Code-

de-
uld be
ith an
Chapter 16. Base Code Generation
Domain and Supporting Classes

Authors: Soonhoi Ha

Other Contributors: Michael C. Williamson

This chapter explains the base classes for code generation, which are found
$PTOLEMY/src/domains/cg/kernel directory. Not all classes in that directory are co
ered in this document. We instead concentrate on how to generate and organize the co
which methods to use. There is a basic code generation domain, designated CG, from
other code generation domains are derived. The CG domain can be used by itself for t
pose of studying issues in control constructs and scheduling, without needing to genera
in any particular programming language.

A segment of code is formed in an instance of class CodeStream. Each CGTarg
have a list of CodeStreams, and will assemble them to generate the final code. A CGS
instances of class CodeBlock to form a code segment, which can be added to a CodeS
the CGTarget after some processing.

A set of macros are defined which a star programmer may use in order to refer t
ables without being concerned about resource allocation. For example, we may refer
portholes of a star without knowing what physical resources are allocated to them.

16.1 Class CodeStream
Class CodeStream is publicly derived from class StringList, and is used to make a seq
stream of code. In class CGTarget, a base target class for code generation, there are tw
Streams:myCode andprocedures.

CodeStream myCode;
CodeStream procedures;

These are protected members of class CGTarget. They are the default entries incode-
StringLists , the list of code streams that CGTarget maintains.

CodeStreamList codeStringLists;
This is a protected member of class CGTarget. We can add a CodeStream tocode-
StringLists by using the following method of class CGTarget:

void addStream(const char* name, CodeStream* code);
This is a public method of class CGTarget. The first argument is the name of the Co
Stream, and the second argument is a pointer to the CodeStream. This method sho
called in the constructor of a target class. If a target attempts to add a CodeStream w
existing name, an error will be signaled.
Ptolemy Last updated: 10/9/97

16-2 Base Code Generation Domain and Supporting

e-

Star’s

 to the

od of

lly, the

dded,

 seg-
ed

t and

string

 class
s in the
CodeStream* getStream(const char* name=NULL);
This is a public method of class CGTarget. This method returns a pointer to the Cod
Stream with the given name. If no stream with the given name is found, this method
returnsNULL. If name=NULL, a pointer todefaultStream is returned. Class CGStar
has a corresponding method to get the CodeStream with the given name from the CG
target.

The following method allows CGStars to construct a new CodeStream and add it
CGTarget’s list of CodeStreams. Some of the possible uses for this method are:

 • a group of CGStars can build a procedure together

 • a CGStar can add control flow constructs at the end of themainLoop code

CodeStream* newStream(const char* name);

This is a public method of class CGTarget. There is a corresponding protected meth
CGStar. This method adds a new CodeStream with the given name to thecodeString-
Lists member of the CGTarget, and returns a pointer to the new CodeStream.

Now we will explain the public methods and members of class CodeStream.
int put(const char* code , const char* name=NULL);

This method puts the given segment of code at the end of the CodeStream. Optiona
name of the code segment can be given. Ifname=NULL, we append the code uncondi-
tionally. Otherwise, we check to see if code with the same name has already ben a
by examining thesharedNames member of the CodeStream. If no code segment with
the same name is found, the code segment is appended. This method returnsTRUE if code
was successfully added to the stream,FALSE otherwise.

UniqueStringList sharedNames;

This is a public member of class CodeStream. It is used to store the names of code
ments added by name to the CodeStream. Class UniqueStringList is privately deriv
from class StringList.

void initialize();

This is a public method of class CodeStream. It is used to initialize both the code lis
sharedNames.

int isUnique(const char* name);

This is a public method of class UniqueStringList. This method returnsFALSE if the argu-
ment string already exists in the UniqueStringList. If not, then the method adds the
to the list and returnsTRUE.

Class CodeStreamList contains a list of CodeStreams. It is publicly derived from
NamedList since each CodeStream is assigned a name. There are four public method
CodeStreamList class:
int append(CodeStream* stream , const char* name);
int add(const char* name, CodeStream* stream);
CodeStream* get(const char* name) const;
int remove(const char* name);
U. C. Berkeley Department of EECS

The Almagest 16-3

in the
ile the

 list of
he list.

e

e

s the

Iter. It

ode-

n the
t.

to
der to
anage-
The first two methods append a CodeStream to the list. They differ from each other
order of arguments. The third method returns a CodeStream with the given name wh
last method removes the CodeStream with the given name from the list.

16.1.1 Class NamedList

Class NamedList is privately derived from class SequentialList, and is used to make a
objects with names. It has a default constructor. The destructor deletes all objects in t
There are no protected members in this class.

int append(Pointer object , const char* name);
void prepend(Pointer object , const char* name);

These methods put an object,object , with namename at the end and the beginning of
the list, respectively. In the first method, we may not append multiple objects with th
same name. If an object with the same name exists in the list,FALSE is returned. On the
other hand, the second method allows multiple objects with the same name to be
prepended. Only the most recently prepended object will be visible.

Pointer get(const char* name=NULL);

This method returns the object with the given name. If no name is given, it returns th
object at the head of the list. If no object is found, it returnsNULL.

int remove(const char* name=NULL);

This method removes the object with the given name. If no name is given, it remove
first object at the head of the list. If no object is found it returnsFALSE, otherwise it
returnsTRUE.

There is an iterator class associated with the NamedList class, called NamedList
returns a pointer to the next object in the list as it iterates through the list.

16.2 Class CodeBlock and Macros
Class CodeBlock stores a pointer to text in its constructor.

CodeBlock(const char* text);

It is up to the programmer to make sure that the argument text lives as long as the c
block is used.

There are four public methods defined to access the text:
void setText(char* line);
const char* getText();
operator const char*();
void printCode();

The first method sets the text pointer in the CodeBlock. The next two methods retur
text this CodeBlock points to. The last method prints the code to the standard outpu

A star programmer uses thecodeblock directive in the preprocessor language file
define a block of text. In a CodeBlock, the programmer uses the following macros in or
refer to the star ports and variables without needing to be concerned about resource m
Ptolemy Last updated: 10/9/97

16-4 Base Code Generation Domain and Supporting

ymbols

llow-

ode,

d

e
f
 the

calls
. If a

t by
ment or name conflicts:
$val(name)

Value of a state

$size(name)
Buffer size of a state or a porthole

$ref(name)
Reference to a state or a porthole

$ref(name, offset)

Reference with offset

$label(name)
Unique label inside a codeblock

$codeblockSymbol(name)
Another name for $label

$starSymbol(name)
Unique label inside a star

$sharedSymbol(list , name)

Unique label for set list, name pair

These macros are resolved into code after resources are allocated or unique s
are generated.

A CodeBlock defined in a CGStar is put into a CodeStream of the target by the fo
ing methods of the CGStar class:
int addCode(const char* code , const char* stream =NULL,
 const char* name=NULL);
int addProcedure(const char* code , const char* name);

These are protected methods of class CGStar. The first method puts a segment of c
code, at the end of the target’s CodeStream with namestream . If the name of the Code-
Stream is not given, the method uses themyCode stream of the target. The second metho
uses theprocedure CodeStream of the target. The argumentname of both methods is
optionally used to specify the name of the code. If the code is successfully added, th
methods returnTRUE, otherwise they returnFALSE. Before putting the code at the end o
the CodeStream, the code is processed to resolve any macros by the application of
processCode method:

StringList processCode(CodeBlock& cb);
StringList processCode(const char* code);

These methods are both protected and essentially equivalent since the first method
the second method. They scan the code, word by word, and copy it into a StringList
macro is found, the macro is expanded through a call toexpandMacro before being cop-
ied to the StringList. Testing can be done to check whether a word is a macro or no
comparing the first character with the result of the following method:
U. C. Berkeley Department of EECS

The Almagest 16-5

pecial
 it

h the
ist

. A

thods

e rede-
rived
eal with
m-

ks, the

for that
olLists,

ri-

 a
virtual char substChar() const;

This method is a virtual protected method of class CGStar. It is used to return the s
character that marks the beginning of a macro in a code block. In the CGStar class,
returns the dollar sign character,$.

virtual StringList expandMacro(const char* func ,
 const StringList& argList);

This is a virtual protected method of class CGStar. It is used to expand a macro wit
given namefunc. The argument list must be passed by reference so that the StringL
will not be consolidated. It is virtual so that derived classes can define more macros
macro is identified by the following method:

int matchMacro(const char* func , const StringList& argList ,
 const char* name, int argc);

This protected method of class CGStar returnsTRUE if the first argumentfunc matches
with the third argumentname, and the number of arguments inargList is the same as
the countargc .

Based on the particular macro being applied, one of the following protected me
may be used to expand the macro:
virtual StringList expandVal(const char* name);
StringList expandSize(const char* name);
virtual StringList expandRef(const char* name);
virtual StringList expandRef(const char* name, const char* offset);

The first three methods expand the $val, $size, and $ref macros. The fourth method
expands the $ref macro when it has two arguments. These virtual methods should b
fined in derived classes. In particular, the last two methods must be redefined in de
classes because in class CGStar they generate error messages. The other macros d
unique symbols within the scope of a code block, within a star, and within a set of sy
bols. More will be said about these in the next subsection .

When an error is encountered while expanding macros or processing code bloc
following methods should be called to generate an error message:
void macroError(const char* func , const StringList& argList);
void codeblockError(const char* p1, const char* p2="");

The arguments of the second method provide the text of the error message.

16.3 Class SymbolList and Unique Symbol Generation
In order to generate a unique symbol within a scope, a list of symbols should be made
scope. For example, the CGStar class has two protected members which are Symb
starSymbol andcodeblockSymbol.

SymbolList starSymbol;
SymbolList codeblockSymbol;

Class SymbolList is derived from class BaseSymbolList. Class BaseSymbolList is p
vately derived from class NamedList. A BaseSymbolList keeps two private members
which are used to create a unique name for each symbol in the list: a separator and
counter:
Ptolemy Last updated: 10/9/97

16-6 Base Code Generation Domain and Supporting

gument
en-

hat
bol,

, it

t

unique

 con-
e base

ol.

xists
in the
BaseSymbolList(char sep =’_’, int* count =NULL);

The first argument of the constructor is used to set the separator, and the second ar
is used to set the pointer of the count variable. These two variables can be set indep
dently by invoking the following methods:

void setSeparator(char sep);
void setCounter(int* count);

When we append or insert a new symbol into the list, we create a unique name for t
symbol by appending a separator followed by the counter value to the argument sym
and then return the unique name:

const char* append(const char* name);
const char* prepend(const char& name);
const char* get(const char* name=NULL);

This last method returns the unique symbol with the given name. If no name is given
returns the first symbol in the list.

int remove(const char* name=NULL);

This method removes the unique symbol with the given name. If no name is given, i
removes the first symbol in the list. It returnsFALSE if no symbol is removed.

Symbols in the list are deleted in the destructor, and in the following method:
void initialize();

The public method
Stringlist symbol(const char* string)

makes a unique symbol from the supplied argument by adding the separator and a
counter value to the argument string.

Class SymbolList is privately derived from class BaseSymbolList with the same
structor and a default destructor. Class SymbolList uncovers only three methods of th
class:
BaseSymbolList::setSeparator;
BaseSymbolList::setCounter;
BaseSymbolList::initialize;

Class SymbolList adds one additional method:
const char* lookup(const char* name);

If a unique symbol with the given name exists, this method returns that unique symb
Otherwise, it creates a unique symbol with that name and puts it into the list.

Recall that the CGStar class has two SymbolLists. The macros$codeblockSymbol ,
$label , and$starSymbol are resolved by thelookUp method of thecodeblockSymbol
andstarSymbol SymbolLists, based on the scope of the symbol. If the symbol already e
in the SymbolList, it returns that unique symbol. Otherwise, it creates a unique symbol
scope of interest.
U. C. Berkeley Department of EECS

The Almagest 16-7

ymbol

ly
tor as

unter

o
to

od:

class:
econd
 pro-

tack is
e class

e sym-
If we want to generate a unique symbol within the file scope, we use a scoped s
list defined in the target class.
ScopedSymbolList sharedSymbol;

It is a protected member of the CGTarget class. Class ScopedSymbolList is private
derived from class NamedList to store a list of SymbolLists. It has the same construc
the base class.

void setSeparator(char set);
void setCounter(int* count);

These methods in class ScopedSymbolList are used to set the separator and the co
pointer of all SymbolLists in the list.

const char* lookup(const char* scope , const char* name);

In this method, the first argument determines the SymbolList in the list namedscope,
and the second argument determines the unique symbol within that SymbolList. If n
SymbolList is found with the given name, we create a new SymbolList and insert it in
the list.

The SymbolLists in the list are deleted in the destructor and in the following meth
void initialize();

Now we can explain how to expand the last macro defined in the CGStar
$sharedSymbol. The first argument of the macro determines the StringList and the s
argument accesses the unique string in that StringList. It is done by calling the following
tected method in the CGStar class:
const char* lookupSharedSymbol(const char* scope , const char* name);

This method calls the corresponding method defined the CGTarget class.

The CGTarget class has another symbol list:
SymbolStack targetNestedSymbol;

It is a protected member used in generating unique nested symbols. Class SymbolS
privately derived from class BaseSymbolList. It has the same constructor as the bas
and has a default destructor.

For stack operation, class SymbolStack defines the following two methods:
const char* push(const char* tag ="L");
StringList pop();

These methods push the symbol with given name onto the top of the list and pop th
bol at the top of the list off of the list, respectively.

This class also exposes several methods of the base class:
BaseSymbolList::get;
BaseSymbolList::setSeparator;
BaseSymbolList::setCounter;
BaseSymbolList::initialize;
BaseSymbolList::symbol;
Ptolemy Last updated: 10/9/97

16-8 Base Code Generation Domain and Supporting

ounter

ond is
e

ent the
 identi-

e visible
rmine

wever,
ethods
about
 This is

ering

Geo-

xam-
’s input
ecial

lowing

s
od is
wo
we

the
 of
In this section, we have explained various symbol lists. The separator and the c
are usually defined in the CGTarget class:
char separator;
int counter;

The first is a public member in class CGTarget, and is set in the constructor. The sec
a private member in class CGTarget, and is initialized to zero in the constructor. Th
counter value is accessed through the following public method:

int* symbolCounter();

16.4 Class CGGeodesic and Resource Management
When we generate assembly code, we have to allocate memory locations to implem
portholes and states of each star. For high-level language generation, we assign unique
fiers to them. It is rather easy to allocate resources for states since state requirements ar
from the star definition: type, size and name. In this section, we will focus on how to dete
the buffer size for the porthole connections.

We allocate a buffer for each connection. We do not assume in the base class, ho
that the buffer is owned by the source or by the destination porthole. Instead, we use m
of the CGGeodesic class. Before determining the buffer sizes, we obtain information
how many samples are accumulated on each CGGeodesic by simulating the schedule.
for the case of synchronous dataflow (SDF) semantics with static scheduling.

The minimum buffer requirement of a connection may be determined by consid
only local information about the connection:
int minNeeded() const;

This method returns that minimum buffer size. It is a protected member of class CG
desic.

We do not want to allocate buffers for connections when it is unnecessary. For e
ple, the output portholes of a Fork star can share the same resource with the Fork star
porthole. A Gain star with unity gain is another trivial example. Therefore, we pay sp
attention to stars of type Fork. Without confusion, we refer to a star as aFork star if its outputs
can share the same resource with its input. In the CGStar class, we provide the fol
methods:
int isItFork();
void isaFork();
virtual void forkInit(CGPortHole& input, MultiCGPortHole& output);
virtual void forkInit(CGPortHole& input, CGPortHole& output);

The first is a public method of class CGStar. The rest are protected methods of clas
CGStar. The first method queries whether the star is a Fork star. The second meth
used to declare that the star is a Fork star. If it is, we can call either one of the last t
methods, based on whether the output is a MultiPortHole or not. In those methods,
shift delays from a Fork’s input port to the output ports, and set theforkSrc pointer of
the output ports to point to the Fork’s input port. The Fork’s input port keeps a list of
output ports in itsforkDests member. We apply this procedure recursively in the case
cascaded Forks.
U. C. Berkeley Department of EECS

The Almagest 16-9

ing

ed on

 Fork

sic. If

nt
 fork

ith this
, the
r size

ched-

lues
able.
o
-
ul, we
CGPortHole* forkSrc;
SequentialList forkDests;

These are protected members of class CGPortHole. The first one is set by the follow
public method:

void setForkSource(CGPortHole* p, int cgPortHoleFlag =TRUE);
The first argument is the input porthole of the Fork star and the port this is being call
should be an output porthole when we call this method.

int fork() const;

This is a public method of class CGPortHole which returnsTRUE if it is an input porthole
of a Fork star.

Class CGGeodesic provides two methods to return the Fork input port if it is at a
output port. Otherwise these methods returnNULL.
CGPortHole* src();
const CGPortHole* src() const;

These two methods are protected and differ from each other in their return type.

Now we will explain more of the methods of class CGGeodesic.
int forkType() const;

This public method of class CGGeodesic indicates the type of the current CGGeode
it is at a Fork input, it isF_SRC. If it is at a Fork output, it isF_DEST.

int forkDelay() const;

This public method of class CGGeodesic returns the amount of delay from the curre
Geodesic up to the fork buffer that this Geodesic refers to. If it is not associated with a
buffer, it returns 0.

We do not allocate a buffer to a CGGeodesic if it isF_DEST.
int localBufSize() const;
int bufSize() const;

The above public methods of class CGGeodesic return the buffer size associated w
CGGeodesic. While the first method returns 0 if the CGGeodesic is at a Fork output
second method returns the size of the fork buffer. The actual computation of the buffe
is done by applying the following method:

virtual int internalBufSize() const;

This protected method of class CGGeodesic returns 0 with an error message if the s
ule has not yet been run. If this CGGeodesic is aF_SRC, the minimum size is set to the
maximum buffer requirements over all fork destinations. If there are delays or if old va
are used, we may want to use a larger size so that compile-time indexing is support
The buffer size must divide the total number of tokens produced in one execution. T
avoid modulo addressing, we prefer to use theLCM value of the number of samples con
sumed and produced during one iteration of the schedule. Since this may be wastef
check the extra buffer size required for linear addressing with thewasteFactor. If the
waste ratio is larger thenwasteFactor, we give up on linear addressing.
Ptolemy Last updated: 10/9/97

16-10 Base Code Generation Domain and Supporting

 linear
he min-

ation.

 sec-

cribed
ar is de-
enera-

ortIter.

 can be

y a
rtHole

r of
virtual double wasteFactor() const;

In the CGGeodesic class, this method returns 2.0. If a derived class wants to enforce
addressing as much as possible, it should set the return value to be large. To force t
imum buffer memory size to be used, the return value should be set to 1.0.

void initialize();

This public method of class CGGeodesic initializes the CGGeodesic.

Refer to class CGPortHole for more information on resource management.

16.5 Utility Functions
There are several utility functions defined in the CG domain for aiding in code gener
Here we describe just a few of them:

char* makeLower(const char* name);
int rshSystem(const char* hostname , const char* command,
 const char* directory =NULL);

The above functions are defined in the file CGUtilities.h. The first method returns a
dynamically allocated string that is a lower-case version of the argument string. The
ond method is used to execute a remote shell command,command, in thedirectory on
the machinehostname. We use thexon command instead ofrsh in order to preserve
any X-Window environment variables.

16.6 Class CGStar
In this section, we will explain additional class CGStar members and methods not des
above in this chapter. Class CGStar has a constructor with no arguments. Class CGSt
rived from class DynDFStar, and not from class SDFStar, so that BDF and DDF code g
tion may be supported in the future.

There is an iterator to enumerate the CGPortHoles of a CGStar: class CGStarP
Thenext() andoperator++ methods return typeCGPortHole* .

16.6.1 CGStar Protected Methods and Members

Protected members related to CodeStream, SymbolList, and resource management
found in earlier sections of this chapter.

virtual void outputComment(const char* msg, const char* stream =NULL);

This method adds a commentmsg to the targetstream. If no target stream is specified,
themyCode stream is used.

StringList expandPortName(const char* name);

If the argument specifies the name of a MultiPortHole, the index may be indicated b
State. In this case, this method gets the value of the State as the index to the MultiPo
and returns a valid MultiPortHole name. This method is used in theexpandSize method.

void advance();

This method updates the offset variable of all PortHoles of the CGStar by the numbe
U. C. Berkeley Department of EECS

The Almagest 16-11

n. By

 of a

r as
is

nto a
se

ill

be
, the
 a

tes the

hen we
s. If
samples consumed or produced. It calls theadvance method of each PortHole.

IntState procId;

This is an integer state to indicate processor assignment for parallel code generatio
default, the value is -1 to indicate that the star is not yet assigned.

int dataParallel

This is a flag to be set if this star is a wormhole or a parallel star.

Profile* profile;

This is a pointer to a Profile object, which can be used to indicate the local schedule
data parallel star or macro actor. If it is not a parallel star, this pointer is setNULL.

int deferrable();

When constructing a schedule for a single processor, we can defer the firing of a sta
long as possible in order to reduce the buffer requirements on every output arc. In th
method, we never defer a Fork star, and always defer any non-Fork star that feeds i
Fork. This prevents the resulting fork buffer from being larger than necessary, becau
new tokens are not added until they must be.

16.6.2 CGStar Public Methods
const char* domain() const;
int isA(const char* class);

The first method returns"CG" . The second method returnsTRUE if the argumentclass is
CGStar or a base class of CGStar.

int isSDF() const;

ReturnsTRUE if it is a star with SDF semantics (default). For BDF and DDF stars, it w
returnFALSE.

virtual void initCode();

This method allows a star to generate code outside the main loop. This method will
called after the schedule is created and before the schedule is executed. In contrast
go() method is called during the execution of the schedule, to form code blocks into
main loop body.

int run();

In CG domains, this method does not perform any actual data movement, but execu
go() method followed by theadvance() method.

CGTarget* cgTarget();
int setTarget(Target* t);

These methods get and set the pointer to the target to which this star is assigned. W
set the target pointer, we also initialize the SymbolLists and the CodeStream pointer
this method is successful, it returnsTRUE, otherwise it returnsFALSE.

virtual int isParallel() const;
virtual Profile* getProfile(int ix =0);
Ptolemy Last updated: 10/9/97

16-12 Base Code Generation Domain and Supporting

,
lel star

aflow
n above

 four

ins an
port-

 base
cond
 both

alcu-
of the

fers to
The first method returnsTRUE if this star is a wormhole or a parallel star. If it is parallel
the second method returns the pointer to a Profile, indexed by the argument. A paral
stores its internal scheduling results in a Profile object .

int maxComm();

Returns the maximum communication overhead with all ancestors. It calls thecommTime
method of the target class to obtain the communication cost.

virtual void setProcId(int i);
virtual int getProcId();

These methods set and get the processor ID to which this star is assigned.

16.7 Class CGPortHole
Class CGPortHole is derived from class DynDFPortHole in order to support non-SDF dat
stars as well as SDF stars. Methods related to Fork stars are described in a the sectio
on Resource Management .

In this section, we will categorize the members and methods of CGPortHole into
categories: buffer management, buffer embedding, geodesic switching, and others.

16.7.1 Buffer Management

A CGPortHole is connected to a buffer after resource allocation. A CGPortHole mainta
offset index into the buffer in order to identify the current position in the buffer where the
hole will put or get the next sample:

int offset;

This is a protected member used for indexing into the buffer connected to this port.

The methods described in this subsection are all public:
unsigned bufPos() const;

Returnsoffset , the offset position in the buffer.

virtual int bufSize() const;
virtual int localBufSize() const;

Both methods returns the size of buffer connected to this porthole. In the CGPortHole
class, they call the corresponding methods of class CGGeodesic. Recall that the se
method returns 0 when it is a Fork output. If a porthole is at the wormhole boundary,
return the product of the sample rate and the repetition count of the parent star.

virtual void advance();

This method is called byCGStar::advance() . After the parent star is executed, we
advance the offset by the number of samples produced or consumed. The offset is c
lated modulo the buffer size, so that it is wrapped around if it reaches the boundary
buffer.

16.7.2 Buffer Embedding

As a motivating example, let’s consider a DownSample star. If we allocate separate buf
U. C. Berkeley Department of EECS

The Almagest 16-13

utput
his sit-
ffer is

iffer-
begins
ad and
le, the
m dif-

ts to
es the

ent

mbed-

eration
rce and

t). After
sociate
 of the

al Geo-
the input and output ports, the buffer size of the input port will be larger than that of the o
port. Also, we will need to perform an unnecessary copy of samples. We can improve t
uation by allocating one buffer at the input site and by indicating that a subset of that bu
the image of the output buffer. We call this relationshipembedding: the larger input buffer is
embedding the smaller output buffer, and the smaller output buffer isembedded in the larger
input buffer. Unlike the Fork buffer, the sizes of input and output embedded buffers are d
ent from each other. Therefore, we must specify at which position the embedded buffer
in the larger embedding buffer. We use this embedding relationship to implement Spre
Collect stars in the CGC domain, without increasing the buffer requirements. For examp
output buffers of a Spread star are embedded in the input buffer of the star, starting fro
ferent offsets.

CGPortHole* embeddedPort;
int embeddingFlag;

These are protected members to specify embedding relationships. The first one poin
the embedding port which this PortHole is embedded in. The second member indicat
starting offset of embedding. The last member indicates whether this porthole is an
embedding port or not.

The following are public methods related to embedding.
CGPortHole* embedded();
int whereEmbedded();
int embedding();

These methods return the protected members described above, respectively.

void embed(CGPortHole& p, int i =-1);

This method establishes an embedding relationship between this port and the argum
port p. This porthole becomes an embedding porthole, and the argument porthole
becomes an embedded porthole. The second argument specifies the starting offset.

void embedHere(int offset);

This method, when called on an embedded porthole, changes the starting offset its e
ded buffer in the embedding buffer.

16.7.3 Geodesic Switching

In the specification block diagram, a PortHole is connected to a Geodesic. In code gen
domains, we usually allocate one resource to the Geodesic so that the Geodesic’s sou
destination ports can share the same resource (Note that this is not a strict requiremen
resource allocation, we may want to alias a porthole to another porthole, and therefore as
it with a resource other than the allocated resource. To do that, we switch the pointer
Geodesic to another Geodesic.

virtual void switchGeo(Geodesic* g);
virtual void revertGeo(Geodesic* g);

Both methods set the Geodesic pointer to the argumentg. There is a flag to indicate
whether this port has switched its Geodesic or not. The first method sets the flag toTRUE
while the second method resets the flag toFALSE. Both methods are virtual since in
derived classes we may need to redefine the behavior, perhaps by saving the origin
Ptolemy Last updated: 10/9/97

16-14 Base Code Generation Domain and Supporting

ort to
ltiple

eode-

bles. In
he

ndary.
hole

ey are

ber
tor.

 the

lti-

put or
desic, which is not the default behavior. The flag is queried by:

int switched() const;

If the Geodesic is switched in this port, we have to reset the geodesic pointer of this p
NULL in the destructor in order to prevent attempts to delete the same Geodesic mu
times. Also, we have to make sure that both ends of a Geodesic do not switch their G
sic, in order to prevent orphaning the geodesic and causing a memory leak.

16.7.4 Other CGPortHole Members

Class CGPortHole has a constructor with no argument which resets the member varia
the destructor, we clear theforkDests list and remove the pointer to this porthole from t
forkDests list of theforkSrc port. All members described in the subsection are public.

CGGeodesic& cgGeo() const;

This method returns a reference to the Geodesic after type casting.

void forceSendData();
void forceGrabData();

These methods put and get samples to and from the Geodesic at the wormhole bou
They are used when the inside code generation domain communicates by the worm
mechanism.

16.7.5 CGPortHole Derived Classes

Class InCGPort and class OutCGPort are publicly derived from class CGPortHole. Th
used to indicate by class type whether a porthole is an input port or an output port.

Class MultiCGPort is derived from class MultiDFPort. It has a protected mem
forkSrc to point to the Fork input if its parent star is a Fork star. It has a default destruc
CGPortHole* forkSrc;

There are two public methods related to this protected member:

void setForkBuf(CGPortHole& p);
void forkProcessing(CGPortHole& p);

The first method setsforkSrc to point to the argument port. The second method sets
forkSrc pointer of the argument port to point to theforkSrc of this MultiCGPort.

Two classes are publicly derived from MultiCGPort: MultiInCGPort and Mu
OutCGPort. They both have the following public method:
PortHole& newPort();

This method creates an InCGPort or an OutCGPort depending on whether it is an in
an output MultiCGPort.
U. C. Berkeley Department of EECS

The Almagest 17-1

ine for
 targets
erived
 proces-
on tar-
rget, the
he tar-
o [4]

targets
et and

ss that
one is

ch

-

Chapter 17. Target

Authors: Soonhoi Ha

Other Contributors: John S. Davis II

Target has a clear meaning in code generation domains, a model of the target mach
which code will be generated. Class CGTarget is the base class for all code generation
whether it is a single processor target or a multiprocessor target. Class MultiTarget, d
from class CGTarget, serves as the base target for all multiprocessor targets. For single
sor targets, we have AsmTarget and HLLTarget to distinguish assembly code generati
gets and high level language generation targets. If we generate assembly code for a ta
target will be derived from class AsmTarget. If we generate a high level language code, t
get will be derived from HLLTarget. For detailed discussion for Target hierarchy, refer t
in References .

In this chapter, we will describe class CGTarget and some base multiprocessor
since we focus on multiprocessor code generation. Refer to other sources for AsmTarg
other high level language targets.

17.1 Class CGTarget
Class CGTarget is derived from class Target. It has a four-argument constructor.

CGTarget(const char* name, const char* starclass ,
const char* desc , char sep);

The first argument is the name of the target and the second argument is the star cla
this target can support. The third argument is the description of this target. The last
a separator character for unique symbol generation.

There are two protected states in the CGTarget:

StringState destDirectory;
IntState loopingLevel;

The first state indicates where to put the code file. The second state determines whi
scheduler is used in case this target is a single processor target. By default,loopin-
gLevel = 0 and we do not try looping. IfloopingLevel = 1, we select Joe’s loop sched
uler. Otherwise, we use the most complicated loop scheduler.

At the top level, three methods of the Target class are called in sequence:setup, run, and
wrapup.

void setup();

In this method, we do the following tasks:

(1) Initialize myCode andprocedure code stream.
Ptolemy Last updated: 10/9/97

17-2 Target

 a child
ed, re-

and
reso-

if the
ersion
ble has

 stars
 case

eduler

t the

e.
oles

ets.

l
t to
(2) Select a scheduler if no scheduler is selected yet.

At this stage, we check whether the galaxy is assigned or not. In multiprocessor targets,
target is not assigned a galaxy until a sub-univers is created. If the galaxy is not assign
turn.

(3) Reset the symbol lists.

(4) If we are the top-level target, initialize the galaxy (which performs preinitialization
initialization of the member blocks, including HOF star expansion and porthole type
lution). Then modify the galaxy if necessary by callingmodifyGalaxy . The base class
implementation of modifyGalaxy splices in type conversion stars where needed,
domain has supplied a table of type conversion stars. (If there is no table, type conv
is presumed not needed. If there is a table, and a type mismatch is found that the ta
no entry to fix, then an error is reported.) Some derived domains redefinemodifyGalaxy
to perform additional transformations. For example, in AsmTarget we insert some
(CircToLin, LinToCirc) at loop boundaries to change the type of buffer addressing in
a loop scheduling is performed.

virtual int modifyGalaxy();

Is a protected method.

(5) If it is a child target, the schedule was already made at this stage from a parallel sch
of the parent multiprocessor target. Otherwise, we initialize and schedule the graph.

(6) If it is a child target or it is not inside a wormhole, return. Otherwise, we first adjus
sample rate of the wormhole portholes (adjustSampleRates). Then, we generate and
download code:generateCode andwormLoadCode.

void adjustSampleRates();

This method is a protected method to be called when this target is inside a wormhol
After scheduling is performed, we need to multiply the sample rate of wormhole porth
by the repetition count of the stars inside the wormhole connected to the porthole.

virtual void generateCode();

This method guides the overall procedure to generate code for single processor targ
The procedure is as follows:

(1) If this target is a child target, callsetup to initialize the variables. Copy the symbo
counter (symbolCounter) of the parent target to the symbol counter of this targe
achieve a unique symbol in the system scope.

(2) We compute buffer sizes, allocate memory, etc:allocateMemory.

virtual int allocateMemory();

This method is protected. It does nothing and returns TRUE in this base class.

(3) Call the methodgenerateCodeStreams(). This method will be described later.

(4) Organize the CodeStreams into a single code stream and save the result to themyCode
U. C. Berkeley Department of EECS

The Almagest 17-3

is

 rede-

In this
, and the

 and

m-
stream:frameCode.
virtual void frameCode();

This method is a protected method. It does nothing in this base class.

(5) If this target is not a child target, write the generated code to a file:writeCode.

virtual void writeCode(const char* name = NULL);
This is a public method to write themyCode stream to the argument file. If no argument
given, use "code.output" as the default file name.

(6) If it is a child target, copy the symbol counter to that of the parent target.

The methods described above for code generation are all virtual methods. They will be
fined in the derived targets.

The method

void CGTarget::generateCodeStreams();

does the following things:

(1) Write initial code.
virtual void headerCode();

In this base class, this protected method writes the header comment to themyCode Code-
Stream.

virtual StringList headerComment(const char* begin = NULL,
 const char* end = "", const char* cont = NULL);

This method is a public virtual method to generate the header comment in the code.
base class, the head comments include the user id, code creation date, target name
galaxy name. The arguments are passed to thecomment method.

virtual StringList comment(const char* cmt , const char* begin =
NULL, const char* end = "", const char* cont = NULL);

This public method generates a comment from a specified stringcmt. We prependbegin
and appendend to the string. Ifbegin is NULL, we prepend ’#’ as a shell-stype com-
ment. Ifcont is specified, multi-line comments are supported.

(2) We do initialization for code generation: for example, compute offsets of portholes
call initCode methods of stars:codeGenInit .

virtual int codeGenInit();

is a protected method. It does nothing and returns TRUE in this base class.

(3) Generate the code for the main loop:mainLoopCode.
virtual void mainLoopCode();

In this method we first compute the number of iterations. If this target is inside a wor
hole, the number is -1 indicating an infinite loop. Otherwise, thestopTime of the sched-
uler determines the number of iterations. In this base class, we call the following five
methods sequentially:beginIteration, wormInputCode if inside a wormhole,com-
Ptolemy Last updated: 10/9/97

17-4 Target

oth
 depth

he tar-
rthole

the
hole

e the

rget

this
pileRun, wormOutputCode if inside a wormhole, andendIteration. In the derived
class, this sequence may be changed .

void beginIteration(int numiter , int depth);
void endIteration(int numiter , int depth);

These public methods form the head or ending of the main loop. The arguments of b
methods are the number of iteration and the depth of the loop. In the main loop, the
is set 0.

virtual void wormInputCode();
virtual void wormOutputCode();
virtual void wormInputCode(PortHole& p);
virtual void wormOutputCode(PortHole& p);

The above methods are all public. They generate code at the wormhole boundary if t
get resides in a wormhole. The last two methods generate code for the argument po
that is at the wormhole boundary. In this base class, put comments inmyCode CodeStream
indicating that the methods are successfully executed. They should be redefined in
derived classes to be useful. The first two methods traverse all portholes at the worm
boundary to use the last two methods.

virtual void compileRun(SDFScheduler* sched);
This protected method callscompileRun of the argument scheduler. By default, this
method callsgo methods of all stars in the scheduled order to generate code inmyCode
CodeStream.

(4) Call wrapup methods of stars to generate code after the main loop, but still insid
main function.

(5) Add more code if necessary:trailerCode
virtual void trailerCode();

This protected method does nothing in this base class.

The method

virtual int wormLoadCode();

is protected. It downloads code to the target machine and starts executing it if the ta
resides in a wormhole. In this base class, we just display the code.

Now, we discuss therun method.

int run();

If the target is not inside a wormhole, it generates code by callinggenerateCode as
explained above. Otherwise, we do the transfer of data to and from the target since
method will be called when the wormhole is executed:sendWormData andreceive-
WormData in sequence.

virtual int sendWormData();
virtual int receiveWormData();
virtual int sendWormData(PortHole& p);
virtual int receiveWormData(PortHole& p);
U. C. Berkeley Department of EECS

The Almagest 17-5

when
ole
. In
ully

. This

 related
ter. We

et to

flag
-

ch

ot.
The above methods are all protected. They send and receive samples to this target
run inside a wormhole. The argument is the porthole of the interior star at the wormh
boundary. If no argument is given, send and receive for all the appropriate portholes
this base class, we generate comments to indicate that these methods are successf
called.

void wrapup();

In derived classes, wrapup will generate code to finalize, download, and run the code
CGTarget class just displays the code.

So far, we have explained the three top level methods of the CGTarget class. Methods
to the CodeStream and unique symbol generations can be found in the previous chap
will describe the remaining members.

17.1.1 Other CGTarget protected members
char* schedFileName;

The name of the log file in case a loop scheduling is taken. By default, the name is s
"schedule.log ".

int noSchedule;

This is a flag to be set to TRUE if scheduling is not needed in the setup stage. This
will be set when the schedule is copied fromcopySchedule method in parallel code gen
eration. By default, this flag is set FALSE.

StringList indent(int depth);
This method returns a list of spaces for indenting. The number of spaces is 4 per ea
depth.

void switchCodeStream(Block* b, CodeStream* s);

This method is set to the currentmyCode pointer of the argument blockb to s Code-
Stream. Ifb is a galaxy, perform this for all component stars.

17.1.2 Other CGTarget public members
static int haltRequested();

Returns TRUE if error is signaled while Ptolemy is running.

int inWormhole();
int isA(const char* class);

Is a standardisA method for type identification.

Returns TRUE or FALSE, based on whether the target is inside a wormhole or n
Block* makeNew() const;

Create a new, identical CGTarget. Internal variables are not copied.

virtual int incrementalAdd(CGStar* s, int flag = 1);

This method is called when we add code for the argument stars incrementally. Ifflag is
1 (default), we allocate memory for the star, and callsetup, initCode, go, andwra-
Ptolemy Last updated: 10/9/97

17-6 Target

ate

rate
n the
e

erates

 exe-

 for

arent
 set

t exe-
pup of the star. Ifflag is 0, we just callgo method of that star. In this base class, gener
an error message.

virtual int insertGalaxyCode(galaxy* g, SDFScheduler* sched);
This method inserts the code for the argument galaxyg incrementally. We have to allocate
resources and generate initialization, main loop, and wrapup code. It is used to gene
code for the galaxy inside a dynamic construct. A dynamic construct is a wormhole i
code generation domain. When we call thego method of the wormhole, we generate cod
for the inside galaxy.

virtual int compileCode();
virtual int loadCode();
virtual int runCode();

These methods compile and load the code, and run the target. The base class, gen
error messages.

void writeFiring(Star& s , int depth);
This method generates code for a firing of the argument star. The base class simply
cutesrun of the star.

void genLoopInit(Star& s , int reps);
void genLoopEnd(Star& s);

In case loop scheduling is taken, we may want to perform loop initialization routines
stars inside each loop. These methods callbeginLoop andendLoop methods of the
argument star.

void copySchedule(SDFSchedule& sched);
If this is a child target, the schedule is inherited from the parallel scheduling of the p
target. This method copies the argument schedule to the schedule of this target and
noSchedule flag.

virtual int systemCall(const char* cmd, const char* error = NULL, const
char* host ="localhost");

This method makes a system call usingrshSystem utility function. If error is specified
and the system call is unsuccessful, display the error message.

void amInherited();

This method declares that this target is inherited from other targets.

virtual int support(Star* s);
Returns TRUE if this target allows the argument star; returns FALSE otherwise.

virtual int execTime(DataFlowStar* s, CGTarget* t = 0);

We return the execution time of the argument stars in the argument targett. In a hetero-
geneous system, execution time of a given star may vary depending on which targe
cutes the star. In this base class, we just callmyExecTime method of the star.
U. C. Berkeley Department of EECS

The Almagest 17-7

e code
neration
arget

e class,
ds are

f the
arts
thod
e

tiTar-
 On the
erived
lasses

Mul-
laced in
he or-
17.1.3 Class HLLTarget

Class HLLTarget, derived from CGTarget class, is a base class of all high level languag
generation targets. There is AsmTarget class for the base target of all assembly code ge
targets. Since we will illustrate the C code generation target, we will explain the HLLT
class only in this subsection.

HLLTarget class has a constructor with three arguments as CGTarget class. In this bas
we provide some methods to generate C++ code. The following three protected metho
defined to create a C++ identifier, derived from the actual name.

StringList sanitize(const char* s) const ;
StringList sanitizedName(const NamedObj& b) const ;
virtual StringList sanitizedFullName(const NamedObj& b) const ;

The first method takes a string argument and modifies it with a valid C++ identifier. I
string contains a non-alphanumeric character, it will replace it with ’_’. If the string st
with a number, it prepends ’x’ at the beginning. The second method calls the first me
with the name of the argument object. The third method generates an identifier for th
argument object that will be placed instruct data structure. Therefore, we put ’.’
between the object name and its parent name.

Some public methods are defined.

void beginIteration(int repetitions , int depth);
void endIteration(int repetitions , int depth);

If the repetitions is negative, we print awhile loop with infinite repetition. Other-
wise, we generate afor loop. The second argumentdepth determines the amount of
indent we put in front of the code.

void wrapup();

Saves the generated code to "code.output" file name.

Since this target is not an actual target, it has a pure virtual method:makeNew.

17.2 Multiprocessor Targets
There are two base multiprocessor targets: MultiTarget and CGMultiTarget. Class Mul
get, derived from class CGTarget, serves a base multiprocessor target for CG domain.
other hand, CGMultiTarget class is the base multiprocessor target for CG domain, thus d
from MultiTarget class. Since the MultiTarget class is a pure virtual class, the derived c
should redefine the pure virtual methods of the class.

Some members only meaningful for CG domain are split to MultiTarget class and the CG
tiTarget class. If they are accessed from the parallel scheduler, some members are p
MultiTarget class. Otherwise, they are placed in CGMultiTarget class (Note that this is t
ganization issue). Refer to the CGMultiTarget class for detailed descriptions.
Ptolemy Last updated: 10/9/97

17-8 Target

tion
s

his

ro-

into

-
ublic

he cur-

rest

er of

sor tar-
17.2.1 Class MultiTarget

Class MultiTarget, derived from CGTarget, has a constructor with three arguments.

MultiTarget(const char* name, const char* starclass , const char* desc);

The arguments are the name of the target, the star class it supports, and the descrip
text. The constructor hidesloopingLevel parameter inherited from the CGTarget clas
since the parallel scheduler does no looping as of now.

IntState nprocs;

This protected variable (or state) represents the number of processors. We can set t
state, and also change the initial value, via the following public method:

void setTargets(int num);
After child targets are created, the number of child targets is stored in the following p
tected member:

int nChildrenAlloc;

There are three states, which are all protected, to choose a scheduling option.

IntState manualAssignment;
IntState oneStarOneProc;
IntState adjustSchedule;

If the first state is set to YES, we assign stars manually by settingprocId state of all stars.
If oneStarOneProc is set to YES, the parallel scheduler puts all invocations of a star
the same processor. Note that if manual scheduling is chosen,oneStarOneProc is auto-
matically set YES. The last state,adjustSchedule, will be used to override the sched
uling result manually. This feature has not been implemented yet. There are some p
methods related to these states:

int assignManually();
int getOSOPreq();
int overrideSchedule();
void setOSOPreq(int i);

The first three methods query the current value of the states. The last method sets t
rent value of theoneStarOneProc state to the argument value.

There are two other states that are protected:

IntState sendTime;
IntState inheritProcessors;

The first state indicates the communication cost to send a unit sample between nea
neighbor processors. IfinheritProcessors is set to YES, we inherit the child targets
from somewhere else by the following method.

int inheritChildTargets(Target* mtarget);
This is a public method to inherit child targets from the argument target. If the numb
processors is greater than the number of child targets ofmtarget, this method returns
FALSE with error message. Otherwise, it copies the pointer to the child targets ofmtar-
get as its child targets. If the number of processors is 1, we can use a single proces
U. C. Berkeley Department of EECS

The Almagest 17-9

is

lation

nd stars
ents to

h-

s does

 the
of

 does
thod

n of
get as the argument. In this case, the argument target becomes the child target of th
target.

void enforceInheritance();
int inherited();

The first method sets the initial value of theinheritProcessors state while the second
method gets the current value of the state.

void initState();

Is a redefined public method to initialize the state and implements the precedence re
between states.

Other MultiTarget public members
virtual DataFlowStar* createSpread() = 0;
virtual DataFlowStar* createCollect() = 0;
virtual DataFlowStar* createReceive(int from , int to , int num) = 0;
virtual DataFlowStar* createSend(int from , int to , int num) = 0;

These methods are pure virtual methods to create Spread, Collect, Receive, and Se
that are required for sub-universe generation. The last two method need three argum
tell the source and the destination processors as well as the sample rate.

virtual void pairSendReceive(DataFlowStar* snd , DataFlowStar* rcv);
This method pairs a Send,snd, and a Receive,rcv, stars. In this base class, it does not
ing.

virtual IntArray* candidateProcs(ParProcessors* procs , DataFlowStar* s);
This method returns the array of candidate processors which can schedule the stars. The
first argument is the current ParProcessors that tries to schedule the star . This clas
nothing and returns NULL.

virtual Profile* manualSchedule(int count);
This method is used when this target is inside a wormhole. This method determines
processor assignments of the Profile manually. The argument indicates the number
invocations of the wormhole.

virtual void saveCommPattern();
virtual void restoreCommPattern();
virtual void clearCommPattern();

These methods are used to manage the communication resources. This base class
nothing. The first method saves the current resource schedule, while the second me
restores the saved schedule. The last method clears the resource schedule.

virtual int scheduleComm(ParNode* node , int when, int limit = 0);
This method schedules the argument communication node,node, available atwhen. If
the target can not schedule the node untillimit, return -1. If it can, return the schedule
time. In this base class, just return the second argument,when, indicating that the node is
scheduled immediately after it is available to model a fully-connected interconnectio
processors.
Ptolemy Last updated: 10/9/97

17-10 Target

the
LL.

nera-
ss.

ains,
t. In the

lass,

r than

XX
 has

tates of
d define
 with
urce

third

ber of

ed, we
s target

tions.
ptions.
ose a
virtual ParNode* backComm(ParNode* node);
For a given communication node, find a communication node scheduled just before
argument node on the same communication resource. In this base class, return NU

virtual void prepareSchedule();
virtual void prepareCodeGen();

These two methods are called just before scheduling starts, and just before code ge
tion starts, to do necessary tasks in the target class. They do nothing in this base cla

17.2.2 Class CGMultiTarget

While class CGMultiTarget is the base multiprocessor target for all code generation dom
either homogeneous or heterogeneous, it models a fully-connected multiprocessor targe
target list in pigi, "FullyConnected" target refers to this target. It is defined in$PTOLEMY/src/
domains/cg/targets directory. It has a constructor with three argument like its base c
MultiTarget.

To specify child targets, this class has the following three states.

StringArrayState childType;
StringArrayState resources;
IntArrayState relTimeScales;

The above states are all protected. The first state,childType, specifies the names of the
child targets as a list of strings separated by a space. If the number of strings is fewe
the number of processors specified bynproc parameter, the last entry ofchildType is
extended to the remaining processors. For example, if we setnproc equal to 4 and
childType to be "default-CG56[2] default-CG96", then the first two child targets
become "default-CG56" and the next two child targets become "default-CG96".

The second state,resources, specifies special resources for child targets. If we say "0 X
; 3 YYY", the first child target (index 0) has XXX resource and the fourth child (index 3)
YYY resource. Here ’;’ is a delimeter. If a child target (index 0) has aresources state al-
ready, XXX resource is appended to the state at the end. Note that we can not edit the s
child targets in the current pigi. If a star needs a special resource, the star designer shoul
resources StringArrayState in the definition of the star. For example, a star S is created
resources = YYY. Then, the star will be scheduled to the fourth child. One special reso
is the target index. Ifresources state of a star is set to "2", the star is scheduled to the
target (index 2).

The third state indicates the relative computing speed of the processors. The num
entries in this state should be equal to the number of entries inchildType. Since we specify
the execution of a star with the number of cycles in the target for which the star is defin
have to compensate the relative cycle time of processors in case of a heterogeneou
environment.

Once we specify the child targets, we select a scheduler with appropriate op
States inherited from class MultiTarget are used to select the appropriate scheduling o
In the CGMultiTarget class, we have the following three states, all protected, to cho
U. C. Berkeley Department of EECS

The Almagest 17-11

duling
 next
t
o-
e
ica-
ted,

t to
ts.

r com-
ested

lears
scheduler unless the manual scheduling option is taken.

IntState ignoreIPC;
IntState overlapComm;
IntState useCluster;

The first state indicates whether we want to ignore communication overhead in sche
or not. If it says YES, we select the Hu’s Level Scheduler . If it says NO, we use the
state,overlapComm. If this state says YES, we use the dynamic level scheduler . If i
says No, we use the last state,useCluster. If it says YES, we use the declustering alg
rithm . If it says NO, we again use the dynamic level scheduler. By default, we use th
dynamic level scheduler by setting all states NO. Currently, we do not allow commun
tion to be overlapped with computation. If more scheduling algorithms are implemen
we may need to introduce more parameters to choose those algorithms.

There are other states that are also protected.
StringState filePrefix;

Indicates the prefix of the file name generated for each processor. By default, it is se
"code_proc", thus creating code_proc0, code_proc1, etc for code files of child targe

IntState ganttChart;

If this state says YES (default), we display the Gantt chart of the scheduling result.

StringState logFile;

Specifies the log file.

IntState amortizedComm;

If this state is set to YES, we provide the necessary facilities to packetize samples fo
munication to reduce the communication overhead. These have not been used nor t
yet.

Now, we discuss the three basic methods:setup, run, wrapup.

void setup();

(1) Based on the states, we create child targets and set them up:prepareChildren.
virtual void prepareChildren();

This method is protected. If the children are inherited, it does nothing. Otherwise, it c
the list of current child targets if they exist. Then, it creates new child targets bycreate-
Child method and give them a unique name usingfilePrefix followed by the target
index. This method also adjusts theresources parameter of child targets with the
resources specified in this target:resourceInfo. Finally, it initializes all child tar-
gets.

virtual Target* createChild(int index);
This protected method creates a child target, determined bychildTypes, by index.

virtual void resourceInfo();

This method parses theresources state of this class and adjusts theresources param-
Ptolemy Last updated: 10/9/97

17-12 Target

eduling

holes:

n

ports

er of

rm-
.

ince
d.

ted, it
eter of child targets. If noresources parameter exists in a child target, it creates one.

(2) Choose a scheduler based on the states:chooseScheduler.
virtual void chooseScheduler();

This is a protected method to choose a scheduler based on the states related to sch
algorithms.

(3) If it is a heterogeneous target, we flatten the wormholes:flattenWorm. To represent a
universe for heterogeneous targets, we manually partition the stars using worm
which stars are assigned to which target.

void flattenWorm();

This method flattens wormholes recursively if the wormholes have a code generatio
domain inside.

(4) Set up the scheduler object. ClearmyCode stream.

(5) Initialize the flattened galaxy, and perform the parallel scheduling:Target::setup.

(6) If the child targets are not inherited, display the Gantt chart if requested:
writeSchedule.

void writeSchedule();

This public method displays a Gantt chart.

(7) If this target is inside a wormhole, it adjusts the sample rate of the wormhole
(CGTarget::adjustSampleRates), generates code (generateCode), and down-
loads and runs code in the target (CGTarget::wormLoadCode).

void generateCode();

This is a redefined public method. If the number or processors is 1, just callgenerate-
Code of the child target and return. Otherwise, we first set the stop time, or the numb
iteration, for child targets (beginIteration). If the target is inside a wormhole, the
stop time becomes -1 indicating it is an infinite loop. The next step is to generate wo
hole interface code (wormInputCode, wormOutCode if the target is inside a wormhole
Finally, we generate code for all child targets (ParScheduler::compileRun). Note
that we generate wormhole interface code before generating code for child targets s
we can not intervene the code generation procedure of each child target once starte

void beginIteration(int repetitions , int depth);
void endIteration(int repetitions , int depth);

These are redefined protected methods. In the first method, we callsetStopTime to set
up the stop time of child targets. We do nothing in the second method.

void setStopTime(double val);
This method sets the stop time of the current target. If the child targets are not inheri
also sets the stop time of the child targets.

void wormInputCode();
void wormOutputCode();
void wormInputCode(PortHole& p);
U. C. Berkeley Department of EECS

The Almagest 17-13

s of
ach
mpli-
odes
mber of

rget:

et and
 iden-

ched-

urces.

bility

 the
sors. If
clus-
 there

 There
void wormOutputCode(PortHole& p);
These are all redefined public methods. The first two methods traverse the porthole
wormholes in the original graph, find out all portholes in sub-universes matched to e
wormhole porthole, and generate wormhole interface code for the portholes. The co
cated thing is that more than one ParNode is associated with a star and these ParN
may be assigned to several processors. The last two methods are used when the nu
processors is 1 since we then useCGTarget::wormInputCode,wormOutputCode
instead of the first two methods.

int run();

If this target does not lie in a wormhole or it has only one processor, we just useCGTar-
get::run to generate code. Otherwise, we transfer data samples to and from the ta
sendWormData andreceiveWormData.

int sendWormData();
int receiveWormData();

These are redefined protected methods. They send data samples to the current targ
receive data samples from the current target. We traverse the wormhole portholes to
tify all portholes in the sub-universes corresponding to them, and callsendWormData,
receiveWormData for them.

void wrapup();

In this base class, we write code for each processor to a file.

Other CGMultiTarget protected members
ParProcessors* parProcs;

This is a pointer to the actual scheduling object associated with the current parallel s
uler.

IntArray canProcs;

This is an integer array to be used incandidateProcs to contain the list of processor
indices.

virtual void resetResources();

This method clears the resources this target maintains such as communication reso

void updataRM(int from , int to);
This method updates a reachability matrix for communication amortization. A reacha
matrix is created ifamortizedComm is set to YES. We can packetize communication
samples only when packetizing does not introduce deadlock of the graph. To detect
deadlock condition, we conceptually cluster the nodes assigned to the same proces
the resulting graph is acyclic, we can packetize communication samples. Instead of
tering the graph, we set up the reachability matrix and update it in all send nodes. If
is a cycle of send nodes, we can see the deadlock possibility.

Other CGMultiTarget public members

The destructor deletes the child targets, scheduler, and reachability matrix if they exist.
Ptolemy Last updated: 10/9/97

17-14 Target

et, we
is a
efini-

e pro-

 star

 node,

rtized

 multi-

s sched-
-

is anisA method defined for type identification.

Block* makeNew() const;

Creates an object of CGMultiTarget class.

int execTime(DataFlowStar* s , CGTarget* t);
This method returns the execution time of a stars if scheduled on the given targett. If the
target does not support the star, a value of -1 is returned. If it is a heterogeneous targ
consider the relative time scale of processors. If the second argument is NULL or it
homogeneous multiprocessor target, just return the execution time of the star in its d
tion.

IntArray* candidateProcs(ParProcessors* par , DataFlowStar* s);
This method returns a pointer to an integer array of processor indices. We search th
cessors that can schedule the argument stars by checking the star type and the resource
requirements. We include at most one idle processor.

int commTime(int from , int to , int nSamples , int type);

This method returns the expected communication overhead when transferringnSamples
data fromfrom processor toto processor. Iftype = 2, this method returns the sum of
receiving and sending overhead.

int scheduleComm(ParNode* comm, int when, int limit = 0);

Since it models a fully-connected multiprocessor, we can schedule a communication
anytime without resource conflict that returns the second argumentwhen.

ParNode* backComm(ParNode* rcv);
This method returns the corresponding send node paired with the argument receive
rcv. If the argument node is not a receive node, return NULL.

int amortize(int from , int to);

This method returns TRUE or FALSE, based on whether communication can be amo
between two argument processors.

17.2.3 Class CGSharedBus

Class CGSharedBus, derived from class CGMultiTarget, is a base class for shared bus
processor targets. It has the same kind of constructor as its base class.

This class has an object to model the shared bus.

UniProcessor bus;
UniProcessor bestBus;

These are two protected members to save the current bus schedule and the best bu
ule obtained so far. Thebus andbestBus are copied to each other by the following pub
lic methods.

void saveCommPattern();
U. C. Berkeley Department of EECS

The Almagest 17-15

d

e,

ent

hey are

ecial
d
ng

i, all
n, we
ains,

el, all
erse:

on
fault-
inds:
nta-
 the
ificant

roces-

.

void restoreCommPattern();
clearCommPattern();
void resetResources()

The first method is a public method to clearbus schedule, while the second is a protecte
method to clear bothbus andbestBus.

This classes redefines the following two public methods.

int scheduleComm(ParNode* node , int when, int limit = 0);

This method schedules the argument node available atwhen onbus. If we can schedule
the node beforelimit, we schedule the node and return the schedule time. Otherwis
we return -1. Iflimit = 0, there is no limit on when to schedule the node.

ParNode* backComm(ParNode* node);
For a given communication node, find another node scheduled just before the argum
node onbus.

17.3 Heterogeneous Support
In this section, we summarize the special routines to support heterogeneous targets. T
already explained in earlier chapters.

1. To specify the component targets , we first setchildTypes state of the target
class that must be derived from class CGMultiTarget. We may add sp
resources to the processors by settingresources state, a list of items separate
by ’;’. An item starts with the target index followed by a list of strings identifyi
resources. The relative computing speed of processors are specified byrelTi-
meScales state.

2. An application program for a heterogeneous target uses wormholes. In pig
stars in a universe should be in the same domain. To overcome this restrictio
use wormhole representation to distinguish stars for different targets, or dom
but still in the same universe. Once the graph is read into the Ptolemy kern
wormholes of code generation domain are flattened to make a single univ
flattenWorm method of CGMultiTarget class. Currently, we manually partiti
the stars to different kinds of processors. For example, if we have three "de
CG96" targets and one "default-CG56" target, we partition the stars to two k
CG96 or CG56. This partitioning is based on the original wormhole represe
tion. If we ignore this partitioning, we can apply an automatic scheduling with
flattened graph. This feature has not been tested yet even though no sign
change is required in the current code.

3. When we schedule a star in the scheduling phase, we first obtain the list of p
sors that can schedule the star:candidateProcs method ofCGMultiTarget
class. The execution time of the star to a processor is computed inexecTime
method ofCGMultiTarget class considering the relative speed of processors
Ptolemy Last updated: 10/9/97

17-16 Target

 case
ph in
 star in
riginal
e

4. After scheduling is performed, we create sub-universes for child targets. In
manual partitioning is performed, we just clone the stars from the original gra
the sub-universes. In case we use automatic partitioning, we need to create a
the current target with the same name as the corresponding star in the o
graph:cloneStar private method ofUniProcessor class. We assume that w
use the same name for a star in all domains.
U. C. Berkeley Department of EECS

The Almagest 18-1

. The

d name
task is
access

bed-

deter-
-
on that

 of the
n these
priately
buffer
 float/

e list
-
ks:

. If
dded,
t is
Chapter 18. CGC Domain

Authors: Soonhoi Ha

Other Contributors: Mudit Goel

In this chapter, we will explain the current implementation of C code generation domain
source code can be found$PTOLEMY/src/domains/cgc/kernel directory. We follow the
general framework for code generation defined in CG kernel directory.

In the CGC domain, the resource we have is the name space. We have to avoi
conflicts by guaranteeing unique names for different variables. The most complicated
to determine the dimension, or buffer size, of each variable, and the method how to
them; static buffering, linear indexing, or modulo addressing.

We use the CGC domain to test new functionalities in code generation: buffer em
ding for example. We have tested some simple demos to verify the design.

18.1 Buffer Allocation
In the CGC domain, we allocate one buffer for each connection in principle. We have to
mine the required size of buffers first. If a porthole isembedded , and the buffer size require
ment is equal to the sample rate of the embedded port, we do NOT allocate a buffer
connection. We will use static buffering for allembedded andembeddingportholes. If the buff-
er requirement of an embedded(or embedding) porthole is not equal to the sample rate
porthole, we actually need to have two buffers on that connection and copy data betwee
buffers. In this case, we splice a Copy star on the arc and schedule the Copy star appro
to generate code for copying data. After inserting the Copy star, we will end up with one
per connection. Another cause of copy requirement is type conversion from complex to
int or from float/int to complex. Then, we splice a type-conversion star on the arc.

Class CGCTarget redefines the following protected method for buffer allocation .
int allocateMemory();

In this method, we first merge cascaded forks into a single fork whose input keeps th
of all fork destinations. We will allocate only one buffer for each fork. All fork destina
tions will refer to the same fork input buffer. Then this method does the following tas

1. Determine the buffer requirements for all portholes.

2. Splice Copy stars or type conversion stars if necessary.

3. Set the buffer type for each output porthole: either OWNER or EMBEDDED
the output porthole is embedded, or the corresponding input porthole is embe
it is called EMBEDDED. Otherwise, it is OWNER. The buffer type of an outpu
determined using the following public method of CGCPortHole class:

void setBufferType();
Ptolemy Last updated: 10/9/97

18-2 CGC Domain

uffer
et
writ-

are
er. The
its
n:

nd call

rt-
e one
ole.
s pro-

llow-

 than
e
g the

ual

the
oing
 factor
od in
4. We assign unique names for buffers.

5. We initialize the offset pointer for each porthole which is associated with a b
of size greater than 0 (initOffset method of CGCPortHole class). This offs
pointer indicates from which offset of the buffer the porthole starts reading or
ing samples.

int initOffset();

This is a public method of CGCPortHole class to initialize the offset pointer. If there
delays, or initial samples, on the arc, these samples are placed at the end of the buff
offset pointer of a porthole indicates the location of the last sample the next firing of
parent star will produce or consume. It is compatible with the SDF simulation domai
$ref(porthole,num) in CGC stars is now equivalent toporthole%num in SDF stars.
We can set the offset pointer of an output porthole manually by the following public
method of CGCPortHole class.

void setOffset(int v);
Now, we will explain steps (1), (2), and (4) in more detail.

18.1.1 Buffer requirement

To determine the buffer requirements of portholes, we traverse portholes of all stars, a
finalBufSize method of CGCPortHole class.

void finalBufSize(int statBuf);
This is a public method of CGCPortHole class to determine the buffer size for this po
hole. The argument indicates whether we try to use static buffering or not. We allocat
buffer for each connection. Therefore, we do nothing if this porthole is an input porth
If this porthole is disconnected, we set the buffer size equal to the number of sample
duced for each firing. If it lies at wormhole boundary, we uselocalBufSize method of
CGPortHole class to determine the size of buffer and return. Otherwise, we do the fo
ing:

1. We can manually assign the buffer size by callingrequestBufSize for an output
porthole of interest in the setup stage of a star:

void requestBufSize(int sz);
This method sets the buffer size manually. The argument size should not be smaller
the minimum size determined by the scheduler. The minimum size determined by th
scheduler is the sum of maximum number of samples accumulated on the arc durin
schedule and the number of old samples to be access from the destination port. Ifsz is
smaller than this minimum value, we generate a warning message and give up man
allocation.

2. We set the initial buffer size by callinglocalBufSize method of CGPortHole
class. If argumentstatBuf = 1, we set the buffer size as a smallest multiple of
sample rate of this porthole, which is not less than the initial buffer size. By d
this, we increase the chance of using linear buffering. We also set the waste
in CGCGeodesic class to a huge number by calling the following public meth
U. C. Berkeley Department of EECS

The Almagest 18-3

d pro-

r lin-

ode to
 and
sing

er. Ini-
s, we

ample

ction.

 of

arent

E

 con-
 this
is

 initial
linear

 of

 fork
 Geo-

ing
CGCGeodesic class:

void preferLinearBuf(int i)
The waste factor set by the above method can be obtained by the following redefine
tected method of the CGCGeodesic class.

double wasteFactor() const;

3. We set two flags for this porthole to indicate we can use static buffering and/o
ear buffering:hasStaticBuf andasLinearBuf. These two flags are all pri-
vate. If static buffering flag is set, we use direct addressing in the generated c
access the buffer. If linear buffering flag is set, we will use indirect addressing
no modulo addressing will be required. Otherwise, we will use indirect addres
and modulo addressing in the generated code to access the allocated buff
tially both flags are set TRUE. If this porthole needs to access past sample
reset both flags to FALSE. When the argumentstatBuf is given 0, we give up
static buffering in case the buffer size determined in (2) is greater than the s
rate of this porthole. Note that if a loop scheduler is used,statBuf becomes 0 and
some possibilities of static buffering are sacrificed as the cost of code compa
The following method is called to adjust the flags further.

void setFlags();

Is a protected member of CGCPortHole class. If the final buffer size is not a multiple
the sample rate, we resetasLinearBuf flag to 0. We have to use modulo addressing in
the generated code. If the product of the sample rate and the repetition count of its p
star is not a multiple of the final buffer size, we give up static buffering, settinghasStat-
icBuf to 0. If an output porthole is embedded or embedding, we set both flags TRU
since we enforce static buffering.

4. As the final step, we set the flags for destination portholes. If this porthole is
nected to a fork input, all fork destinations will be the destination portholes of
porthole. We first check whetherstatBuf argument is 0 and the buffer size
greater than the sample rate of the porthole. And, we callsetFlags method for
that porthole. If the porthole needs to access past samples, or the number of
samples on the connection is not a multiple of the sample rate, we give up
buffering.

The final buffer size can be obtained by the following two public methods
CGCPortHole class.
int maxBufReq() const;
int bufSize() const { return maxBufReq(); }

The above methods return the final buffer size associated with this porthole. If it is a
destination, it returns the size of the fork input buffer. If the porthole has switched its
desic , it returns the size of buffer associated with the switched Geodesic.

The flags for static buffering and linear buffering can be obtained by the follow
public methods of CGCPortHole class:
int linearBuf() const;
int staticBuf() const;
Ptolemy Last updated: 10/9/97

18-4 CGC Domain

f

h can
 float/
s and

es not
 gen-

 size is
 port-

 port-
. We

ode to
eparate
When
nerate

 the
utput".
le. The
 port-
. And,
rthole
Copy
spliced

edded
rthole.

 output
 buffer
ive up
We give up static buffering for a CGPortHole by calling the following public method o
CGCPortHole class.

void giveUpStatic();

18.1.2 Splice stars

After buffer requirements for all portholes are determined, we can detect the arcs whic
not have only one buffer. For instance, if we need to convert data types from complex to
int or vice versa automatically, we need two buffers on the arc: one for complex variable
the other for float/int variables. This copying operation is required since C language do
provide built-in "complex" type variable. Therefore, we define "complex" type data in the
erated code as follows;

static char* complexDecl =
"\back n#if !defined(COMPLEX_DATA)\back n#define COMPLEX_DATA 1"
"\back n typedef struct complex_data { double real; double imag; }
complex; \back n"
"#endif\back n";

Another case is when an embedded or embedding porthole requires a buffer whose
greater than the sample rate of the porthole. Recall that an embedded or embedding
hole will assume static buffering for each execution when we generate code for that
hole. If the buffer size is larger than the sample rate, we may not use static buffering
need two buffers for the embedded or embedding porthole.

Rather than assigning two buffers on an arc and letting the target generating c
copy data between these two buffers, we splice a star on the arc. The spliced star will s
two buffers on one arc into one buffer on its input and the other buffer on its output arc.
this spliced star is scheduled before the destination star of after the source star, it will ge
code to copy data from the input buffer to the output buffer.

Stars are spliced in the following protected method of CGCTarget class.
void addSpliceStars();

This method traverses all portholes of stars in the galaxy.

When we splice a star at an input porthole (destination porthole), we initialize
spliced star and set the target pointer. A spliced star should have one "input" and one "o
We set the sample rate of these portholes equal to the sample rate of the input portho
buffer size of the input porthole of the spliced star is determined by the original source
hole. The buffer size of the output porthole is set the sample rate of the input porthole
we check whether static or linear buffering can be used for the portholes. The input po
of a spliced Copy star gives up static buffering while the output porthole of the spliced
star and the original destination porthole can use static and linear buffering. In case we
a type conversion star, we need to change the type of the original source porthole.

We splice a Copy star at the output (source porthole) when the output is an emb
or embedding porthole and the buffer size is larger than the sample rate of the output po
We initialize the spliced star and set the target pointer. The sample rate of the input and
porthole of the spliced Copy star is equal to the sample rate of the output porthole. The
size of the output porthole of the spliced star is set to the buffer size of the arc. We g
U. C. Berkeley Department of EECS

The Almagest 18-5

of the

d) star
tually,
ollect

 larger
n port-

ar. The
tination
ile the
 here is
ires it.
 Copy

edded
ected to
ded to

er, we
ollect
py star

 special

ole of
nected

 a star
e we
copying

fore the
ar at the
erefore,
nto the

he star
r is well
is con-

ole,
end the
static buffering for this output porthole. On the other hand, we change the buffer size
source porthole to the sample rate of the porthole.

We need to pay special attention to Collect (or Spread) stars. A Collect (or Sprea
is not a regular SDF star so that it is not scheduled when all input data are available. Ac
we do not execute the spliced Collect (or Spread) stars. But, the output porthole of a C
(or Spread) star is an embedding (or embedded) porthole. And its buffer size can be
than the sample rate of the porthole. In this case, we splice a Copy star at the destinatio
hole, not at the source porthole. We schedule this Copy star before the destination st
sample rate of portholes of the spliced Copy star is equal to the sample rate of the des
porthole. The output buffer size of the spliced star is set the the buffer size of the arc wh
input buffer size now becomes the sample rate of the source porthole. The trickest part
to determine the offset pointers. We copy data when the destination porthole requ
Therefore, the offset pointers of the input porthole and the output porthole of the spliced
star depends on the initial delay on the arc. We manually set the offset bysetOffset method
of CGCPortHole class.

There is another case we need data copying between two buffers: when two emb
portholes are connected together. Suppose, an output porthole of a Spread star is conn
an input porthole of a Collect star. Since the output porthole of a Spread star is embed
the input buffer and the input porthole of a Collect star is embedded to the output buff
need to copy data from the input buffer of the Spread star to the output buffer of the C
star. Since we do not schedule neither Spread nor Collect star, we may not splice a Co
either at the source porthole not at the destination porthole. Therefore, we leave it as a
case so that we generate code to copy data between two buffers inmoveDataBetween-
Shared method of CGCStar class after executing the star connected to the input porth
the Spread star. So, we do not splice star when two embedded portholes are con
together.
void moveDataBetweenShared();

This is a protected method of CGCStar class. This method is called insiderunIt method
after generating code for a star. If the star is connected to an embedding porthole of
of which an embedded output porthole is connected to an embedded porthole. Sinc
meet the case when two embedded portholes are connected, we generate code for
data between two embedding buffers.

Scheduling spliced stars

When we splice a star at the input port of a star, we want to schedule the spliced star be
star. On the other hand, we want to schedule the spliced star after a star if we splice a st
output porthole of the star. When we splice stars, we are already given the schedule. Th
we need to insert spliced stars into the schedule. An intuitive approach is to insert them i
schedule list.

Currently, we use a simpler method. We use the fact that the spliced star and t
connected to the spliced star can be regarded as a cluster and schedule of that cluste
known. Our idea is to actually execute the cluster when we execute a star if the star
nected to spliced stars. CGCStar class has a private member to keep the list of stars:splice-
Clust. Initially, the star itself is inserted to the list. If we splice a star at the input porth
we prepend the spliced star to the list. If we splice a star at the output porthole, we app
Ptolemy Last updated: 10/9/97

18-6 CGC Domain

ecute

rates a
ally, it

or each
tar start-
bers to

er

s and

wed

dex is

ode-
 the

e of
spliced star to the list. And, we redefinerun method.
int run();

If there are spliced stars, or the list size is greater than 1, we traverse the list and ex
runIt method for each star. Otherwise, we executerunIt method.

int runIt();

It is a protected method of CGCStar class to generate main code for this star. If gene
comment regarding this star and main code. It updates offset pointers of the star. Fin
callsmoveDataBetweenShared method to generate code to copy data between two
embedding portholes if necessary.

18.1.3 Buffer naming

One major task for resource assignment in the CGC domain is to give a unique name f
variable. In the setup stage of the CGCTarget, we assign a unique index value to each s
ing from 1 to the number of stars in the galaxy. The CGCTarget has two protected mem
give a unique index for galaxy.

int galId;
int curId;

The second member is used to give unique indices for galaxies while the first memb
indicates the index of the current galaxy.

Now, the CGCTarget can generate a unique name for each variable, porthole
states, by the following protected method.
StringList sanitizedFullName(const NamedObj& b) const;

In this method, the argument object is a porthole or a state of a star. We prefix ’g’ follo
by the galaxy index, followed by "_", followed by the name of the star, followed by
another ’_’, followed by the star index, followed by yet another ’_’ to the name of the
object. For example, if star A has a state xx and the star index is 2 and the galaxy in
1, the name of the state becomes "g1_A_2_xx".

StringList correctName(const NamedObj& b);
Is a public version ofsanitizedFullName method.

Now, we are ready to generate unique names for portholes.
void setGeoName(char* name);

Is a public method of CGCPortHole class. If this porthole is disconnected and no Ge
sic is assigned, we store the name in the porthole. Otherwise, we store the name in
Geodesic by calling the following public method of CGCGeodesic class.

void setBufName(char* name);
The buffer name of a porthole can be obtained by the following public method of
CGCPortHole class.

const char* getGeoName() const;

This method returns the buffer name stored in this object if it is disconnected, or callget-
BufName method of CGCGeodesic class. If it is a fork destination, it returns the nam
U. C. Berkeley Department of EECS

The Almagest 18-7

tars. At
ta
s very
rmore,

ted a

 meth-
dvis-

hod
nerate

 star:

. If an
r, by
r.

ze of
buffer
uffer

ds ’_’
od
the fork input buffer.

18.2 Data structure for galaxy and stars
In the global declaration section of the generated code, we declare data structures for s
early design stage of CGC domain, we usestruct construct of C language to declare the da
structure of the program. This way, we could assign unique memory locations to variable
easily. But, the length of a variable gets large as the hierarchy of the graph grows. Furthe
we reduce significant amount of compiler optimization possibility. Therefore, we inven
scheme to generate unique symbols for variables (sanitizedFullName of CGCTarget class)
without using "struct" construct.

virtual void galDataStruct(Galaxy& galaxy , int level = 0);
virtual void starDataStruct(CGCStar* block , int level = 0);

The above methods are protected methods of CGCTarget class to be called inframeCode
method to declare data structures of galaxy and stars. The second argument of both
ods indicates the depth of hierarchy which the first argument block resides in, thus a
ing the amount of indents in the generated code. By default, it is set 0. The first met
calls the second method for each component star if it is not a Fork star. We do not ge
code nor declare data structure for Fork stars.

The data structure for a star consists of four fields:

1. Comments to indicate that the following declarations corresponds to what
sectionComment method.

StringList sectionComment(const char* string);
This is a protected method of CGCTarget class to generate a comment line,string in the
generated code.

2. Declare buffers associated with portholes. We do not declare input portholes
output porthole is EMBEDDED, we declare a pointer to the embedding buffe
prepending ’*’ in front of the buffer name. Otherwise, it declare a regular buffe

3. Declare index pointers to the buffer if static buffering is not used and the si
buffer is greater than 1 . Portholes will use these index pointers to locate the
position. For a regular buffer, we declare an index pointer, named after the b
name appended by "_ix". The name of index porthole is given byoffsetName
method of CGCTarget class.

StringList offsetName(const CGCPortHole* p);
This is a public method to assign an index pointer to the argument porthole. It appen
followed by "ix" at the end of the porthole name, by calling the following public meth
of CGCTarget class:

StringList appendedName(const NamedObj& p, const char * add);
This method is used to append ’_’ followed byadd to the name of the objectp.

4. Finally, we declare referenced states. A State is calledreferencedonly when we
Ptolemy Last updated: 10/9/97

18-8 CGC Domain

mem-

ond is
if not

e size
tate. If
ization
ion, we
d to

d set
ffer is
f the

an 1.

sso-

 will be
r-

tream in
, and
ould
ra code
e other

alaxy

am-
use $ref macro for the state at most once. CGCStar class has the following
bers for referenced states:

StateList referencedStates;
void registerState(const char* name);

The first is a public member to store the list of referenced states in this Star. The sec
a protected method to add the state with given name to the list of referenced states
inserted.

We traverse the list of referenced states to declare variables. Unlike portholes, th
of a state variable is given. If the size of state is 1, we both declare and initialize the s
the state is an array state, we both declare and initialize the state using array initial
unless the state is declared inside a function. If we declare an array state inside a funct
have to write explicit initialization code. Class CGCTarget has the following public metho
tell whether we are working inside a function or not.
int makingFunc();

Returns TRUE if we are defining a function.

18.2.1 Buffer initialization

We initialize buffers and index pointers as follows.

1. If the buffer is EMBEDDED, we assign a pointer to the embedded buffer an
the pointer to the starting address of the embedding buffer, from which the bu
embedded. If the size of the embedding buffer is 1, we assign the pointer o
embedding buffer.

2. For the regular buffer, we initialize with 0s in case the buffer size is greater th

3. We initialize an index pointer of a buffer to the offset pointer of the porthole a
ciated with that index pointer.

18.3 CGC code streams
Besides two code streams inherited from CGTarget class,myCode and procedures,
CGCTarget class maintains 9 more code streams (all protected). These code streams
stitched together to make the final code inframeCode method. There are two schemes to o
ganize a code in general. One scheme would be to put code strings to a single CodeS
order. For example, we put global declarations, main function declaration, initialization
main loop into a singlemyCode stream in order. For single processor code generation, it w
be feasible. For multiprocessor case, however, the parent target may add some ext
strings. Therefore, we assign different code streams to different section of code. On th
hand, if we have too many code streams, it would be arduous to remember all.

CodeStream globalDecls;
CodeStream galStruct;
CodeStream include;

These three code streams will be placed in the global scope of the final code. The g
declaration (galStruct) is separated fromglobalDecls because we need to put gal-
axy declaration inside a function if we want to define a function from a galaxy (for ex
U. C. Berkeley Department of EECS

The Almagest 18-9

the

decla-
ion
y
ode

st
 main

s to

CTar-

 In the
inear
zed in
 this
ple, recursion construct). A programmer can provide strings toglobalDecls and
include by using the following protected CGCStar methods in a star definition:

int addGlobal(const char* decl , const char * name = NULL);
int addInclude(const char* decl);

In the first method, we usedecl strings as the name if the second argument is given
NULL, to make a global declaration unique. The argument of the second method is
name of a file to be included, for example <stream.h> or "DataStruct.h".

CodeStream mainDecls;
CodeStream mainInit;
CodeStream commInit;

These three code streams will be placed in the main function before the main loop:
ration in the main function, initialization code, and initialization code for communicat
stars. We separatedcommInit frommainInit since communication stars are inserted b
the parent multiprocessor target. A programmer can provide strings to the first two c
streams by using the following protected CGCStar methods.

int addDeclaration(const char* decl , const char * name = NULL);
int addMainInit(const char* decl , const char * name = NULL);

The first method usesdecl string as the name of the string ifname is given NULL.

CodeStream wormIn;
CodeStream wormOut;
CodeStream mainClose;

The first two streams contain code sections to support wormhole interface to the ho
machine. They will be placed at the beginning of the main loop and at the end of the
loop. The last code stream will be placed after the main loop in the main function.

Recall that usingaddCode method defined in CGStar class, we can put code string
any code stream .

These nine code streams are initialized by the following protected method of CG
get class.:
virtual void initCodeStrings();

Note that code streams are not initialized insetup method of the target since the parent
target may put some code before calling thesetup method of the target. We initialize
code streams after we stitch them together and copy the final code inmyCode stream in
frameCode method. We do not initializemyCode stream in the above method.

void frameCode();

This method put all code streams together and copy the resulting code tomyCode stream.

18.4 Other CGCPortHole members
CGCPortHole is derived from CGPortHole class. It has a constructor with no argument.
constructor, we initialize the default properties of a CGCPortHole: static buffering and l
buffering flags are set TRUE, buffer size is set to 1. These properties are also initiali
initialize method. In the destructor, it deallocates the name of the buffer if stored in
Ptolemy Last updated: 10/9/97

18-10 CGC Domain

blic.

, they
s the

CTar-

e

can be
tate is
class (when this porthole is disconnected). All members described in this section are pu

CGCPortHole* getForkSrc();
const CGCPortHole* getForkSrc() const;

These methods return the fork input porthole (forkSrc) if this porthole is a fork destina-
tion. The second method is theconst version of the first method.

CGCPortHole* realFarPort();
const CGCPortHole* realFarPort() const;

These method return the far side porthole. If the far side porthole is a fork destination
return the far side porthole of the fork input, thus bypassing fork stars. The second i
const version of the first method.

CGCGeodesic& geo();
const CGCGeodesic& geo() const;

Return the geodesic connected to this PortHole, type cast. The second is theconst ver-
sion of the first method.

Geodesic* allocateGeodesic();

Allocates a CGCGeodesic.

void setupForkDests();

If this method is called for a fork input porthole, make a complete list offorkDests con-
sidering all cascaded forks.

int inBufSize() const;

This method returns thebufferSize of this porthole.

CGCPortHole has an iterator calledForkDestIter. It returns fork destinations one
at a time. The return type is CGCPortHole.

The derived classes of CGCPortHole in the CGC domain areInCGCPort, Out-
CGCPort, MultiCGCPort, MultiInCGCPort, andMultiOutCGCPort.

18.5 Other CGCStar members
Class CGCStar is derived from CGStar class. It has a constructor with no argument. CG
get class is a friend class. It has a method to return the domain it lies in (domain) and a method
for class identification (isA). In initialize method, we initializereferencedStates
list. All other members described in this section are all protected.

CGCTarget* targ();

Returns the target pointer, type cast to CGCTarget.

StringList expandRef(const char* name);
StringList expandRef(const char* name, const char * offset);

The above methods resolve macro $ref. Thename argument is a state name or a porthol
name. If it is a state name, we put the state in thereferencedStates list. In the second
method, the second argument is the offset of the first argument (state or porthole). It
a numeral, an IntState name, or a string. If it is an IntState, the current value of the s
U. C. Berkeley Department of EECS

The Almagest 18-11

e the
f the
uffer-

ndirect

dex is

 not.

l lan-
sses. In

this
pila-
de
e. The
taken.

There are various ways to referring to a porthole. If the buffer size is 1, we us
buffer name or the pointer version depending on the type, EMBEDDED or OWNER. I
buffer size is larger than 1, we use direct addressing if static buffering is used. If static b
ing can not be used, we use indirect addressing. The following method generates i
addressing:
virtual StringList getActualRef(CGCPortHole* p, const char * ix);

This method generates an indirect addressing for the argument portholep with offsetix.
If we may not use linear addressing, we generate modulo addressing, in which the in
modulo the buffer size.

virtual int amISpreadCollect();

Returns TRUE or FALSE, based on whether this star is a Spread or a Collect star or
We need to take special care for Spread and Collect stars.

18.6 Other CGCTarget members
CGCTarget is derived from HLLTarget class which is the base target class for high leve
guage code generation. It has a constructor with three argument like its base target cla
the constructor, we initialize code streams and put them into thecodeStringLists by
addStream method. It hasmakeNew method defined.

18.6.1 Other CGCTarget protected members

CGCTarget class has many states guiding the compilation procedure.

IntState doCompile;

If this state is set NO, we only generate code, not compiling the code.

StringState hostMachine;
StringState funcName;
StringState compileCommand;
StringState compileOptions;
StringState linkOptions;

ThehostMachine state indicates where the generated code is compiled and run. If
state does not indicate the current host,, we will use remove shell command for com
tion and execution. ThefuncName state is by default set "main". For multiprocessor co
generation case, we may want to give different function name for the generated cod
next three states determines the compilation command:

compileCommand compileOptions fileNamelinkOptions

There are some other states defined in this class.
IntState staticBuffering;

If this state is set YES, we increase thewasteFactor of geodesics to use static buffering
as much as possible, which is default.

StringState saveFileName;

We save the generated code in this file if the file name is given.
Ptolemy Last updated: 10/9/97

18-12 CGC Domain

he
 it

e

ce for

r-

he fol-
StringArrayState resources;

This state displays which resources this target has. By default, the CGCTarget has t
standard I/O (STDIO) resource. If a derived target does not support the standard I/O,
should clear this state.

int codeGenInit();

This method generates initialization code: buffer initialization, andinitCode method of
all stars. Before generating initialization code, we switch themyCode pointer of stars to
themainInit code stream so thataddCode method called inside theinitCode method
puts the string into themainInit code stream.

void compileRun(SDFScheduler* s);
Before callingcompileRun method of the SDFScheduler, which will callrun method of
stars in the scheduled order, we switch themyCode pointer of stars back to themyCode
code stream of the target. After code generation, we switch the pointer of stars to th
mainClose code stream for wrapup stage.

int wormLoadCode();

If the doCompile state is set NO, we just return TRUE, doing nothing. Otherwise, we
compile and run the generated code. Return FALSE if any error occurs.

StringList sectionComment(const char* s);
This method makes a comment statement with the given string in C code.

void wormInputCode(PortHole& p);
void wormOutputCode(PortHole& p);

The above methods just print out comments. We haven’t supported wormhole interfa
CGC domain yet (Sorry!).

18.6.2 Other CGCTarget public members
void setup();

This method initializegalId , curId indices for unique symbol generation. It also gene
ate indices for stars and portholes. Then, it callsCGTarget :: setup for normal setup
procedure.

void wrapup();

This method displays the generated code stored inmyCode stream. If the galaxy is not
inside a wormhole, it callswormLoadCode method to compile and run the code.

int compileCode();

This method compiles the generated code. The compile command is generated by t
lowing method:

virtual StringList compileLine(const char* fName);
The argument for this method is the file name to be compiled. If thehostMachine does
not indicate the local-host, we use remote shell.
U. C. Berkeley Department of EECS

The Almagest 18-13

-

es the

te

ive the
lls
y.

hines
ication.
mples.
int runCode();

This method runs the code. If thehostMachine is not the local-host, we usershSystem
function.

void headerCode();

Is redefined to generate a valid C comment with the target name.

void beginIteration(int repetitions , int depth);
void endIteration(int repetitions , int depth);

The first method generates the starting line ofwhile loop (if repetitions is negative)
or for loop (otherwise). After that it appends thewormIn code stream to themyCode
stream before stars fill the loop body. ThewormIn code stream is already filled. The sec
ond method close the loop. Just before closing the loop, it appends thewormOut code
stream to themyCode at the end of the loop body.

void setHostName(const char* s);
const char* hostName();

The above methods set and get thehostName state.

void writeCode(const char* name = NULL);
If the argument is NULL, we use the galaxy name as the file name. This method sav
code to the file.

void wantStaticBuffering();
int useStaticBuffering();

These methods set and get thestaticBuffering state.

int incrementalAdd(CGStar* s , int flag = 1);
We add the code for the argument star,s, during code generation step. Ifflag is 0, we
add the main body of the star (go method only). Otherwise, we initialize the star, alloca
memory, and generate initialization code, main body, and wrapup code.

int insertGalaxyCode(Galaxy* g, SDFScheduler * s);
We insert the code for the argument galaxy during code generation procedure. We g
unique index for the galaxy and set the indices of stars inside the galaxy. Then, it ca
CGTarget :: insertGalaxyCode to generate code. After all, we declare the galax

void putStream(const char* n, CodeStream * cs);
CodeStream* removeStream(const char* n);

The above methods put and remove a code stream namedn.

18.7 Class CGCMultiTarget
Class CGCMultiTarget, derived from CGSharedBus class, models multiple Unix mac
connected together via Ethernet. We use socket mechanism for interprocessor commun
Since the communication overhead is huge, we do not gain any speed up for small exa
Nonetheless, we can test and verify the procedure of multiprocessor code generation.

This class has five private states as follows.
Ptolemy Last updated: 10/9/97

18-14 CGC Domain

 the

e set
me
rt num-
ture,
nec-

r deal-

 we
ines

ll
IntState doCompile;
IntState doRun;

If these states are set YES, we compile and run the generated code.

StringState machineNames;
StringState nameSuffix;

We list the machine names separated by commas. If all machines names listed have
same suffix, we separate that suffix in the second state. For example, ifmachineName is
"ohm" andnameSuffix is ".berkeley.edu", we mean machine named "ohm.berke-
ley.edu".

IntState portNumber;

To make socket connections, we assign port numbers that are available. For now, w
the starting port number with this state. We will increase this number by one every ti
we add a new connection. Therefore, it should be confirmed that these assigned po
bers should be available. If the Ptolemy program is assigned a port number in the fu
then we will be able to let the system choose the available port number for each con
tion.

With the given list of machine names, we prepare a data structure calledMachi-
neInfo that pairs the machine name and internet address.
class MachineInfo {

friend class CGCMultiTarget;
const char* inetAdddrr;// internet address
const char* nm; // machine name

public:
MachineInfo: inetAddr(0), nm(0) { }

}

This class has a constructor with three argument like its base classes. The destructo
locatesMachineInfo arrays if allocated. It hasmakeNew method andisA method rede-
fined.

18.7.1 CGCMultiTarget protected members
void setup();

If the child targets are inherited, we also inherit the machine information. Otherwise,
set up the machine information. The number of processors and the number of mach
names should be equal. Then, we callCGMultiTarget::setup for normal setup opera-
tion . At last, we set thehostName state of child targets with the machine names.

int wormLoadCode();

This method do nothing ifdoCompile state is NO. Otherwise, it compiles the code for a
child targets (compileCode). Then, it checks whetherdoRun state is YES or NO. If it is
YES, we execute the code.

int sendWormData(PortHole& p);
int receiveWormData(PortHole& p);
int sendWormData();
int receiveWormData();
U. C. Berkeley Department of EECS

The Almagest 18-15

ently,

be

cation

e
 calls
a-

 tar-

ted in
muni-

oces-
men-
an way
These method should be redefined in the future to support wormhole interface. Curr
they do same tasks with the base Target classes.

18.7.2 CGCMultiTarget public members
MachineInfo* getMachineInfo();
int* getPortNumber();

These methods return the current machine information and the next port number to
assigned.

DataFlowStar* createSend(int from , int to , int num);
DataFlowStar* createReceive(int from , int to , int num);

The above methods create CGCUnixSend and CGCUnixReceive stars for communi
stars with TCP protocol.

void pairSendReceive(DataFlowStar* snd , DataFlowStar * rcv);
This method pairs a UnixSend star and a UnixReceive star to make a connection. W
assign a port number to the connection. More important task is to generate function
in the initialization code (commInit stream) of two child targets which these communic
tion stars belong to. These functions will make a TCP connection between two child
gets with the assigned port number. The UnixSend star will callconnect function while
the UnixReceive star will calllisten function.

void setMachineAddr(CGStar* snd , CGStar * rcv);
This method informs thesnd star about the internet address of the machine that thercv
star is scheduled on. The address is needed inconnect function.

void signalCopy(int flag);
By giving a non-zero value as the argument, we indicate that the code will be duplica
different set of processors so that we need to adjust the machine information of com
cation stars.

void prepCode(Profile* pf , int nP, int numChunk);
This method is also used to allow code replication into different set of targets.

DataFlowStar* createCollect();
DataFlowStar* createSpread();

These methods create CGCCollect and CGCSpread stars.

18.8 Status
Here are some points about the current status.

 • Data Parallel star is not supported yet.

 • Execution times of CGC stars are not well defined. They will vary processor to pr
sor. We estimate them by looking at CG96 stars, or by counting the number of ele
tary operations. For heterogeneous multiprocessor case, we have to design a cle
of specifying these numbers.
Ptolemy Last updated: 10/9/97

18-16 CGC Domain

 Since
et the

r-

ine of

r net-
90

ch-

on-

my,"

tured
 • hSpread/Collect stars and buffer embedding are not supported in ASM domain.
Spread/Collect stars are not supported, all ASM multiprocessor targets should s
oneStarOneProc state TRUE.

(4) The scheduling option,adjustSchedule is not implemented yet since the cu
rent graphical editor does not support "cont" function.

(5) Overlapped communication is not supported since we haven’t had any mach
that sort.

18.9 References
[1] G.C.Sih and E.A.Lee, "Dynamic-level scheduling for heterogeneous processo

works," Second IEEE Symposium on Parallel and Distributed Processing, pp. 42-49, 19

[2] G.C.Sih and E.A.Lee, "Declustering: A New Multiprocessor Scheduling Te
nique," IEEE Transactions on Parallel and Distributed Systems, 1992.

[3] S. Ha, Compile-time Scheduling of Dataflow Program Graphs with Dynamic C
structs, Ph.D. dissertation, U.C.Berkeley, 1992.

[4] J.L.Pino, S.Ha, E.A.Lee, J.T.Buck, "Software Synthesis for DSP Using Ptole
invited paper, Journal of VLSI Signal Processing, 1993.

[5] W.S.Wang, et al, "Assignment of Chain-Structured Tasks onto Chain-struc
Distributed Systems," source unknown.
U. C. Berkeley Department of EECS

The Almagest I-1

-1

8-2

-2

,

14
Index
Symbols
$codeblockSymbol macro16-4
$label macro ...16-4
$ref macro...16-4
$sharedSymbol macro ..16-4
$size macro...16-4
$starSymbol macro...16-4
$val macro ..16-4
*stateWithName ...3-2
~Runnable...3-11

A
abs function ..12-1
add method ...16-2
addBlock...3-6
addCode method...16-4
addDeclaration method...18-9
addGlobal method ..18-9
addInclude method ...18-9
addMainInit method ...18-9
addNode..3-9
addPort..3-3
addProcedure method ...16-4
addSpliceStars() method.......................................18-4
addStar..3-8
addState ...3-3, 3-9
addStream method ..16-1
adjustSchedule..18-16
advance method6-7, 16-10, 16-12
alias..3-7, 3-8
alias method..6-2
aliasFrom method ...6-2
allocateBuffer method ..6-7
allocateGeodesic method.............................6-5, 18-10
allocateLocalPlasma method6-6
allocateMemory() method18-1
allocatePlasma method ...6-6
amISpreadCollect method18-11
append method...................................16-2, 16-3, 16-6
appendedName method ..18-7
arg function...12-1
asGalaxy ..3-2, 3-6
asLinearBuf ..18-3
AsmTarget class ...17-7
asPort ..5-3
asStar ...3-2, 3-4
atBoundary method ..6-4
Attribute class...1-11
attributes method ..6-2
AutoFork class..6-9
AutoForkNod class...6-9

B
backup method ...6-7
BaseSymbolList class............... 16-5,16-5, 16-6, 16-7
BaseSymbolList constructor16-6
beginIteration method ..18-13
bitWord...1-11
Block class..3-1, 3-4, 3-5, 4-1
blockWithDottedName...3-10
blockWithName ...3-6
Buck, J. T. ..4-1, 8-1, 11
buffer ..5-4
buffer embedding ...16-12
buffer management...16-12
bufPos method..16-12
bufSize method..16-9, 16-12
bufSize() method ..18-3
buildEventHorizons..5-2
busConnect ...3-8

C
capacity method..6-14
CG domain ...16-1
CG utility functions..16-10
CGCGeodesic... 1
CGCMultiTarget class..18-13
CGCPortHole ... 18
CGCPortHole class ..18-9
CGCStar class ..18-10
CGCTarget ..18-4,18-11
CGCTarget class ..18-1
cgGeo method ..16-14
CGGeodesic class.................16-8, 16-9, 16-10, 16-12
CGMultiTarget class ..15-14, 15-19, 17-4, 17-7, 17-9

17-10, 17-10, 17-14, 17-15, 18-14
CGPortHole class 16-9, 16-10,16-12, 16-14
CGSharedBus class ..17-14
CGStar class16-2, 16-4, 16-5, 16-6, 16-7, 16-8,16-10,

16-11
CGStarPortIter class...16-10
CGTarget class4-3, 15-16, 16-1, 16-2, 16-7, 16-8,17-

1, 17-7, 18-1
cgTarget method...16-11
CGWormStar class... 15-
char* method ..16-3
CIntervalListIter class ..12-4
CircularBuffer class..6-7
className...3-10
clearParticle method...6-6
Clock class..12-5
Clock constructor ...12-5
clone ...3-10
CNamedObjListIter class1-11
CodeBlock class ..16-1,16-3
CodeBlock constructor ...16-3
Ptolemy Last updated: 10/9/97

I-2

-1

14

14

11
12
10

3-4
3-3

-1

1-2
CodeBlockandMacros.. 18-9
codeblockError method..16-5
codeblockSymbol member...................................16-5
codeGenInit method...18-12
CodeStream class16-1,16-1, 16-2
CodeStreamList class...16-2
codeStringLists member16-1
commInit ..18-9
compileCode method ...18-12
compileCommand .. 18-11
compileLine method ..18-12
compileOptions .. 18-11
compileRun method ...18-12
completelyBefore method12-3
Complex class ..12-1
ComplexState class ..9-5
conj function ..12-1
connect ..3-6, 3-8
connect method ..6-3
contains method ...12-4
copyStates ..3-4
correctName method ..18-6
cos function ..12-1
counter member..16-8
createCollect method..18-15
createReceive method ..18-15
createSend method ...18-15
createSpread method ..18-15
CriticalSection class...2-1
curId .. 18-6, 18-12

D
dataParallel member...16-11
Davis, J. S.. 4-1, 17-1
DCArc class ...15-25
DCArcList class ...15-25
DCClustArc class...15-30
DCClustArcList class...15-30
DCCluster class..15-27
DCClusterList class..15-29
DCGraph class ...15-26
DCNode class...15-24
decCount method ..6-12, 6-14
DeclusteringScheduler 15-31, 17-11
DeclustScheduler class.......................................15-23
deferrable method ..16-11
deletePlasma method..6-6
delLock method...6-12, 6-14
delNode ..3-9
delPorts method..6-9
delStar ..3-9
den method...12-2
descriptor..1-10
disableLocking method ..6-5

disconnect ...3-9
disconnect method ...6-4, 6-11
displaySchedule..3-11
DLGraph class ..15-17
dlopen ...8
DLParProcs class.....................................15-18,15-19
DLScheduler class15-18, 15-22
doCompile ...18-11, 18-
domain ...3-2, 3-6
Domain class ...3-7,10-4
domain method ...16-11
doRun ...18-
DoubleLink class ..1-4
DoubleLinkIter class ..1-6
DoubleLinkList class..1-5
doubly linked lists...1-4
DynamicGalaxy class ...3-7
DynamicLevelScheduler15-2, 17-
DynDFPortHole class...16-
DynDFStar class...16-

E
EGGate class ..1
EGNode class ...1
elapsedTime method...12-5
embed method ..16-13
embedded method...16-13
embeddedPort member.......................................16-13
embedding ..18
embedding method ...16-13
embeddingFlag member16-13
embedHere method...16-13
empty method6-10, 6-14, 12-4
enableLocking method ...6-5
end method ...12-3
endIteration method..18-13
endsBefore method...12-3
errMsg method..6-8
Error class.. 4-1,4-7, 4-8
EventHorizon..5-3
EventHorizon method...6-4
exp function ..12-1
expandMacro method ...16-5
expandPathName procedure...................................
expandPortName method16-10
expandRef method.....................................16-5, 18-10
expandSize method...16-5
expandVal method..16-5

F
far method...6-4
finalBufSize(int statBuf) method18-2
FlagArray class..1-9, 1-12
flags ..1-9
FloatArrayState class..9-5
U. C. Berkeley Department of EECS

The Almagest I-3

-1

-1
1-2

-3

-14

1

11

11

-1

10
FloatState class ...9-5
forceGrabData method16-14
forceSendData method16-14
fork method ..16-9
forkDelay method...16-9
ForkDestIter..18-10
forkDests member ..16-9
forkInit method...16-8
forkProcessing method16-14
forkSrc member ..16-9
forkType method ..16-9
Fraction class ..12-2
frameCode method ...18-9
freeContents..5-2
freeup method...6-10
FromEventHorizon ...5-5
full method..6-14
funcName ...18-11

G
GalAllBlockIter ..3-7
Galaxy class... 3-1,3-5, 5-1
galDataStruct method ...18-7
galId...18-6, 18-12
GalMultiPort class ..6-15
galP ...3-11
GalPort class...6-15
GalStarIter ..3-7
galStruct..18-8
GalTopBlockIter...3-7
GenericPort class ..6-1
genPortWithName ..3-2
geo method ..6-5, 18-10
Geodesic class ..6-10
geodesic switching..16-13
get method6-10, 6-12, 6-13, 16-2, 16-3, 16-6, 16-7
getActualRef method..18-11
getBufName..18-6
getData..5-4
getForkSrc method ...18-10
getGeoName method ..18-6
getMachineInfo method......................................18-15
getMyMultiPortHole method6-5
getParticle method ..6-6
getPlasma method..6-13, 6-14
getPortNumber method18-15
getProcId method..16-12
getProfile method ...16-11
getq method ..6-15
getStopTime ...5-2
getStream method...16-2
getText method...16-3
getTimeMark ..5-4
ghostAsPort ..5-3

ghostConnect..5-3
ghostPort...5-4
giveUpStatic() method ...18-4
globalDecls...18-8
go..3-5
Goel, M... 18

H
Ha, S. ..16-1, 17-1, 18
hashstring procedure ..
hasInternalState ..3-5
hasStaticBuf ... 18
head method ...6-10
headerCode method..18-13
here method ..6-7
HeterogeneousSupport 15
hidden function...6-2
Histogram class ..11-8
HLLTarget.. 18-1
HLLTarget class..17-7, 18-11
hostMachine ... 18-
hostName method...18-13
HuGraph class ..15-21
HuLevelScheduler.. 17-
HuNode class..15-20
HuParProcs class15-19,15-22
HuScheduler class ..15-21
Hylands, C.. 8

I
imag function..12-1
inBufSize method...18-10
incCount method ...6-12, 6-14
InCGCPort.. 18-
InCGPort class..16-14
include ..18-8
incrementalAdd method18-13
index ...3-4
index method ..6-5
InfString class...11-3
inheritTypeFrom method..6-3
initCode method ...16-11
initCodeStrings...18-9
initDelayValues method.......................................6-13
initialize..3-2, 3-5, 5-4, 5-5
initialize method6-4, 6-8, 6-12, 6-15, 16-2, 16-6, 16-7,

16-10
initOffset() method...18-2
initState..3-3, 3-6
initSubblocks..3-7
initTarget ..3-11
innerSched..5-4
insertGalaxyCode method18-13
insideDomain ...5-1
installPort method ..6-9
Ptolemy Last updated: 10/9/97

I-4

14
-14

8-6

0

4
0

0

13

14
int allocateMemory()..18-1
IntArrayState class ...9-5
internalBufSize method..16-9
InterpGalaxy class..................................3-5,3-7, 6-15
InterpUniverse..3-11
InterpUniverse class...3-11
intersects method..12-3
Interval class ..12-2
IntervalList class ..12-2
IntervalListIter class...12-4
IntState class ..9-5
isA method .. 1-8,16-11
ISA_FUNC macro.. 1-9
isaFork method...16-8
isAfter method..12-3
isItAtomic..3-1, 3-6
isItFork method ..16-8
isItInput ..5-3
isItInput method ...6-1
isItMulti method..6-1, 6-8
isItOutput ...5-3
isItOutput method ..6-1
isItPersistent method ..6-11
isItWormhole ...3-2
isLocal method...6-13
isLockEnabled method..................................6-6, 6-13
isParallel method..16-11
isSDF method...16-11
isUnique method ..16-2
Iterators ... 1-1, 3-1

K
KeptGate class..2-3
KnownBlock class............... 3-1, 3-7, 3-10,10-1, 10-5
KnownBlockIter class ..10-2
KnownState class ..9-5, 10-5
KnownTarget class...10-3
KnownTargetIter class ...10-4

L
Lane, T. .. 6-1
last method ...6-7
ld... 8-1
LD_LIBRARY_PATH environment variable 8-3
length method..6-14, 12-3
linearBuf() method...18-3
linked list..1-3
linker .. 8-1
Linker class .. 8-2
linkOptions... 18-11
list classes...1-3
ListIter class ...1-4
localBufSize method16-9, 16-12
log functino ..12-1
lookup method...16-6, 16-7

lookupSharedSymbol method16-7

M
MachineInfo class...18-
machineNames ...18
macroError method...16-5
macros...16-3
mainClose ...18-9
mainDecls ...18-9
mainInit...18-9
makeLock method6-12, 6-13
makeLower function...16-10
makeNew...3-3, 3-10
makeNew method...6-13
makingFunc method ...18-8
matchMacro method...16-5
maxBufReq() const method..................................18-3
maxComm method ...16-12
maxNumParticles method6-12
merge method ...12-3
mergeableWith method ..12-3
minNeeded method...16-8
moreThanOne method ..6-10
moveDataBetweenShared.....................................1
moveDataBetweenShared() method.....................18-5
moveFromGhost ...5-4
MultiCGCPort ..18-1
MultiCGPort class ..16-14
MultiDFPort class...16-1
MultiInCGCPort ...18-1
MultiInCGPort class...16-14
MultiOutCGCPort ..18-1
MultiOutCGPort class ..16-14
MultiPortHole class3-1, 5-5, 6-1,6-8, 6-15
multiPortNames..3-2
multiPortWithName ...3-2
MultiTarget class 17-7,17-8, 17-10
myCode..18-12, 18-
myCode member ..16-1
myTarget...3-12

N
NamedList class........................16-2,16-3, 16-5, 16-7
NamedListIter class ..16-3
NamedObj class.......................1-7, 3-1, 6-1, 6-11,9-1
NamedObjList class..1-10
NamedObjListIter class ..1-11
nameSuffix ...18-
newConnection method6-3, 6-8
newName method...6-9
newPort method...6-8, 16-14
newStream method ...16-2
newTarget ...3-12
next method ...6-7, 16-10
nodeConnect ...3-9
U. C. Berkeley Department of EECS

The Almagest I-5

12

-3

8-8
7-1

8-2
-12
NodePair class ...15-4,15-6
NodeSchedule class ..15-12
noInternalState..3-5
norm function ...12-1
num method..12-2
numberBlocks...3-6
numberMPHs..3-1
numberPorts..3-1
numberPorts method...6-8
numberStates ..3-1
numInit method ..6-12
numInitDelays method ...6-5
numPorts...3-9
numTokens method ..6-5
numXfer method...6-5

O
offset member...16-12
offsetName method ..18-7
oneStarOneProc..18-16
onlyOne ..5-3
operator++ method ...16-10
origin method..12-3
OutCGCPort ...18-10
OutCGPort class ...16-14
outerSched ...5-2, 5-4
outputComment method16-10

P
pairSendReceive method18-15
ParallelSchedulers ..13-1
parameter ..9-1
ParGraph class ...15-3,15-4
ParNode class ...15-1
ParProcessors class...............15-7,15-9, 15-12, 15-14
ParScheduler class ..15-6
Particle class ..6-1, 7-5
ParticleQueue class...6-14
ParticleStack class6-10, 6-13
pathSearch procedure ...1-2
Plasma class..6-13
Pointer type...1-3
pop method ...16-7
PortHole class.................................3-1, 6-1,6-3, 6-15
portHoleConnect method......................................6-13
portNumber...18-14
portWithName ..3-2
POSTFIX_OP...1-1
pow function...12-1
preferLinearBuf(int i) method18-3
preferredType method ..6-5
preinitialize ..3-3, 3-5, 3-10
prepCode method..18-15
prepend method ...16-3, 16-6
previous method ...6-7

print ..3-2, 3-4, 3-6
print method ..6-1, 6-12
printCode method...16-3
printPorts ..3-2
printStates...3-4
procedures member ..16-1
processCode method ..16-4
ProcessorIter class ..15-17
procId member ...16-11
Profile class 15-3, 15-9, 15-20, 16-
profile member ...16-11
progNotFound procedure 1
pt_ifstream..11-6
pt_ofstream...11-6
PtGate class ..2-1
push method ...16-7
pushBack method ...6-12
put method..6-10, 6-12, 16-2
putData ...5-5
putParticle method..6-6
putq method..6-15
putStream method ..18-13
putTail method ...6-10

Q
Queue class...1-7

R
ready ...5-5
real function..12-1
realFarPort method...18-10
realPort method ...6-2, 6-8
receiveData method..6-4
receiveWormData method..................................18-14
referencedStates ... 1
References15-17, 15-22, 1
registerState method...18-8
remove method...................................16-2, 16-3, 16-6
removeBlock ..3-6
removePort ...3-3
removeStream method..18-13
requestBufSize(int sz) method18-2
reset method ..6-7, 12-5
resolvedType method ...6-4
resource management...16-8
ResourceManagement16-12, 1
resources... 18
revertGeo method...16-13
rshSystem function...16-10
run..3-3, 3-4, 3-11, 3-12, 5-2
run method..16-11
runCode method ...18-13
runIt() method ..18-6
Runnable...3-10
Runnable class...3-10, 5-1
Ptolemy Last updated: 10/9/97

I-6

-5
-15

1

-4

-3

-7
4-1
S
sanitizedFullName ...18-6
saveFileName... 18-11
savestring procedure .. 1-2
scheduler ..3-2, 3-11, 3-12
Scheduler class.. 3-2,4-5
ScopedSymbolList class16-7
SDFStar class ... 16-10
sectionComment method...........................18-7, 18-12
sendData method..6-4
sendWormData method......................................18-14
separator member...16-8
SequentialList class..............................1-3, 1-10, 16-3
setAlias method..6-3, 6-4, 6-8
setAttributes method ..6-3
setBlock..3-3
setBufferType method..18-1
setBufName method...18-6
setCapacity method ..6-15
setCounter method16-6, 16-7
setDelay method..6-5, 6-11
setDescriptor ..3-8
setDest method...6-9
setDestPort method ..6-11
setDomain ...3-6, 3-9
setEventHorizon...5-4
setFlags() method...18-3
setForkBuf method...16-14
setForkSource method..16-9
setGeoName method ..18-6
setHostName method ...18-13
setMachineAddr method18-15
setOffset method ...18-2, 18-5
setPort method..6-3, 6-4, 6-8
SetPreferredType method6-7
setProcId method..16-12
setSeparator method....................................16-6, 16-7
setSource method ...6-9
setSourcePort method ..6-11
setState ..3-4, 3-9
setStopTime ..3-11, 5-1
setTarget...3-5
setTarget method..16-11
setText method...16-3
setTimeMark ..5-4
setup ...3-4, 5-2, 18-14
setup method ..18-12
setupForkDests method......................................18-10
sharedNames member ..16-2
sharedSymbol member...16-7
signalCopy method ..18-15
SimAction class.. 4-9
SimControl class4-1,4-8, 4-9
simplify method ...12-2

sin function ...12-1
size method..6-7, 6-12
sleepUntil method...12-5
slowGet method..6-13
slowPut method ..6-13
sourcePort method ..6-12
spliceClust ..18
SpreadandCollectstars15-14, 15
sqrt function..12-1
src method ..16-9
Stack class ..1-7
Star class.. 3-1,3-4, 4-8
starDataStruct method ..18-7
starSymbol member..16-5
State class ..3-1,9-1
staticBuf() method ..18-3
staticBuffering ..18-1
StringArrayState class ..9-6
StringList class11-1, 16-1, 16-2
StringState class..9-5
subsetOf method...12-3
substChar method ...16-5
subtract method ..12-4
Sub-Universecreation ...15
sumUp...5-2
switched method...16-14
switchGeo method ..16-13
switchGeodesic...18
symbol generation ..16-5
symbol method ..16-6, 16-7
symbolCounter method ..16-8
SymbolList class..16-5, 16-6
SymbolStack class ..16-7

T
tail method..6-10
targ method...18-10
Target..15
Target class.. 3-1, 3-4,
targetName ...3-12
targetNestedSymbol member16-7
timeMark ..5-4
TimeVal class ...12-4
ToEventHorizo ...5-4
ToEventHorizon ...5-4
Tokenizer class ..9-3, 11-5
tokenNew..5-4
transferDat ..5-5
transferData ..5-5
translateAliases method..6-3
type ...3-11
type method ...6-2, 6-14
typePort method..6-2
U. C. Berkeley Department of EECS

The Almagest I-7
U
UniProcessor class.....................................15-6,15-11
unique symbol generation.....................................16-5
UniqueStringList class..16-2
UniqueSymbolGeneration16-5
Universe..3-11
Universe class.. 3-1,3-11, 5-1
useStaticBuffering method18-13
utility functions...9-5
utilityfunctions..6-9

W
wantStaticBuffering method...............................18-13
wasteFactor method..16-10
whereEmbedded method16-13
Williamson, M. C. ..16-1
Wormhole ...5-1
wormhole..5-4
wormIn ..18-9, 18-13
wormInputCode method.....................................18-12
wormLoadCode ..18-12
wormLoadCode method18-12, 18-14
WormMultiPor ...5-5
wormOut..18-9, 18-13
wormOutputCode method18-12
wrapup ...3-3, 3-6, 3-12
wrapup method ...18-12
writeCode method ..18-13

X
XGraph class ..11-7
XHistogram class..11-8
Xiong, Y. ..6-1
Ptolemy Last updated: 10/9/97

I-8
U. C. Berkeley Department of EECS

	The Almagest
	Vol. 3 - Ptolemy 0.7 Kernel Manual

	Primary Authors
	Other contributors
	Copyright © 1990-1997
	The Regents of the University of California All ri...
	Current Sponsors
	Trademarks
	About the Cover
	The Almagest
	Contents
	Introduction 1
	1. Basic concepts, classes, and facilities
	2. Support for multithreading
	3. Block and related classes
	4. Control of Execution and Error Reporting
	5. Interfacing domains – wormholes and related cla...
	6. Classes for connections between blocks
	7. Particles and Messages
	8. The incremental linker
	9. Parameters and States
	10. Support for known lists and such
	11. I/O classes
	12. Miscellaneous classes
	13. Overview of Parallel Code Generation
	14. APEG generation
	15. Parallel Schedulers
	16. Base Code Generation Domain and Supporting Cla...
	17. Target
	18. CGC Domain

	Introduction

	Chapter 1. Basic concepts, classes, and facilities...
	1.1 The C++ Subset Used In Ptolemy
	1.2 Iterators
	class MyIterator { public: // constructor: argumen...
	// print the names of all objects in the container...
	while ((itemP = nextItem++) != 0) cout << itemP->n...

	1.3 Non-class utility procedures
	char* savestring(const char* text);
	const char* hashstring(const char* text);
	const char* expandPathName(const char* fileName);
	const char* pathSearch(const char* file, const cha...
	int progNotFound(const char* program,const char* e...

	1.4 Generic Data Structures
	typedef void * Pointer;

	1.5 Class SequentialList
	1.5.1 SequentialList information functions
	int size() const;
	Pointer head() const;
	Pointer tail() const;
	Pointer elem(int n) const;
	int empty() const;
	int member(Pointer arg) const;

	1.5.2 Functions that modify a SequentialList
	void prepend(Pointer p);
	void append(Pointer p);
	int remove(Pointer p);
	Pointer getAndRemove();
	Pointer getTailAndRemove();
	void initialize();

	1.5.3 Class ListIter

	1.6 Doubly linked lists
	1.6.1 Class DoubleLink
	DoubleLink(Pointer p, DoubleLink* next, DoubleLink...
	Pointer content();
	virtual ~DoubleLink();
	void unlinkMe();
	DoubleLink *next; // next node in the list DoubleL...

	1.6.2 Class DoubleLinkList
	DoubleLinkList(); DoubleLinkList(Pointer* e);
	virtual ~DoubleLinkList();
	DoubleLink* createLink(Pointer e);
	void insertLink(DoubleLink *x); void insert(Pointe...
	void appendLink(DoubleLink *x); void append(Pointe...
	void insertAhead(DoubleLink *y, DoubleLink *x); vo...
	DoubleLink* unlink(DoubleLink *x);
	void removeLink(DoubleLink *x);
	void remove(Pointer e);
	int find(Pointer e);
	virtual void initialize();
	void reset();
	int size();
	DoubleLink *head(); DoubleLink *tail();
	DoubleLink *getHeadLink(); Pointer takeFromFront()...
	DoubleLink *getTailLink(); Pointer takeFromBack();...
	DoubleLink *myHead; DoubleLink *myTail;

	1.6.3 Class DoubleLinkIter

	1.7 Other generic container classes
	1.7.1 Class Queue
	void putTail(Pointer p); void putHead(Pointer p); ...

	1.7.2 Class Stack
	void pushTop(Pointer p); Pointer popTop(); pushBot...
	Pointer accessTop() const;

	1.8 Class NamedObj
	1.8.1 NamedObj constructors and destructors
	NamedObj(const char* name,Block* parent, const cha...

	1.8.2 NamedObj public members
	virtual const char* className() const;
	const char* name() const;
	const char* descriptor() const;
	Block* parent() const;
	virtual StringList fullName() const;
	void setName(const char* name);
	void setParent(Block* parent);
	void setNameParent (const char* my_name, Block* my...
	virtual void initialize() = 0;
	virtual StringList print (int verbose) const;
	virtual int isA(const char* cname) const;

	1.8.3 Flags on named objects
	FlagArray flags
	b->flags[visited] = TRUE; ...
	if (b->flags[visited]) { ... }

	1.8.4 NamedObj protected members
	void setDescriptor(const char* desc);

	1.9 Class NamedObjList
	1.9.1 NamedObjList information functions
	NamedObj* objWithName(const char* name); const Nam...
	NamedObj* head(); const NamedObj* head() const;

	1.9.2 Other NamedObjList functions
	void put(NamedObj& obj)
	void initElements();
	int remove(NamedObj* obj);
	void deleteAll();

	1.9.3 NamedObjList iterators

	1.10 Attributes
	1.10.1 Attribute member functions
	Attribute& operator |= (const Attribute& arg); Att...
	bitWord eval(bitWord defaultVal) const;
	bitWord clearAttribs(bitWord defaultVal) const;
	bitWord on() const; bitWord off() const;

	1.11 FlagArray
	1.11.1 FlagArray constructors and destructor
	FlagArray()
	FlagArray(int size)
	FlagArray(int size, int fill_value)

	1.11.2 FlagArray public methods
	FlagArray & operator = (const FlagArray & v)
	int size() const
	int & operator [] (int n)

	Chapter 2. Support for multithreading
	2.1 Class PtGate
	2.2 Class CriticalSection
	2.3 Class GateKeeper
	2.4 Class KeptGate

	Chapter 3. Block and related classes
	3.1 Class Block
	3.1.1 Block constructors and destructors
	3.1.2 Block public “information” members
	3.1.3 Other Block public members
	3.1.4 Block protected members
	3.1.5 Block iterator classes

	3.2 Class Star
	3.2.1 Star public members
	3.2.2 Star protected members

	3.3 Class Galaxy
	3.3.1 Galaxy public members
	3.3.2 Galaxy protected members
	3.3.3 Galaxy iterators

	3.4 Class DynamicGalaxy
	3.5 Class InterpGalaxy
	3.5.1 Building structures with InterpGalaxy
	3.5.2 Deleting InterpGalaxy structures
	3.5.3 InterpGalaxy and cloning
	3.5.4 Other InterpGalaxy functions

	3.6 Class Runnable
	3.7 Class Universe
	3.8 Class InterpUniverse

	Chapter 4. Control of Execution and Error Reportin...
	4.1 Class Target
	4.1.1 Target public members
	4.1.2 Target protected members

	4.2 Class Scheduler
	4.2.1 Scheduler public members
	4.2.2 Scheduler protected members

	4.3 Class Error
	4.4 Class SimControl
	4.4.1 Access to SimControl status flags.
	4.4.2 Pre-actions and Post-actions
	4.4.3 SimControl interrupts and polling

	Chapter 5. Interfacing domains – wormholes and rel...
	5.1 Class Wormhole
	5.1.1 Wormhole public members
	5.1.2 Wormhole protected members

	5.2 Class EventHorizon
	5.2.1 How EventHorizons are used
	5.2.2 EventHorizon public members
	5.2.3 EventHorizon protected members

	5.3 Class ToEventHorizon
	5.4 Class FromEventHorizon
	5.5 Class WormMultiPort

	Chapter 6. Classes for connections between blocks
	6.1 Class GenericPort
	6.1.1 GenericPort query functions
	6.1.2 Other GenericPort public members
	6.1.3 GenericPort protected members

	6.2 Class PortHole
	6.2.1 PortHole public members
	6.2.2 PortHole protected members
	6.2.3 CircularBuffer – a class used to implement P...

	6.3 Class MultiPortHole
	6.3.1 MultiPortHole public members
	6.3.2 MultiPortHole protected members

	6.4 AutoFork and AutoForkNode
	6.4.1 Class AutoFork
	6.4.2 Class AutoForkNode

	6.5 Class ParticleStack
	6.6 Class Geodesic
	6.6.1 Geodesic public members
	6.6.2 Geodesic protected members

	6.7 Class Plasma
	6.8 Class ParticleQueue
	6.9 Classes for Galaxy ports
	6.10 The PortHole type resolution algorithm
	1. Printer and similar polymorphic stars, which ac...
	2. Fork and similar stars, which want to bind mult...
	3. Merge and similar stars, which have a single ou...
	Note:

	6.11 Changes since Ptolemy0.6

	Chapter 7. Particles and Messages
	7.1 Class Particle
	7.2 Particle public members
	7.3 Arithmetic Particle classes
	7.4 The Heterogeneous Message Interface
	7.4.1 Class Envelope
	7.4.2 Class Message
	7.4.3 Class MessageParticle

	7.5 Example Message types

	Chapter 8. The incremental linker
	8.1 ld -A style linking vs. dlopen() style linking...
	8.2 Temporary vs. Permanent Incremental Linking
	8.3 Linker public members
	8.4 Linker implementation
	8.4.1 Shared Objects and dlopen() style linking
	1. Using just a file name link foo.so will not wor...
	2. 2If the file name begins with ./, then the curr...
	3. If the file name is an absolute path name, then...
	4. Dynamic programs can have a run path specified ...

	8.4.2 Porting the Dynamic Linking capability
	8.4.3 ld -A Style Dynamic Linking
	1. Align the memory as required.
	2. Form the command line and execute the Unix link...
	3. Read in the object file. This is heavily system...
	4. Make the read-in text executable. On most syste...
	5. Invoke constructors in the newly read in code. ...
	6. If this is a permanent link, copy the linker ou...

	8.4.4 dlopen() Style Dynamic Linking
	1. Generate a list of files to be linked in. If we...
	2. Generate a shared object .so file from all the ...
	3. Do a dlopen() on the shared object.
	4. Most architectures use nm to search for constru...

	Chapter 9. Parameters and States
	9.1 Class State
	9.1.1 State public members
	9.1.2 The State parser and protected members

	9.2 Types of states
	9.2.1 Class IntState and class FloatState
	9.2.2 Class ComplexState
	9.2.3 Class StringState
	9.2.4 Numeric array states
	9.2.5 Class StringArrayState

	Chapter 10. Support for known lists and such
	10.1 Class KnownBlock
	10.2 Class KnownTarget
	10.3 Class Domain
	10.3.1 Domain virtual functions

	10.4 Class KnownState

	Chapter 11. I/O classes
	11.1 StringList, a kind of String class
	11.1.1 StringList constructors and assignment oper...
	11.1.2 Adding to StringLists
	11.1.3 StringList information functions
	11.1.4 StringList conversion to const char *
	11.1.5 StringList destruction and zeroing
	11.1.6 Class StringListIter

	11.2 InfString, a class supporting unbounded strin...
	11.2.1 InfString constructors and assignment opera...
	11.2.2 Adding to InfStrings
	11.2.3 InfString information functions
	11.2.4 InfString conversion to char *
	11.2.5 InfString destruction and zeroing
	11.2.6 Class InfStringIter

	11.3 Tokenizer, a simple lexical analyzer class
	11.3.1 Initializing Tokenizer objects
	11.3.2 Reading from Tokenizers
	11.3.3 Tokenizer include files

	11.4 pt_ifstream and pt_ofstream: augmented fstrea...
	11.5 XGraph, an interface to the xgraph program
	11.6 Histogram classes
	11.6.1 Class Histogram
	11.6.2 Class XHistogram

	Chapter 12. Miscellaneous classes
	12.1 Mathematical classes
	12.1.1 Class Complex
	12.1.2 class Fraction

	12.2 Class IntervalList
	12.2.1 class Interval and methods
	12.2.2 IntervalList public members
	12.2.3 IntervalList iterator classes.

	12.3 Classes for interacting with the system clock...

	Chapter 13. Overview of Parallel Code Generation
	Chapter 14. APEG generation
	14.1 Class EGArc
	14.2 Class EGGate
	14.2.1 EGGate public members
	14.2.2 Class EGGateList
	class EGGateLink
	EGGateList public members
	Iterator for EGGateList

	14.3 Class EGNode
	14.3.1 Other EGNode public members
	14.3.2 EGNodeList

	14.4 Class ExpandedGraph
	5. Initialize the APEG graph.
	6. Allocate all invocations (EGNodes) of the block...
	7. For each star in the original SDF graph,
	8. Find the root nodes in the APEG and stored in i...
	14.4.1 Other ExpandedGraph public members
	14.4.2 Iterators for ExpandedGraph

	Chapter 15. Parallel Schedulers
	15.1 ParNode
	15.1.1 ParNode protected members
	15.1.2 Other ParNode public members
	15.1.3 Iterators for ParNode

	15.2 Class ParGraph
	15.2.1 Other ParGraph protected members
	15.2.2 Other ParGraph public members
	15.2.3 Class NodePair

	15.3 Class ParScheduler
	15.3.1 compileRun method
	15.3.2 Other ParScheduler protected members
	15.3.3 Other ParScheduler public members

	15.4 class ParProcessors
	15.4.1 Other ParProcessors protected members
	15.4.2 Other ParProcessors public members

	15.5 UniProcessor
	15.5.1 Class NodeSchedule
	15.5.2 Members for scheduling
	15.5.3 Sub-Universe creation
	Spread and Collect stars

	15.5.4 Members for code generation
	15.5.5 Other UniProcessor protected members
	15.5.6 Other UniProcessor public members
	15.5.7 Iterator for UniProcessor

	15.6 Dynamic Level Scheduler
	15.7 Class DLGraph
	15.8 class DLScheduler
	15.9 Class DLParProcs
	15.10 Hu Level Scheduler
	15.10.1 Class HuNode
	15.10.2 Class HuGraph
	15.10.3 Class HuScheduler
	15.10.4 Class HuParProcs

	15.11 Declustering Scheduler
	15.11.1 Class DCNode
	15.11.2 Classes DCArc and DCArcList
	15.11.3 Class DCGraph
	15.11.4 Class DCCluster
	15.11.5 Class DCClusterList
	15.11.6 Class DCClustArc and class DCClustArcList
	15.11.7 Class DCParProcs

	Chapter 16. Base Code Generation Domain and Suppor...
	16.1 Class CodeStream
	16.1.1 Class NamedList

	16.2 Class CodeBlock and Macros
	16.3 Class SymbolList and Unique Symbol Generation...
	16.4 Class CGGeodesic and Resource Management
	16.5 Utility Functions
	16.6 Class CGStar
	16.6.1 CGStar Protected Methods and Members
	16.6.2 CGStar Public Methods

	16.7 Class CGPortHole
	16.7.1 Buffer Management
	16.7.2 Buffer Embedding
	16.7.3 Geodesic Switching
	16.7.4 Other CGPortHole Members
	16.7.5 CGPortHole Derived Classes

	Chapter 17. Target
	17.1 Class CGTarget
	(1) Initialize myCode and procedure code stream.
	(2) Select a scheduler if no scheduler is selected...
	(3) Reset the symbol lists.
	(4) If we are the top-level target, initialize the...
	(5) If it is a child target, the schedule was alre...
	(6) If it is a child target or it is not inside a ...
	(1) If this target is a child target, call setup t...
	(2) We compute buffer sizes, allocate memory, etc:...
	(3) Call the method generateCodeStreams(). This me...
	(4) Organize the CodeStreams into a single code st...
	(5) If this target is not a child target, write th...
	(6) If it is a child target, copy the symbol count...
	(1) Write initial code.
	(2) We do initialization for code generation: for ...
	(3) Generate the code for the main loop: mainLoopC...
	(4) Call wrapup methods of stars to generate code ...
	(5) Add more code if necessary: trailerCode
	17.1.1 Other CGTarget protected members
	17.1.2 Other CGTarget public members
	17.1.3 Class HLLTarget

	17.2 Multiprocessor Targets
	17.2.1 Class MultiTarget
	Other MultiTarget public members

	17.2.2 Class CGMultiTarget
	(1) Based on the states, we create child targets a...
	(2) Choose a scheduler based on the states: choose...
	(3) If it is a heterogeneous target, we flatten th...
	(4) Set up the scheduler object. Clear myCode stre...
	(5) Initialize the flattened galaxy, and perform t...
	(6) If the child targets are not inherited, displa...
	(7) If this target is inside a wormhole, it adjust...
	Other CGMultiTarget protected members
	Other CGMultiTarget public members

	17.2.3 Class CGSharedBus

	17.3 Heterogeneous Support
	1. To specify the component targets , we first set...
	2. An application program for a heterogeneous targ...
	3. When we schedule a star in the scheduling phase...
	4. After scheduling is performed, we create sub-un...

	Chapter 18. CGC Domain
	18.1 Buffer Allocation
	1. Determine the buffer requirements for all porth...
	2. Splice Copy stars or type conversion stars if n...
	3. Set the buffer type for each output porthole: e...
	4. We assign unique names for buffers.
	5. We initialize the offset pointer for each porth...
	18.1.1 Buffer requirement
	1. We can manually assign the buffer size by calli...
	2. We set the initial buffer size by calling local...
	3. We set two flags for this porthole to indicate ...
	4. As the final step, we set the flags for destina...

	18.1.2 Splice stars
	Scheduling spliced stars

	18.1.3 Buffer naming

	18.2 Data structure for galaxy and stars
	1. Comments to indicate that the following declara...
	2. Declare buffers associated with portholes. We d...
	3. Declare index pointers to the buffer if static ...
	4. Finally, we declare referenced states. A State ...
	18.2.1 Buffer initialization
	1. If the buffer is EMBEDDED, we assign a pointer ...
	2. For the regular buffer, we initialize with 0s i...
	3. We initialize an index pointer of a buffer to t...

	18.3 CGC code streams
	18.4 Other CGCPortHole members
	18.5 Other CGCStar members
	18.6 Other CGCTarget members
	18.6.1 Other CGCTarget protected members
	18.6.2 Other CGCTarget public members

	18.7 Class CGCMultiTarget
	18.7.1 CGCMultiTarget protected members
	18.7.2 CGCMultiTarget public members

	18.8 Status
	18.9 References
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X

