The Almagest 14-1

Chapter 14. APEG generation

Authors: Soonhoi Ha

Since all code generation domains depends on the SDF domain, and the same routine is needed
by a specialized loop scheduler in the SDF domain ($PTOLEMY/src/domains/sdf/loopSched-
uler), the source of APEG generation is placed in $PTOLEMY/src/domains/sdf/kernel.

An APEG graph (an ExpandedGraph class) consists of EGNodes and EGGates. Class
EGNode represents an object corresponding to an invocation of a DataFlowStar (DataFlow-
Star is a base class of SDFStar class). An EGNode has a list of EGGates. EGGate class is sim-
ilar to PortHole class in the respect that it is an object for connection between EGNodes.
Between two EGGates, there exists an EGArc object. All connections in an APEG graph is
homogeneous. If there is a sample rate change on an arc in the SDF program graph, the arc is
mapped to several homogeneous arcs. APEG generation routines are defined as member
methods of the ExpandedGraph class.

Refer to “Class ExpandedGraph” on page 14-5, for he main discussion of APEG gen-
eration.

14.1 Class EGArc

Class EGArc contains the information of (1) sample rate of the arc and (2) the initial delay on
the arc.

EGArc(int arc_samples ,intarc_delay);
The constructor requires two arguments for sample rate and the number of initial delays
on the arc.

int samples();

int delay();
These functions return the sample rate of the arc, and the initial delay on the arc. We can
increase the sample rate of the arc using the following method

void addSamples(int increments),
There is no protected members in Class EGArc.

14.2 Class EGGate

Class EGGate is a terminal in an EGNode for connection with other EGNodes. A list of EGG-
ates will become a member of EGNode, calleckstors ordescendants based on the di-
rection of connection.

14.2.1 EGGate public members

EGGate(EGNode* parent , PortHole*pPort);
Is a constructor. The first argument is the EGNode that this EGGate belongs to, and the

Ptolemy Last updated: 10/9/97

14-2 APEG generation

second argument is the corresponding porthole of the original SDF graph.

const PortHole* aliasedPort();

const char* name() const;
The above methods returns the corresponding porthole of the original SDF graph, the
name of the porthole.

int isltinput();
Returns TRUE or FALSE based on whether the corresponding porthole is an input or not.

void allocateArc(EGGate* dest ,intno_samples ,intno_delay);
The method creates a connection between this EGGate and the first argument by allocat-
ing an arc with information from the second and the third arguments. It should be called
once per connection.

int samples();
int delay();
void addSamples(int increments),

These methods call the corresponding methods of the EGArc class if an arc was already
allocated byallocateArc.

EGGate* farGate();

EGNode* farEndNode();

DataFlowStar* farEndMaster();

int farEndInvocation();
The above methods query information about the other side of the connection: EGGate,
EGNode, the original DataFlowStar that the EGNode points to, and the invocation number

of the EGNode.

StringList printMe();
It prints the information of the arc allocated: the sample rate and the initial delay.

void setProperty(PortHole* pPort , intindex);
This method sets the pointer to the corresponding porthole of the original SDF graph and
the index of the EGGate. Since multiple EGGates in an EGNode may be mapped to the
same porthole in the original SDF graph, we order the EGGates by indices.

void setLink(EGGateLink* p);

EGGateLink* getLink();
Since the list of EGGates is maintained as a derived class of DoubleLinkList, an EGGate
is assigned an EGGateLink that is derived from the DoubleLink class. These methods set
and get the assigned EGGateLink.

void hideMe(int flag);
If the initial delay is greater than or equal to the sample rate in an EGArc, the precedence
relationship between the source and the destination of the arc disappears while not remov-
ing the arc from the APEG. This method removes this EGGate from the access list of
EGGatesdncestors ordescendants), and stores it in the list of hidden EGGates

U. C. Berkeley Department of EECS

The Almagest 14-3

(hiddenGates) of the parent EGNode . If the argument flag is NULL, it calls the same
method for the EGGate of the other side of connection. By default, the flag is NULL.

virtual ~EGGate();
Is a virtual destructor that deletes the allocated arc, removes itself from the list of EGG-
ates.

14.2.2 Class EGGateList

This class, derived from DoubleLinkList, contains a list of EGGates. An EGGate is assigned
to an EGGateLink and the EGGatelList class accesses an EGGate through the assigned EGG-
ateLink.

The following ordering is maintained in the precedence list: entries for the same far-
end EGNode occur together (one after another), and they occur in order of increasing invoca-
tion number. Entries for the same invocation occur in increasing order of the number of delays
on the arc.

class EGGateLink

EGGateLink(EGGate* e);
The constructor has an argument for an EGGate.

EGGate* gate();
EGGateLink* nextLink();
These methods return the corresponding EGGate and the next link in the parent list.

void removeMeFromList();
Removes this link from the parent list.

EGGateList public members

Class EGGatelList has a default constructor.

void initialize();
This method deletes all EGGates in the list and initialize the list. It is called inside the
destructor.

DoubleLink* createLink(EGGate* e);
Creates an EGGateLink for the argument EGGate.

void insertGate(EGGate* e, intupdate);
This method insert a new EGGate into the proper position in the precedence list. The
update parameter indicates whether or not to update the arc data if an EGGate with the
same far-end EGNode and delay, already existpddte is 0, the argument EGGate will
be deleted if redundant. If 1, the arc information of the existing EGGate will be updated
(sample rate will be increased). When we insert an EGGate tie¢bendants list of
the parent EGNode, we sgidate to be 1. If the EGGate will be added to Hmees-
tors, the variable is set 0.

Ptolemy Last updated: 10/9/97

14-4 APEG generation

StringList printMe();
Prints the list of EGGates.

Iterator for EGGateList

Class EGGateLinklter is derived from class DoubleLinklter. The constructor has an argument
of the reference to a constant EGGatelL.ist object. It returns EGGates. This class has a special
method to return the next EGGate connected to afa®ndMaster that is different from

the argument DataFlowStar.

EGGate* nextMaster(DataFlowStar* master);

14.3 Class EGNode

Class EGNode is a node in an APEG, corresponding to an invocation of a DataFlowStar in the
original SDF graph. The constructor has two arguments: the first argument is the pointer to the
original Star of which it is an invocation, and the second argument represents the invocation
number. The default value for the invocation number is 1. It has a virtual destructor that does
nothing in this class.

An EGNode maintains three public lists of EGGatesestors, descendants,
andhiddenGates
14.3.1 Other EGNode public members
Invocations of the same DataFlowStar are linked together.

void setNextInvoc(EGNode* next);
EGNode* getNextinvoc();

EGNode* getlnvocation(int i)
void setlnvocationNumber(int i)

int invocationNumber();
The first two methods sets and gets the next invocation EGNode. The third method
searches through the linked list starting from the current EGNode to return the invocation
with the argument invocation number. If the argument is less than the invocation number
of the current EGNode, returns 0. The other methods sets and gets the invocation number
of the current EGNode.

void deletelnvocChain();
Deletes all EGNodes linked together starting from the current EGNode. This method is
usually called at the EGNode of the first invocation.

StringList printMe();

StringList printShort();
These methods print the name and the invocation number. In the first methodetie
tors anddescendants lists are also printed.

DataFlowStar* myMaster();
Returns the original DataFlowStar of which the current EGNode is an invocation.

int root();

U. C. Berkeley Department of EECS

The Almagest 14-5

This method returns TRUE or FALSE, based on whether this node is a root of the APEG.
A node is a root if it either has no ancestors, or if each arc in the ancestor list has enough
delay on it.

EGGate* makeArc(EGNode* dest , int samples , intdelay);
Create a connection from this node to the first argument node. A pair of EGGates and an
EGArc are allocated in this method. This EGNode is assumed to be the source of the con-
nection.

void resetVisit();

void beingVisited();

int alreadyVisited();
The above methods manipulates a flag for traversal algorithms: resets to 0, sets to 1, or
queries the flag.

void claimSticky();

int sticky();
These methods manipulates another flag to indicate that the invocations of the same Data-
FlowStar may not be scheduled into different processors since there is a strong interdepen-
dency between them. The first method sets the flag and the second queries the flag.

14.3.2 EGNodelList

Class EGNodelList is derived from class DoubleLinkList.

void append(EGNode* node);
void insert(EGNode* node);

These methods appends or inserts the argument EGNode to the list.

EGNode* takeFromFront();
EGNode* headNode();

The above methods both returns the first EGNode in the list. The first method removes the
node from the list while the second method does not.

There is a iterator class for the EGNodelList class, called EGNodelListlter. It returns the
EGNodes.

14.4 Class ExpandedGraph

Class ExpandedGraph has a constructor with no argument and a virtual destructor that deletes
all EGNodes in the graph.

The major method to generate an APEG is
virtual int createMe(Galaxy& galaxy ,intselfLoopFlag);
The first argument is the original SDF galaxy of which the pointer will be stored in a pro-
tected membemnyGal. The second argument enforces to make arcs between invocations
of the same star regardless of the dependency. The procedure of APEG generation is as
follows.

5. Initialize the APEG graph.

Ptolemy Last updated: 10/9/97

14-6 APEG generation

virtual void initialize();
Does nothing here, but will be redefined in the derived class if necessary.

6. Allocate all invocations (EGNodes) of the blocks in the original SDF graph. Keep
the list of the first invocations of all blocks in the protected memisters.

virtual EGNode *newNode(DataFlowStar* star ,intinvoc_index);

Is used to create an invocation of a DataFlowStar given as the first argument. The
second argument is the invocation number of the node. This method is virtual since
the derived ExpandedGraph class may have derived classes from the EGNode
class.

7. For each star in the original SDF graph,

(3-1) Make connections between invocations of the star if any one of the condi-
tions is met:selfLoopFlag is set in the second argument, the star has internal
states, the star accesses past values on its portholes, or the star is a wormhole. The
connection made in this stage does not indicate the flow path of samples, but the
precedence relation of two EGNodes. Therefore, EGGates associated with this
connection are not associated with portholes in the original SDF graph. If the con-
nections are made, tleimSticky ~ method of EGNode class is called for each
invocation EGNode. If any such connection is made, the APEG is said not-paral-
lelizable as a whole: A protected memiparallelizable, is set FALSE.

(3-2) For each input porthole, get the far-side output porthole and make connec-
tions between invocations of two DataFlowStars. A connection in the original SDF
graph may be mapped to several connections in the APEG since the APEG is
homogeneous.

8. Find the root nodes in the APEG and stored in its protected memibess.
void insertSource(EGNode* node);

Inserts the argument EGNode into the sourceskisirces, of the graph.
All protected members are explained above.

14.4.1 Other ExpandedGraph public members

int numNodes();
This method returns the number of total nodes in the APEG.

virtual StringList display();
Displays all EGNodes by callingintMe method of EGNode class.

virtual void removeArcsWithDelay();
This method hide all connections that have delays on them. When an APEG is created, the
number of initial delays on an arc, if exists, is always greater than or equal to the sample
rate of the arc. Therefore, this method is used to make the APEG actually acyclic.

U. C. Berkeley Department of EECS

The Almagest 14-7

14.4.2 lterators for ExpandedGraph

There are three types of iterators associated with an ExpandedGraph: EGMasterlter, EGSour-
celter, and EGlter. As its name suggests, EGMasterlter returns the EGNodaseis list

of the graph. EGSourcelter returns the EGNodasurces list of the graph. Finally, EGlter
returns all EGNodes of the ExpandedGraph.

EGMasterlter and EGSourcelter are derived from EGNodelListlter. EGlter, however, is
not derived from any class. Instead, EGlter uses EGMasterlter to get the first invocation of
each DataFlowStar in the original SDF graph and traverse the linked list of invocations. Thus
invocations are traversed master by master.

Ptolemy Last updated: 10/9/97

14-8 APEG generation

U. C. Berkeley Department of EECS

