
The Almagest 16-1

Ptolemy Last updated: 10/9/97

Chapter 16. Base Code Generation
Domain and Supporting Classes

Authors: Soonhoi Ha

Other Contributors: Michael C. Williamson

This chapter explains the base classes for code generation, which are found in the
$PTOLEMY/src/domains/cg/kernel directory. Not all classes in that directory are cov-
ered in this document. We instead concentrate on how to generate and organize the code, and
which methods to use. There is a basic code generation domain, designated CG, from which
other code generation domains are derived. The CG domain can be used by itself for the pur-
pose of studying issues in control constructs and scheduling, without needing to generate code
in any particular programming language.

A segment of code is formed in an instance of class CodeStream. Each CGTarget will
have a list of CodeStreams, and will assemble them to generate the final code. A CGStar uses
instances of class CodeBlock to form a code segment, which can be added to a CodeStream of
the CGTarget after some processing.

A set of macros are defined which a star programmer may use in order to refer to vari-
ables without being concerned about resource allocation. For example, we may refer to the
portholes of a star without knowing what physical resources are allocated to them.

16.1 Class CodeStream
Class CodeStream is publicly derived from class StringList, and is used to make a sequential
stream of code. In class CGTarget, a base target class for code generation, there are two Code-
Streams:myCode andprocedures.

CodeStream myCode;
CodeStream procedures;

These are protected members of class CGTarget. They are the default entries incode-
StringLists , the list of code streams that CGTarget maintains.

CodeStreamList codeStringLists;
This is a protected member of class CGTarget. We can add a CodeStream tocode-
StringLists by using the following method of class CGTarget:

void addStream(const char* name, CodeStream* code);
This is a public method of class CGTarget. The first argument is the name of the Code-
Stream, and the second argument is a pointer to the CodeStream. This method should be
called in the constructor of a target class. If a target attempts to add a CodeStream with an
existing name, an error will be signaled.

16-2 Base Code Generation Domain and Supporting

U. C. Berkeley Department of EECS

CodeStream* getStream(const char* name=NULL);
This is a public method of class CGTarget. This method returns a pointer to the Code-
Stream with the given name. If no stream with the given name is found, this method
returnsNULL. If name=NULL, a pointer todefaultStream is returned. Class CGStar
has a corresponding method to get the CodeStream with the given name from the CGStar’s
target.

The following method allows CGStars to construct a new CodeStream and add it to the
CGTarget’s list of CodeStreams. Some of the possible uses for this method are:

 • a group of CGStars can build a procedure together

 • a CGStar can add control flow constructs at the end of themainLoop code

CodeStream* newStream(const char* name);

This is a public method of class CGTarget. There is a corresponding protected method of
CGStar. This method adds a new CodeStream with the given name to thecodeString-
Lists member of the CGTarget, and returns a pointer to the new CodeStream.

Now we will explain the public methods and members of class CodeStream.
int put(const char* code , const char* name=NULL);

This method puts the given segment of code at the end of the CodeStream. Optionally, the
name of the code segment can be given. Ifname=NULL, we append the code uncondi-
tionally. Otherwise, we check to see if code with the same name has already ben added,
by examining thesharedNames member of the CodeStream. If no code segment with
the same name is found, the code segment is appended. This method returnsTRUE if code
was successfully added to the stream,FALSE otherwise.

UniqueStringList sharedNames;

This is a public member of class CodeStream. It is used to store the names of code seg-
ments added by name to the CodeStream. Class UniqueStringList is privately derived
from class StringList.

void initialize();

This is a public method of class CodeStream. It is used to initialize both the code list and
sharedNames.

int isUnique(const char* name);

This is a public method of class UniqueStringList. This method returnsFALSE if the argu-
ment string already exists in the UniqueStringList. If not, then the method adds the string
to the list and returnsTRUE.

Class CodeStreamList contains a list of CodeStreams. It is publicly derived from class
NamedList since each CodeStream is assigned a name. There are four public methods in the
CodeStreamList class:
int append(CodeStream* stream , const char* name);
int add(const char* name, CodeStream* stream);
CodeStream* get(const char* name) const;
int remove(const char* name);

The Almagest 16-3

Ptolemy Last updated: 10/9/97

The first two methods append a CodeStream to the list. They differ from each other in the
order of arguments. The third method returns a CodeStream with the given name while the
last method removes the CodeStream with the given name from the list.

16.1.1 Class NamedList

Class NamedList is privately derived from class SequentialList, and is used to make a list of
objects with names. It has a default constructor. The destructor deletes all objects in the list.
There are no protected members in this class.

int append(Pointer object , const char* name);
void prepend(Pointer object , const char* name);

These methods put an object,object , with namename at the end and the beginning of
the list, respectively. In the first method, we may not append multiple objects with the
same name. If an object with the same name exists in the list,FALSE is returned. On the
other hand, the second method allows multiple objects with the same name to be
prepended. Only the most recently prepended object will be visible.

Pointer get(const char* name=NULL);

This method returns the object with the given name. If no name is given, it returns the
object at the head of the list. If no object is found, it returnsNULL.

int remove(const char* name=NULL);

This method removes the object with the given name. If no name is given, it removes the
first object at the head of the list. If no object is found it returnsFALSE, otherwise it
returnsTRUE.

There is an iterator class associated with the NamedList class, called NamedListIter. It
returns a pointer to the next object in the list as it iterates through the list.

16.2 Class CodeBlock and Macros
Class CodeBlock stores a pointer to text in its constructor.

CodeBlock(const char* text);

It is up to the programmer to make sure that the argument text lives as long as the code-
block is used.

There are four public methods defined to access the text:
void setText(char* line);
const char* getText();
operator const char*();
void printCode();

The first method sets the text pointer in the CodeBlock. The next two methods return the
text this CodeBlock points to. The last method prints the code to the standard output.

A star programmer uses thecodeblock directive in the preprocessor language file to
define a block of text. In a CodeBlock, the programmer uses the following macros in order to
refer to the star ports and variables without needing to be concerned about resource manage-

16-4 Base Code Generation Domain and Supporting

U. C. Berkeley Department of EECS

ment or name conflicts:
$val(name)

Value of a state

$size(name)
Buffer size of a state or a porthole

$ref(name)
Reference to a state or a porthole

$ref(name, offset)

Reference with offset

$label(name)
Unique label inside a codeblock

$codeblockSymbol(name)
Another name for $label

$starSymbol(name)
Unique label inside a star

$sharedSymbol(list , name)

Unique label for set list, name pair

These macros are resolved into code after resources are allocated or unique symbols
are generated.

A CodeBlock defined in a CGStar is put into a CodeStream of the target by the follow-
ing methods of the CGStar class:
int addCode(const char* code , const char* stream =NULL,
 const char* name=NULL);
int addProcedure(const char* code , const char* name);

These are protected methods of class CGStar. The first method puts a segment of code,
code, at the end of the target’s CodeStream with namestream . If the name of the Code-
Stream is not given, the method uses themyCode stream of the target. The second method
uses theprocedure CodeStream of the target. The argumentname of both methods is
optionally used to specify the name of the code. If the code is successfully added, the
methods returnTRUE, otherwise they returnFALSE. Before putting the code at the end of
the CodeStream, the code is processed to resolve any macros by the application of the
processCode method:

StringList processCode(CodeBlock& cb);
StringList processCode(const char* code);

These methods are both protected and essentially equivalent since the first method calls
the second method. They scan the code, word by word, and copy it into a StringList. If a
macro is found, the macro is expanded through a call toexpandMacro before being cop-
ied to the StringList. Testing can be done to check whether a word is a macro or not by
comparing the first character with the result of the following method:

The Almagest 16-5

Ptolemy Last updated: 10/9/97

virtual char substChar() const;

This method is a virtual protected method of class CGStar. It is used to return the special
character that marks the beginning of a macro in a code block. In the CGStar class, it
returns the dollar sign character,$.

virtual StringList expandMacro(const char* func ,
 const StringList& argList);

This is a virtual protected method of class CGStar. It is used to expand a macro with the
given namefunc. The argument list must be passed by reference so that the StringList
will not be consolidated. It is virtual so that derived classes can define more macros. A
macro is identified by the following method:

int matchMacro(const char* func , const StringList& argList ,
 const char* name, int argc);

This protected method of class CGStar returnsTRUE if the first argumentfunc matches
with the third argumentname, and the number of arguments inargList is the same as
the countargc .

Based on the particular macro being applied, one of the following protected methods
may be used to expand the macro:
virtual StringList expandVal(const char* name);
StringList expandSize(const char* name);
virtual StringList expandRef(const char* name);
virtual StringList expandRef(const char* name, const char* offset);

The first three methods expand the $val, $size, and $ref macros. The fourth method
expands the $ref macro when it has two arguments. These virtual methods should be rede-
fined in derived classes. In particular, the last two methods must be redefined in derived
classes because in class CGStar they generate error messages. The other macros deal with
unique symbols within the scope of a code block, within a star, and within a set of sym-
bols. More will be said about these in the next subsection .

When an error is encountered while expanding macros or processing code blocks, the
following methods should be called to generate an error message:
void macroError(const char* func , const StringList& argList);
void codeblockError(const char* p1, const char* p2="");

The arguments of the second method provide the text of the error message.

16.3 Class SymbolList and Unique Symbol Generation
In order to generate a unique symbol within a scope, a list of symbols should be made for that
scope. For example, the CGStar class has two protected members which are SymbolLists,
starSymbol andcodeblockSymbol.

SymbolList starSymbol;
SymbolList codeblockSymbol;

Class SymbolList is derived from class BaseSymbolList. Class BaseSymbolList is pri-
vately derived from class NamedList. A BaseSymbolList keeps two private members
which are used to create a unique name for each symbol in the list: a separator and a
counter:

16-6 Base Code Generation Domain and Supporting

U. C. Berkeley Department of EECS

BaseSymbolList(char sep =’_’, int* count =NULL);

The first argument of the constructor is used to set the separator, and the second argument
is used to set the pointer of the count variable. These two variables can be set indepen-
dently by invoking the following methods:

void setSeparator(char sep);
void setCounter(int* count);

When we append or insert a new symbol into the list, we create a unique name for that
symbol by appending a separator followed by the counter value to the argument symbol,
and then return the unique name:

const char* append(const char* name);
const char* prepend(const char& name);
const char* get(const char* name=NULL);

This last method returns the unique symbol with the given name. If no name is given, it
returns the first symbol in the list.

int remove(const char* name=NULL);

This method removes the unique symbol with the given name. If no name is given, it
removes the first symbol in the list. It returnsFALSE if no symbol is removed.

Symbols in the list are deleted in the destructor, and in the following method:
void initialize();

The public method
Stringlist symbol(const char* string)

makes a unique symbol from the supplied argument by adding the separator and a unique
counter value to the argument string.

Class SymbolList is privately derived from class BaseSymbolList with the same con-
structor and a default destructor. Class SymbolList uncovers only three methods of the base
class:
BaseSymbolList::setSeparator;
BaseSymbolList::setCounter;
BaseSymbolList::initialize;

Class SymbolList adds one additional method:
const char* lookup(const char* name);

If a unique symbol with the given name exists, this method returns that unique symbol.
Otherwise, it creates a unique symbol with that name and puts it into the list.

Recall that the CGStar class has two SymbolLists. The macros$codeblockSymbol ,
$label , and$starSymbol are resolved by thelookUp method of thecodeblockSymbol
andstarSymbol SymbolLists, based on the scope of the symbol. If the symbol already exists
in the SymbolList, it returns that unique symbol. Otherwise, it creates a unique symbol in the
scope of interest.

The Almagest 16-7

Ptolemy Last updated: 10/9/97

If we want to generate a unique symbol within the file scope, we use a scoped symbol
list defined in the target class.
ScopedSymbolList sharedSymbol;

It is a protected member of the CGTarget class. Class ScopedSymbolList is privately
derived from class NamedList to store a list of SymbolLists. It has the same constructor as
the base class.

void setSeparator(char set);
void setCounter(int* count);

These methods in class ScopedSymbolList are used to set the separator and the counter
pointer of all SymbolLists in the list.

const char* lookup(const char* scope , const char* name);

In this method, the first argument determines the SymbolList in the list namedscope,
and the second argument determines the unique symbol within that SymbolList. If no
SymbolList is found with the given name, we create a new SymbolList and insert it into
the list.

The SymbolLists in the list are deleted in the destructor and in the following method:
void initialize();

Now we can explain how to expand the last macro defined in the CGStar class:
$sharedSymbol. The first argument of the macro determines the StringList and the second
argument accesses the unique string in that StringList. It is done by calling the following pro-
tected method in the CGStar class:
const char* lookupSharedSymbol(const char* scope , const char* name);

This method calls the corresponding method defined the CGTarget class.

The CGTarget class has another symbol list:
SymbolStack targetNestedSymbol;

It is a protected member used in generating unique nested symbols. Class SymbolStack is
privately derived from class BaseSymbolList. It has the same constructor as the base class
and has a default destructor.

For stack operation, class SymbolStack defines the following two methods:
const char* push(const char* tag ="L");
StringList pop();

These methods push the symbol with given name onto the top of the list and pop the sym-
bol at the top of the list off of the list, respectively.

This class also exposes several methods of the base class:
BaseSymbolList::get;
BaseSymbolList::setSeparator;
BaseSymbolList::setCounter;
BaseSymbolList::initialize;
BaseSymbolList::symbol;

16-8 Base Code Generation Domain and Supporting

U. C. Berkeley Department of EECS

In this section, we have explained various symbol lists. The separator and the counter
are usually defined in the CGTarget class:
char separator;
int counter;

The first is a public member in class CGTarget, and is set in the constructor. The second is
a private member in class CGTarget, and is initialized to zero in the constructor. The
counter value is accessed through the following public method:

int* symbolCounter();

16.4 Class CGGeodesic and Resource Management
When we generate assembly code, we have to allocate memory locations to implement the
portholes and states of each star. For high-level language generation, we assign unique identi-
fiers to them. It is rather easy to allocate resources for states since state requirements are visible
from the star definition: type, size and name. In this section, we will focus on how to determine
the buffer size for the porthole connections.

We allocate a buffer for each connection. We do not assume in the base class, however,
that the buffer is owned by the source or by the destination porthole. Instead, we use methods
of the CGGeodesic class. Before determining the buffer sizes, we obtain information about
how many samples are accumulated on each CGGeodesic by simulating the schedule. This is
for the case of synchronous dataflow (SDF) semantics with static scheduling.

The minimum buffer requirement of a connection may be determined by considering
only local information about the connection:
int minNeeded() const;

This method returns that minimum buffer size. It is a protected member of class CGGeo-
desic.

We do not want to allocate buffers for connections when it is unnecessary. For exam-
ple, the output portholes of a Fork star can share the same resource with the Fork star’s input
porthole. A Gain star with unity gain is another trivial example. Therefore, we pay special
attention to stars of type Fork. Without confusion, we refer to a star as aFork star if its outputs
can share the same resource with its input. In the CGStar class, we provide the following
methods:
int isItFork();
void isaFork();
virtual void forkInit(CGPortHole& input, MultiCGPortHole& output);
virtual void forkInit(CGPortHole& input, CGPortHole& output);

The first is a public method of class CGStar. The rest are protected methods of class
CGStar. The first method queries whether the star is a Fork star. The second method is
used to declare that the star is a Fork star. If it is, we can call either one of the last two
methods, based on whether the output is a MultiPortHole or not. In those methods, we
shift delays from a Fork’s input port to the output ports, and set theforkSrc pointer of
the output ports to point to the Fork’s input port. The Fork’s input port keeps a list of the
output ports in itsforkDests member. We apply this procedure recursively in the case of
cascaded Forks.

The Almagest 16-9

Ptolemy Last updated: 10/9/97

CGPortHole* forkSrc;
SequentialList forkDests;

These are protected members of class CGPortHole. The first one is set by the following
public method:

void setForkSource(CGPortHole* p, int cgPortHoleFlag =TRUE);
The first argument is the input porthole of the Fork star and the port this is being called on
should be an output porthole when we call this method.

int fork() const;

This is a public method of class CGPortHole which returnsTRUE if it is an input porthole
of a Fork star.

Class CGGeodesic provides two methods to return the Fork input port if it is at a Fork
output port. Otherwise these methods returnNULL.
CGPortHole* src();
const CGPortHole* src() const;

These two methods are protected and differ from each other in their return type.

Now we will explain more of the methods of class CGGeodesic.
int forkType() const;

This public method of class CGGeodesic indicates the type of the current CGGeodesic. If
it is at a Fork input, it isF_SRC. If it is at a Fork output, it isF_DEST.

int forkDelay() const;

This public method of class CGGeodesic returns the amount of delay from the current
Geodesic up to the fork buffer that this Geodesic refers to. If it is not associated with a fork
buffer, it returns 0.

We do not allocate a buffer to a CGGeodesic if it isF_DEST.
int localBufSize() const;
int bufSize() const;

The above public methods of class CGGeodesic return the buffer size associated with this
CGGeodesic. While the first method returns 0 if the CGGeodesic is at a Fork output, the
second method returns the size of the fork buffer. The actual computation of the buffer size
is done by applying the following method:

virtual int internalBufSize() const;

This protected method of class CGGeodesic returns 0 with an error message if the sched-
ule has not yet been run. If this CGGeodesic is aF_SRC, the minimum size is set to the
maximum buffer requirements over all fork destinations. If there are delays or if old values
are used, we may want to use a larger size so that compile-time indexing is supportable.
The buffer size must divide the total number of tokens produced in one execution. To
avoid modulo addressing, we prefer to use theLCM value of the number of samples con-
sumed and produced during one iteration of the schedule. Since this may be wasteful, we
check the extra buffer size required for linear addressing with thewasteFactor. If the
waste ratio is larger thenwasteFactor, we give up on linear addressing.

16-10 Base Code Generation Domain and Supporting

U. C. Berkeley Department of EECS

virtual double wasteFactor() const;

In the CGGeodesic class, this method returns 2.0. If a derived class wants to enforce linear
addressing as much as possible, it should set the return value to be large. To force the min-
imum buffer memory size to be used, the return value should be set to 1.0.

void initialize();

This public method of class CGGeodesic initializes the CGGeodesic.

Refer to class CGPortHole for more information on resource management.

16.5 Utility Functions
There are several utility functions defined in the CG domain for aiding in code generation.
Here we describe just a few of them:

char* makeLower(const char* name);
int rshSystem(const char* hostname , const char* command,
 const char* directory =NULL);

The above functions are defined in the file CGUtilities.h. The first method returns a
dynamically allocated string that is a lower-case version of the argument string. The sec-
ond method is used to execute a remote shell command,command, in thedirectory on
the machinehostname. We use thexon command instead ofrsh in order to preserve
any X-Window environment variables.

16.6 Class CGStar
In this section, we will explain additional class CGStar members and methods not described
above in this chapter. Class CGStar has a constructor with no arguments. Class CGStar is de-
rived from class DynDFStar, and not from class SDFStar, so that BDF and DDF code genera-
tion may be supported in the future.

There is an iterator to enumerate the CGPortHoles of a CGStar: class CGStarPortIter.
Thenext() andoperator++ methods return typeCGPortHole* .

16.6.1 CGStar Protected Methods and Members

Protected members related to CodeStream, SymbolList, and resource management can be
found in earlier sections of this chapter.

virtual void outputComment(const char* msg, const char* stream =NULL);

This method adds a commentmsg to the targetstream. If no target stream is specified,
themyCode stream is used.

StringList expandPortName(const char* name);

If the argument specifies the name of a MultiPortHole, the index may be indicated by a
State. In this case, this method gets the value of the State as the index to the MultiPortHole
and returns a valid MultiPortHole name. This method is used in theexpandSize method.

void advance();

This method updates the offset variable of all PortHoles of the CGStar by the number of

The Almagest 16-11

Ptolemy Last updated: 10/9/97

samples consumed or produced. It calls theadvance method of each PortHole.

IntState procId;

This is an integer state to indicate processor assignment for parallel code generation. By
default, the value is -1 to indicate that the star is not yet assigned.

int dataParallel

This is a flag to be set if this star is a wormhole or a parallel star.

Profile* profile;

This is a pointer to a Profile object, which can be used to indicate the local schedule of a
data parallel star or macro actor. If it is not a parallel star, this pointer is setNULL.

int deferrable();

When constructing a schedule for a single processor, we can defer the firing of a star as
long as possible in order to reduce the buffer requirements on every output arc. In this
method, we never defer a Fork star, and always defer any non-Fork star that feeds into a
Fork. This prevents the resulting fork buffer from being larger than necessary, because
new tokens are not added until they must be.

16.6.2 CGStar Public Methods
const char* domain() const;
int isA(const char* class);

The first method returns"CG" . The second method returnsTRUE if the argumentclass is
CGStar or a base class of CGStar.

int isSDF() const;

ReturnsTRUE if it is a star with SDF semantics (default). For BDF and DDF stars, it will
returnFALSE.

virtual void initCode();

This method allows a star to generate code outside the main loop. This method will be
called after the schedule is created and before the schedule is executed. In contrast, the
go() method is called during the execution of the schedule, to form code blocks into a
main loop body.

int run();

In CG domains, this method does not perform any actual data movement, but executes the
go() method followed by theadvance() method.

CGTarget* cgTarget();
int setTarget(Target* t);

These methods get and set the pointer to the target to which this star is assigned. When we
set the target pointer, we also initialize the SymbolLists and the CodeStream pointers. If
this method is successful, it returnsTRUE, otherwise it returnsFALSE.

virtual int isParallel() const;
virtual Profile* getProfile(int ix =0);

16-12 Base Code Generation Domain and Supporting

U. C. Berkeley Department of EECS

The first method returnsTRUE if this star is a wormhole or a parallel star. If it is parallel,
the second method returns the pointer to a Profile, indexed by the argument. A parallel star
stores its internal scheduling results in a Profile object .

int maxComm();

Returns the maximum communication overhead with all ancestors. It calls thecommTime
method of the target class to obtain the communication cost.

virtual void setProcId(int i);
virtual int getProcId();

These methods set and get the processor ID to which this star is assigned.

16.7 Class CGPortHole
Class CGPortHole is derived from class DynDFPortHole in order to support non-SDF dataflow
stars as well as SDF stars. Methods related to Fork stars are described in a the section above
on Resource Management .

In this section, we will categorize the members and methods of CGPortHole into four
categories: buffer management, buffer embedding, geodesic switching, and others.

16.7.1 Buffer Management

A CGPortHole is connected to a buffer after resource allocation. A CGPortHole maintains an
offset index into the buffer in order to identify the current position in the buffer where the port-
hole will put or get the next sample:

int offset;

This is a protected member used for indexing into the buffer connected to this port.

The methods described in this subsection are all public:
unsigned bufPos() const;

Returnsoffset , the offset position in the buffer.

virtual int bufSize() const;
virtual int localBufSize() const;

Both methods returns the size of buffer connected to this porthole. In the CGPortHole base
class, they call the corresponding methods of class CGGeodesic. Recall that the second
method returns 0 when it is a Fork output. If a porthole is at the wormhole boundary, both
return the product of the sample rate and the repetition count of the parent star.

virtual void advance();

This method is called byCGStar::advance() . After the parent star is executed, we
advance the offset by the number of samples produced or consumed. The offset is calcu-
lated modulo the buffer size, so that it is wrapped around if it reaches the boundary of the
buffer.

16.7.2 Buffer Embedding

As a motivating example, let’s consider a DownSample star. If we allocate separate buffers to

The Almagest 16-13

Ptolemy Last updated: 10/9/97

the input and output ports, the buffer size of the input port will be larger than that of the output
port. Also, we will need to perform an unnecessary copy of samples. We can improve this sit-
uation by allocating one buffer at the input site and by indicating that a subset of that buffer is
the image of the output buffer. We call this relationshipembedding: the larger input buffer is
embedding the smaller output buffer, and the smaller output buffer isembedded in the larger
input buffer. Unlike the Fork buffer, the sizes of input and output embedded buffers are differ-
ent from each other. Therefore, we must specify at which position the embedded buffer begins
in the larger embedding buffer. We use this embedding relationship to implement Spread and
Collect stars in the CGC domain, without increasing the buffer requirements. For example, the
output buffers of a Spread star are embedded in the input buffer of the star, starting from dif-
ferent offsets.

CGPortHole* embeddedPort;
int embeddingFlag;

These are protected members to specify embedding relationships. The first one points to
the embedding port which this PortHole is embedded in. The second member indicates the
starting offset of embedding. The last member indicates whether this porthole is an
embedding port or not.

The following are public methods related to embedding.
CGPortHole* embedded();
int whereEmbedded();
int embedding();

These methods return the protected members described above, respectively.

void embed(CGPortHole& p, int i =-1);

This method establishes an embedding relationship between this port and the argument
port p. This porthole becomes an embedding porthole, and the argument porthole
becomes an embedded porthole. The second argument specifies the starting offset.

void embedHere(int offset);

This method, when called on an embedded porthole, changes the starting offset its embed-
ded buffer in the embedding buffer.

16.7.3 Geodesic Switching

In the specification block diagram, a PortHole is connected to a Geodesic. In code generation
domains, we usually allocate one resource to the Geodesic so that the Geodesic’s source and
destination ports can share the same resource (Note that this is not a strict requirement). After
resource allocation, we may want to alias a porthole to another porthole, and therefore associate
it with a resource other than the allocated resource. To do that, we switch the pointer of the
Geodesic to another Geodesic.

virtual void switchGeo(Geodesic* g);
virtual void revertGeo(Geodesic* g);

Both methods set the Geodesic pointer to the argumentg. There is a flag to indicate
whether this port has switched its Geodesic or not. The first method sets the flag toTRUE
while the second method resets the flag toFALSE. Both methods are virtual since in
derived classes we may need to redefine the behavior, perhaps by saving the original Geo-

16-14 Base Code Generation Domain and Supporting

U. C. Berkeley Department of EECS

desic, which is not the default behavior. The flag is queried by:

int switched() const;

If the Geodesic is switched in this port, we have to reset the geodesic pointer of this port to
NULL in the destructor in order to prevent attempts to delete the same Geodesic multiple
times. Also, we have to make sure that both ends of a Geodesic do not switch their Geode-
sic, in order to prevent orphaning the geodesic and causing a memory leak.

16.7.4 Other CGPortHole Members

Class CGPortHole has a constructor with no argument which resets the member variables. In
the destructor, we clear theforkDests list and remove the pointer to this porthole from the
forkDests list of theforkSrc port. All members described in the subsection are public.

CGGeodesic& cgGeo() const;

This method returns a reference to the Geodesic after type casting.

void forceSendData();
void forceGrabData();

These methods put and get samples to and from the Geodesic at the wormhole boundary.
They are used when the inside code generation domain communicates by the wormhole
mechanism.

16.7.5 CGPortHole Derived Classes

Class InCGPort and class OutCGPort are publicly derived from class CGPortHole. They are
used to indicate by class type whether a porthole is an input port or an output port.

Class MultiCGPort is derived from class MultiDFPort. It has a protected member
forkSrc to point to the Fork input if its parent star is a Fork star. It has a default destructor.
CGPortHole* forkSrc;

There are two public methods related to this protected member:

void setForkBuf(CGPortHole& p);
void forkProcessing(CGPortHole& p);

The first method setsforkSrc to point to the argument port. The second method sets the
forkSrc pointer of the argument port to point to theforkSrc of this MultiCGPort.

Two classes are publicly derived from MultiCGPort: MultiInCGPort and Multi-
OutCGPort. They both have the following public method:
PortHole& newPort();

This method creates an InCGPort or an OutCGPort depending on whether it is an input or
an output MultiCGPort.

