The Almagest 18-1

Chapter 18. CGC Domain

Authors: Soonhoi Ha
Other Contributors: Mudit Goel

In this chapter, we will explain the current implementation of C code generation domain. The
source code can be fouBTOLEMY/src/domains/cgc/kernel directory. We follow the
general framework for code generation defined in CG kernel directory.

In the CGC domain, the resource we have is the name space. We have to avoid name
conflicts by guaranteeing unique names for different variables. The most complicated task is
to determine the dimension, or buffer size, of each variable, and the method how to access
them; static buffering, linear indexing, or modulo addressing.

We use the CGC domain to test new functionalities in code generation: buffer embed-
ding for example. We have tested some simple demos to verify the design.

18.1 Buffer Allocation

In the CGC domain, we allocate one buffer for each connection in principle. We have to deter-
mine the required size of buffers first. If a portholensbedded and the buffer size require-

ment is equal to the sample rate of the embedded port, we do NOT allocate a buffer on that
connection. We will use static buffering for athbeddedndembeddingortholes. If the buff-

er requirement of an embedded(or embedding) porthole is not equal to the sample rate of the
porthole, we actually need to have two buffers on that connection and copy data between these
buffers. In this case, we splice a Copy star on the arc and schedule the Copy star appropriately
to generate code for copying data. After inserting the Copy star, we will end up with one buffer
per connection. Another cause of copy requirement is type conversion from complex to float/
int or from float/int to complex. Then, we splice a type-conversion star on the arc.

Class CGCTarget redefines the following protected method for buffer allocation .
int allocateMemory();
In this method, we first merge cascaded forks into a single fork whose input keeps the list
of all fork destinations. We will allocate only one buffer for each fork. All fork destina-
tions will refer to the same fork input buffer. Then this method does the following tasks:

1. Determine the buffer requirements for all portholes.
2. Splice Copy stars or type conversion stars if necessary.

3. Set the buffer type for each output porthole: either OWNER or EMBEDDED. If
the output porthole is embedded, or the corresponding input porthole is embedded,
it is called EMBEDDED. Otherwise, itis OWNER. The buffer type of an output is
determined using the following public method of CGCPortHole class:

void setBufferType();

Ptolemy Last updated: 10/9/97

18-2 CGC Domain

4. We assign unique names for buffers.

5. We initialize the offset pointer for each porthole which is associated with a buffer
of size greater than (n{tOffset method of CGCPortHole class). This offset
pointer indicates from which offset of the buffer the porthole starts reading or writ-
ing samples.

int initOffset();
This is a public method of CGCPortHole class to initialize the offset pointer. If there are
delays, or initial samples, on the arc, these samples are placed at the end of the buffer. The
offset pointer of a porthole indicates the location of the last sample the next firing of its
parent star will produce or consume. It is compatible with the SDF simulation domain:
$ref(porthole,num) in CGC stars is now equivalentgorthole%num in SDF stars.
We can set the offset pointer of an output porthole manually by the following public
method of CGCPortHole class.

void setOffset(int V);
Now, we will explain steps (1), (2), and (4) in more detail.

18.1.1 Buffer requirement

To determine the buffer requirements of portholes, we traverse portholes of all stars, and call
finalBufSize method of CGCPortHole class.

void finalBufSize(int statBuf);
This is a public method of CGCPortHole class to determine the buffer size for this port-
hole. The argument indicates whether we try to use static buffering or not. We allocate one
buffer for each connection. Therefore, we do nothing if this porthole is an input porthole.
If this porthole is disconnected, we set the buffer size equal to the number of samples pro-
duced for each firing. If it lies at wormhole boundary, welos#BufSize method of
CGPortHole class to determine the size of buffer and return. Otherwise, we do the follow-

ing:

1. We can manually assign the buffer size by caliéngestBufSize for an output
porthole of interest in the setup stage of a star:

void requestBufSize(int Sz);
This method sets the buffer size manually. The argument size should not be smaller than
the minimum size determined by the scheduler. The minimum size determined by the
scheduler is the sum of maximum number of samples accumulated on the arc during the
schedule and the number of old samples to be access from the destinatiorspast. If
smaller than this minimum value, we generate a warning message and give up manual
allocation.

2. We set the initial buffer size by callingcalBufSize method of CGPortHole
class. If argumendtatBuf = 1, we set the buffer size as a smallest multiple of the
sample rate of this porthole, which is not less than the initial buffer size. By doing
this, we increase the chance of using linear buffering. We also set the waste factor
in CGCGeodesic class to a huge number by calling the following public method in

U. C. Berkeley Department of EECS

The Almagest 18-3

CGCGeodesic class:

void preferLinearBuf(int i)
The waste factor set by the above method can be obtained by the following redefined pro-
tected method of the CGCGeodesic class.

double wasteFactor() const;

3. We set two flags for this porthole to indicate we can use static buffering and/or lin-
ear buffering:hasStaticBuf and asLinearBuf. These two flags are all pri-
vate. If static buffering flag is set, we use direct addressing in the generated code to
access the buffer. If linear buffering flag is set, we will use indirect addressing and
no modulo addressing will be required. Otherwise, we will use indirect addressing
and modulo addressing in the generated code to access the allocated buffer. Ini-
tially both flags are set TRUE. If this porthole needs to access past samples, we
reset both flags to FALSE. When the argumsatBuf is given 0, we give up
static buffering in case the buffer size determined in (2) is greater than the sample
rate of this porthole. Note that if a loop scheduler is usatguf becomes 0 and
some possibilities of static buffering are sacrificed as the cost of code compaction.
The following method is called to adjust the flags further.

void setFlags();
Is a protected member of CGCPortHole class. If the final buffer size is not a multiple of
the sample rate, we resafLinearBuf flag to 0. We have to use modulo addressing in
the generated code. If the product of the sample rate and the repetition count of its parent
star is not a multiple of the final buffer size, we give up static buffering, set&Syat-
icBuf to 0. If an output porthole is embedded or embedding, we set both flags TRUE
since we enforce static buffering.

4. As the final step, we set the flags for destination portholes. If this porthole is con-
nected to a fork input, all fork destinations will be the destination portholes of this
porthole. We first check whethetatBuf argument is 0 and the buffer size is
greater than the sample rate of the porthole. And, wesei®llags method for
that porthole. If the porthole needs to access past samples, or the number of initial
samples on the connection is not a multiple of the sample rate, we give up linear
buffering.

The final buffer size can be obtained by the following two public methods of
CGCPortHole class.
int maxBufReq() const;
int bufSize() const { return maxBufReq(); }
The above methods return the final buffer size associated with this porthole. If it is a fork
destination, it returns the size of the fork input buffer. If the porthole has switched its Geo-
desic , it returns the size of buffer associated with the switched Geodesic.

The flags for static buffering and linear buffering can be obtained by the following
public methods of CGCPortHole class:

int linearBuf() const;
int staticBuf() const;

Ptolemy Last updated: 10/9/97

18-4 CGC Domain

We give up static buffering for a CGPortHole by calling the following public method of
CGCPortHole class.

void giveUpStatic();

18.1.2 Splice stars

After buffer requirements for all portholes are determined, we can detect the arcs which can
not have only one buffer. For instance, if we need to convert data types from complex to float/
int or vice versa automatically, we need two buffers on the arc: one for complex variables and
the other for float/int variables. This copying operation is required since C language does not
provide built-in "complex” type variable. Therefore, we define "complex” type data in the gen-
erated code as follows;

static char* complexDecl =

"\back n#if !defined(COMPLEX_DATA)\back n#define COMPLEX_DATA 1"

"\back n typedef struct complex_data { double real; double imag; }

complex; \back n"

"#endif\back n";
Another case is when an embedded or embedding porthole requires a buffer whose size is
greater than the sample rate of the porthole. Recall that an embedded or embedding port-
hole will assume static buffering for each execution when we generate code for that port-
hole. If the buffer size is larger than the sample rate, we may not use static buffering. We
need two buffers for the embedded or embedding porthole.

Rather than assigning two buffers on an arc and letting the target generating code to
copy data between these two buffers, we splice a star on the arc. The spliced star will separate
two buffers on one arc into one buffer on its input and the other buffer on its output arc. When
this spliced star is scheduled before the destination star of after the source star, it will generate
code to copy data from the input buffer to the output buffer.

Stars are spliced in the following protected method of CGCTarget class.
void addSpliceStars();
This method traverses all portholes of stars in the galaxy.

When we splice a star at an input porthole (destination porthole), we initialize the
spliced star and set the target pointer. A spliced star should have one "input" and one "output".
We set the sample rate of these portholes equal to the sample rate of the input porthole. The
buffer size of the input porthole of the spliced star is determined by the original source port-
hole. The buffer size of the output porthole is set the sample rate of the input porthole. And,
we check whether static or linear buffering can be used for the portholes. The input porthole
of a spliced Copy star gives up static buffering while the output porthole of the spliced Copy
star and the original destination porthole can use static and linear buffering. In case we spliced
a type conversion star, we need to change the type of the original source porthole.

We splice a Copy star at the output (source porthole) when the output is an embedded
or embedding porthole and the buffer size is larger than the sample rate of the output porthole.
We initialize the spliced star and set the target pointer. The sample rate of the input and output
porthole of the spliced Copy star is equal to the sample rate of the output porthole. The buffer
size of the output porthole of the spliced star is set to the buffer size of the arc. We give up

U. C. Berkeley Department of EECS

The Almagest 18-5

static buffering for this output porthole. On the other hand, we change the buffer size of the
source porthole to the sample rate of the porthole.

We need to pay special attention to Collect (or Spread) stars. A Collect (or Spread) star
is not a regular SDF star so that it is not scheduled when all input data are available. Actually,
we do not execute the spliced Collect (or Spread) stars. But, the output porthole of a Collect
(or Spread) star is an embedding (or embedded) porthole. And its buffer size can be larger
than the sample rate of the porthole. In this case, we splice a Copy star at the destination port-
hole, not at the source porthole. We schedule this Copy star before the destination star. The
sample rate of portholes of the spliced Copy star is equal to the sample rate of the destination
porthole. The output buffer size of the spliced star is set the the buffer size of the arc while the
input buffer size now becomes the sample rate of the source porthole. The trickest part here is
to determine the offset pointers. We copy data when the destination porthole requires it.
Therefore, the offset pointers of the input porthole and the output porthole of the spliced Copy
star depends on the initial delay on the arc. We manually set the oftseOlffget method
of CGCPortHole class.

There is another case we need data copying between two buffers: when two embedded
portholes are connected together. Suppose, an output porthole of a Spread star is connected to
an input porthole of a Collect star. Since the output porthole of a Spread star is embedded to
the input buffer and the input porthole of a Collect star is embedded to the output buffer, we
need to copy data from the input buffer of the Spread star to the output buffer of the Collect
star. Since we do not schedule neither Spread nor Collect star, we may not splice a Copy star
either at the source porthole not at the destination porthole. Therefore, we leave it as a special
case so that we generate code to copy data between two buffecvaDataBetween-

Shared method of CGCStar class after executing the star connected to the input porthole of
the Spread star. So, we do not splice star when two embedded portholes are connected
together.
void moveDataBetweenShared();
This is a protected method of CGCStar class. This method is calledrmgide method
after generating code for a star. If the star is connected to an embedding porthole of a star
of which an embedded output porthole is connected to an embedded porthole. Since we
meet the case when two embedded portholes are connected, we generate code for copying
data between two embedding buffers.

Scheduling spliced stars

When we splice a star at the input port of a star, we want to schedule the spliced star before the
star. On the other hand, we want to schedule the spliced star after a star if we splice a star at the
output porthole of the star. When we splice stars, we are already given the schedule. Therefore,
we need to insert spliced stars into the schedule. An intuitive approach is to insert them into the
schedule list.

Currently, we use a simpler method. We use the fact that the spliced star and the star
connected to the spliced star can be regarded as a cluster and schedule of that cluster is well
known. Our idea is to actually execute the cluster when we execute a star if the star is con-
nected to spliced stars. CGCStar class has a private member to keep the listapliséars:

Clust. Initially, the star itself is inserted to the list. If we splice a star at the input porthole,
we prepend the spliced star to the list. If we splice a star at the output porthole, we append the

Ptolemy Last updated: 10/9/97

18-6 CGC Domain

spliced star to the list. And, we redefin@ method.

int run();
If there are spliced stars, or the list size is greater than 1, we traverse the list and execute
runlt method for each star. Otherwise, we exeauté method.

int runlt();
It is a protected method of CGCStar class to generate main code for this star. If generates a
comment regarding this star and main code. It updates offset pointers of the star. Finally, it
callsmoveDataBetweenShared method to generate code to copy data between two
embedding portholes if necessary.

18.1.3 Buffer naming

One major task for resource assignment in the CGC domain is to give a unique name for each
variable. In the setup stage of the CGCTarget, we assign a unique index value to each star start-
ing from 1 to the number of stars in the galaxy. The CGCTarget has two protected members to
give a unique index for galaxy.
int galld;
int curld,;
The second member is used to give unique indices for galaxies while the first member
indicates the index of the current galaxy.

Now, the CGCTarget can generate a unique name for each variable, portholes and
states, by the following protected method.
StringList sanitizedFullName(const NamedObj& b) const;
In this method, the argument object is a porthole or a state of a star. We prefix 'g’ followed
by the galaxy index, followed by " ", followed by the name of the star, followed by
another’_’, followed by the star index, followed by yet another ’_’ to the name of the
object. For example, if star A has a state xx and the star index is 2 and the galaxy index is
1, the name of the state becomes "gl_A 2 xx".

StringList correctName(const NamedObj& by;
Is a public version ofanitizedFullName method.

Now, we are ready to generate unique names for portholes.
void setGeoName(char* name;
Is a public method of CGCPortHole class. If this porthole is disconnected and no Geode-
sic is assigned, we store the name in the porthole. Otherwise, we store the name in the
Geodesic by calling the following public method of CGCGeodesic class.

void setBufName(char* name;
The buffer name of a porthole can be obtained by the following public method of
CGCPortHole class.

const char* getGeoName() const;

This method returns the buffer name stored in this object if it is disconnected,gat-call
BufName method of CGCGeodesic class. If it is a fork destination, it returns the name of

U. C. Berkeley Department of EECS

The Almagest 18-7

the fork input buffer.

18.2 Data structure for galaxy and stars

In the global declaration section of the generated code, we declare data structures for stars. At
early design stage of CGC domain, we stagct construct of C language to declare the data
structure of the program. This way, we could assign unique memory locations to variables very
easily. But, the length of a variable gets large as the hierarchy of the graph grows. Furthermore,
we reduce significant amount of compiler optimization possibility. Therefore, we invented a
scheme to generate unique symbols for variabbstizedFullName of CGCTarget class)
without using "struct" construct.
virtual void galDataStruct(Galaxy& galaxy ,int level =0);
virtual void starDataStruct(CGCStar* block ,int level =0);
The above methods are protected methods of CGCTarget class to be dedled@ode
method to declare data structures of galaxy and stars. The second argument of both meth-
ods indicates the depth of hierarchy which the first argument block resides in, thus advis-
ing the amount of indents in the generated code. By default, it is set 0. The first method
calls the second method for each component star if it is not a Fork star. We do not generate
code nor declare data structure for Fork stars.

The data structure for a star consists of four fields:

1. Comments to indicate that the following declarations corresponds to what star:
sectionComment method.

StringList sectionComment(const char* string);
This is a protected method of CGCTarget class to generate a commesttihge, in the

generated code.

2. Declare buffers associated with portholes. We do not declare input portholes. If an
output porthole is EMBEDDED, we declare a pointer to the embedding buffer, by
prepending "* in front of the buffer name. Otherwise, it declare a regular buffer.

3. Declare index pointers to the buffer if static buffering is not used and the size of
buffer is greater than 1 . Portholes will use these index pointers to locate the buffer
position. For a regular buffer, we declare an index pointer, named after the buffer
name appended by " _ix". The name of index porthole is givesffegtName
method of CGCTarget class.

StringList offsetName(const CGCPortHole* p);
This is a public method to assign an index pointer to the argument porthole. It appends ’_’
followed by "ix" at the end of the porthole name, by calling the following public method
of CGCTarget class:

StringList appendedName(const NamedObj& p,constchar * add);
This method is used to append ’_’ followeddw to the name of the objept

4. Finally, we declare referenced states. A State is cadfedencedonly when we

Ptolemy Last updated: 10/9/97

18-8 CGC Domain

use $ref macro for the state at most once. CGCStar class has the following mem-
bers for referenced states:

StateList referencedStates;

void registerState(const char* name),
The first is a public member to store the list of referenced states in this Star. The second is
a protected method to add the state with given name to the list of referenced states if not
inserted.

We traverse the list of referenced states to declare variables. Unlike portholes, the size
of a state variable is given. If the size of state is 1, we both declare and initialize the state. If
the state is an array state, we both declare and initialize the state using array initialization
unless the state is declared inside a function. If we declare an array state inside a function, we
have to write explicit initialization code. Class CGCTarget has the following public method to
tell whether we are working inside a function or not.
int makingFunc();

Returns TRUE if we are defining a function.

18.2.1 Buffer initialization

We initialize buffers and index pointers as follows.

1. If the buffer is EMBEDDED, we assign a pointer to the embedded buffer and set
the pointer to the starting address of the embedding buffer, from which the buffer is
embedded. If the size of the embedding buffer is 1, we assign the pointer of the
embedding buffer.

2. For the regular buffer, we initialize with Os in case the buffer size is greater than 1.

3. We initialize an index pointer of a buffer to the offset pointer of the porthole asso-
ciated with that index pointer.

18.3 CGC code streams

Besides two code streams inherited from CGTarget clag€ode and procedures,

CGCTarget class maintains 9 more code streams (all protected). These code streams will be
stitched together to make the final codérameCode method. There are two schemes to or-
ganize a code in general. One scheme would be to put code strings to a single CodeStream in
order. For example, we put global declarations, main function declaration, initialization, and
main loop into a singlmyCode stream in order. For single processor code generation, it would

be feasible. For multiprocessor case, however, the parent target may add some extra code
strings. Therefore, we assign different code streams to different section of code. On the other
hand, if we have too many code streams, it would be arduous to remember all.

CodeStream globalDecls;

CodeStream galStruct;

CodeStream include;
These three code streams will be placed in the global scope of the final code. The galaxy
declaration galStruct) is separated fromlobalDecls because we need to put gal-
axy declaration inside a function if we want to define a function from a galaxy (for exam-

U. C. Berkeley Department of EECS

The Almagest 18-9

ple, recursion construct). A programmer can provide string®balDecls and
include by using the following protected CGCStar methods in a star definition:

int addGlobal(const char* decl ,constchar * name= NULL);

int addInclude(const char* decl),
In the first method, we ustec/ strings as the name if the second argument is given
NULL, to make a global declaration unique. The argument of the second method is the
name of a file to be included, for example <stream.h> or "DataStruct.h".

CodeStream mainDecls;

CodeStream mainlinit;

CodeStream commlnit;
These three code streams will be placed in the main function before the main loop: decla-
ration in the main function, initialization code, and initialization code for communication
stars. We separatedmminit frommaininit since communication stars are inserted by
the parent multiprocessor target. A programmer can provide strings to the first two code
streams by using the following protected CGCStar methods.

int addDeclaration(const char* decl ,constchar * name= NULL);
int addMainInit(const char* decl ,constchar * name= NULL);
The first method usefec/ string as the name of the stringndmeis given NULL.

CodeStream wormin;

CodeStream wormOut;

CodeStream mainClose;
The first two streams contain code sections to support wormhole interface to the host
machine. They will be placed at the beginning of the main loop and at the end of the main

loop. The last code stream will be placed after the main loop in the main function.

Recall that usingddCode method defined in CGStar class, we can put code strings to
any code stream .

These nine code streams are initialized by the following protected method of CGCTar-
get class.:
virtual void initCodeStrings();
Note that code streams are not initializeddtup method of the target since the parent
target may put some code before callingdttap method of the target. We initialize
code streams after we stitch them together and copy the final cogi€ade stream in
frameCode method. We do not initializéyCode stream in the above method.

void frameCode();
This method put all code streams together and copy the resulting cogédde stream.

18.4 Other CGCPortHole members

CGCPortHole is derived from CGPortHole class. It has a constructor with no argument. In the
constructor, we initialize the default properties of a CGCPortHole: static buffering and linear
buffering flags are set TRUE, buffer size is set to 1. These properties are also initialized in
initialize method. In the destructor, it deallocates the name of the buffer if stored in this

Ptolemy Last updated: 10/9/97

18-10 CGC Domain

class (when this porthole is disconnected). All members described in this section are public.

CGCPortHole* getForkSrc();
const CGCPortHole* getForkSrc() const;

These methods return the fork input porthébekGrc) if this porthole is a fork destina-
tion. The second method is tbenstversion of the first method.

CGCPortHole* realFarPort();
const CGCPortHole* realFarPort() const;

These method return the far side porthole. If the far side porthole is a fork destination, they
return the far side porthole of the fork input, thus bypassing fork stars. The second is the
constversion of the first method.

CGCGeodesic& geo();

const CGCGeodesic& geo() const;
Return the geodesic connected to this PortHole, type cast. The seconmbisthever-
sion of the first method.

Geodesic* allocateGeodesic();
Allocates a CGCGeodesic.

void setupForkDests();
If this method is called for a fork input porthole, make a complete listkibests con-
sidering all cascaded forks.

int inBufSize() const;
This method returns thaufferSize of this porthole.

CGCPortHole has an iterator callEdrkDestlter. It returns fork destinations one
at a time. The return type is CGCPortHole.

The derived classes of CGCPortHole in the CGC domainn@@CPort, Out-
CGCPort, MultiCGCPort, MultiinCGCPort, andMultiOutCGCPort.

18.5 Other CGCStar members

Class CGCStar is derived from CGStar class. It has a constructor with no argument. CGCTar-
get class is a friend class. It has a method to return the domain it Hesiir{) and a method

for class identificationig¢A). In initialize method, we initializeeferencedStates
list. All other members described in this section are all protected.
CGCTarget* targ();

Returns the target pointer, type cast to CGCTarget.

StringList expandRef(const char* name),

StringList expandRef(const char* name, const char * offset);
The above methods resolve macro $ref. Adrm@e argument is a state name or a porthole
name. If it is a state name, we put the state imetfleeencedStates list. In the second

method, the second argument is the offset of the first argument (state or porthole). It can be
a numeral, an IntState name, or a string. If it is an IntState, the current value of the state is

U. C. Berkeley Department of EECS

The Almagest 18-11

taken.

There are various ways to referring to a porthole. If the buffer size is 1, we use the
buffer name or the pointer version depending on the type, EMBEDDED or OWNER. If the
buffer size is larger than 1, we use direct addressing if static buffering is used. If static buffer-
ing can not be used, we use indirect addressing. The following method generates indirect
addressing:
virtual StringList getActualRef(CGCPortHole* p,constchar * ix);

This method generates an indirect addressing for the argument pprthittteoffsetix.
If we may not use linear addressing, we generate modulo addressing, in which the index is
modulo the buffer size.

virtual int amlSpreadCollect();
Returns TRUE or FALSE, based on whether this star is a Spread or a Collect star or not.
We need to take special care for Spread and Collect stars.

18.6 Other CGCTarget members

CGCTarget is derived from HLLTarget class which is the base target class for high level lan-
guage code generation. It has a constructor with three argument like its base target classes. In
the constructor, we initialize code streams and put them int@ddeStringLists by
addStream method. It hagnakeNewmethod defined.

18.6.1 Other CGCTarget protected members
CGCTarget class has many states guiding the compilation procedure.

IntState doCompile;
If this state is set NO, we only generate code, not compiling the code.

StringState hostMachine;

StringState funcName;

StringState compileCommand;

StringState compileOptions;

StringState linkOptions;
ThehostMachine state indicates where the generated code is compiled and run. If this
state does not indicate the current host,, we will use remove shell command for compila-
tion and execution. ThiancName state is by default set "main". For multiprocessor code
generation case, we may want to give different function name for the generated code. The
next three states determines the compilation command:

compileCommand compileOptions fileNamelinkOptions

There are some other states defined in this class.
IntState staticBuffering;
If this state is set YES, we increase WasteFactor of geodesics to use static buffering
as much as possible, which is default.

StringState saveFileName;
We save the generated code in this file if the file name is given.

Ptolemy Last updated: 10/9/97

18-12 CGC Domain

StringArrayState resources;
This state displays which resources this target has. By default, the CGCTarget has the
standard I/O$TDIO) resource. If a derived target does not support the standard I/O, it
should clear this state.

int codeGenlnit();
This method generates initialization code: buffer initialization,isit@ode = method of
all stars. Before generating initialization code, we switchmty@ode pointer of stars to
themaininit code stream so thatidCode method called inside theitCode = method
puts the string into theaininit code stream.

void compileRun(SDFScheduler* S);
Before callingcompileRun method of the SDFScheduler, which will cath method of
stars in the scheduled order, we switchrtiy€ode pointer of stars back to timeyCode
code stream of the target. After code generation, we switch the pointer of stars to the
mainClose code stream for wrapup stage.

int wormLoadCode();
If the doCompile state is set NO, we just return TRUE, doing nothing. Otherwise, we
compile and run the generated code. Return FALSE if any error occurs.

StringList sectionComment(const char* S);
This method makes a comment statement with the given string in C code.

void wormInputCode(PortHole& p);
void wormOQutputCode(PortHole& p);
The above methods just print out comments. We haven’t supported wormhole interface for

CGC domain yet (Sorry!).

18.6.2 Other CGCTarget public members

void setup();
This method initializegalld , curld indices for unique symbol generation. It also gener-
ate indices for stars and portholes. Then, it €83 arget :: setup for normal setup
procedure.

void wrapup();
This method displays the generated code storegy@ode stream. If the galaxy is not
inside a wormhole, it callsormLoadCode method to compile and run the code.

int compileCode();
This method compiles the generated code. The compile command is generated by the fol-
lowing method:

virtual StringList compileLine(const char* fName);

The argument for this method is the file name to be compiled. hioBi®lachine does
not indicate the local-host, we use remote shell.

U. C. Berkeley Department of EECS

The Almagest 18-13

int runCode();
This method runs the code. If thestMachine is not the local-host, we usshSystem
function.

void headerCode();
Is redefined to generate a valid C comment with the target name.

void beginlteration(int repetitions ,int depth);

void endlteration(int repetitions ,int depth);
The first method generates the starting linetdfe loop (if repetitions IS negative)
or for loop (otherwise). After that it appends thermin code stream to theyCode
stream before stars fill the loop body. MmmIn code stream is already filled. The sec-
ond method close the loop. Just before closing the loop, it appendsrth@ut code
stream to thenyCode at the end of the loop body.

void setHostName(const char* S);
const char* hostName();

The above methods set and gettibstName state.

void writeCode(const char* name= NULL);
If the argument is NULL, we use the galaxy name as the file name. This method saves the
code to the file.

void wantStaticBuffering();
int useStaticBuffering();
These methods set and get $keticBuffering state.

int incrementalAdd(CGStar* s,int flag =1);
We add the code for the argument starduring code generation stepfildg is 0, we
add the main body of the stago(method only). Otherwise, we initialize the star, allocate
memory, and generate initialization code, main body, and wrapup code.

int insertGalaxyCode(Galaxy* g, SDFScheduler * s);
We insert the code for the argument galaxy during code generation procedure. We give the
unique index for the galaxy and set the indices of stars inside the galaxy. Then, it calls

CGTarget :: insertGalaxyCode to generate code. After all, we declare the galaxy.
void putStream(const char* n, CodeStream * CS);
CodeStream* removeStream(const char* ny;

The above methods put and remove a code stream named

18.7 Class CGCMultiTarget

Class CGCMultiTarget, derived from CGSharedBus class, models multiple Unix machines
connected together via Ethernet. We use socket mechanism for interprocessor communication.
Since the communication overhead is huge, we do not gain any speed up for small examples.
Nonetheless, we can test and verify the procedure of multiprocessor code generation.

This class has five private states as follows.

Ptolemy Last updated: 10/9/97

18-14 CGC Domain

IntState doCompile;
IntState doRun;
If these states are set YES, we compile and run the generated code.

StringState machineNames;

StringState nameSuffix;
We list the machine names separated by commas. If all machines names listed have the
same suffix, we separate that suffix in the second state. For examplehilieName is
"ohm" andnameSuffix is ".berkeley.edu”, we mean machine named "ohm.berke-
ley.edu”.

IntState portNumber;
To make socket connections, we assign port numbers that are available. For now, we set
the starting port number with this state. We will increase this number by one every time
we add a new connection. Therefore, it should be confirmed that these assigned port num-
bers should be available. If the Ptolemy program is assigned a port number in the future,
then we will be able to let the system choose the available port number for each connec-
tion.

With the given list of machine names, we prepare a data structure kitbd
nelnfo that pairs the machine name and internet address.
class Machinelnfo {

friend class CGCMultiTarget;

const char* inetAdddrr;// internet address

const char* nm; /l machine name
public:

}

Machinelnfo: inetAddr(0), nm(0) {}

This class has a constructor with three argument like its base classes. The destructor deal-
locatesMachineinfo arrays if allocated. It hasakeNewmethod andsA method rede-
fined.

18.7.1 CGCMultiTarget protected members

void setup();
If the child targets are inherited, we also inherit the machine information. Otherwise, we
set up the machine information. The number of processors and the number of machines
names should be equal. Then, we C&MultiTarget::setup for normal setup opera-
tion . At last, we set thieostName state of child targets with the machine names.

int wormLoadCode();
This method do nothing #foCompile state is NO. Otherwise, it compiles the code for all
child targets€ompileCode). Then, it checks whethdbRun state is YES or NO. Ifitis
YES, we execute the code.

int sendWormData(PortHole& P);

int receiveWormData(PortHole& P);
int sendWormData();

int receiveWormData();

U. C. Berkeley Department of EECS

The Almagest 18-15

These method should be redefined in the future to support wormhole interface. Currently,
they do same tasks with the base Target classes.

18.7.2 CGCMultiTarget public members

Machinelnfo* getMachinelnfo();
int* getPortNumber();
These methods return the current machine information and the next port number to be

assigned.

DataFlowStar* createSend(int from ,int to ,int numn;
DataFlowStar* createReceive(int from ,int to ,int numn;
The above methods create CGCUnixSend and CGCUnixReceive stars for communication

stars with TCP protocol.

void pairSendReceive(DataFlowStar* snd, DataFlowStar * rev);
This method pairs a UnixSend star and a UnixReceive star to make a connection. We
assign a port number to the connection. More important task is to generate function calls
in the initialization codecomminit stream) of two child targets which these communica-
tion stars belong to. These functions will make a TCP connection between two child tar-
gets with the assigned port number. The UnixSend star wik@atect function while
the UnixReceive star will calisten function.

void setMachineAddr(CGStar* snd, CGStar * rcv);
This method informs thend star about the internet address of the machine thatwthe
star is scheduled on. The address is needeshitect function.

void signalCopy(int flag);
By giving a non-zero value as the argument, we indicate that the code will be duplicated in

different set of processors so that we need to adjust the machine information of communi-
cation stars.

void prepCode(Profile* pf,int nPint numChunk);
This method is also used to allow code replication into different set of targets.

DataFlowStar* createCollect();
DataFlowStar* createSpread();
These methods create CGCCollect and CGCSpread stars.

18.8 Status
Here are some points about the current status.
» Data Parallel star is not supported yet.

» Execution times of CGC stars are not well defined. They will vary processor to proces-
sor. We estimate them by looking at CG96 stars, or by counting the number of elemen-
tary operations. For heterogeneous multiprocessor case, we have to design a clean way
of specifying these numbers.

Ptolemy Last updated: 10/9/97

18-16 CGC Domain

* hSpread/Collect stars and buffer embedding are not supported in ASM domain. Since
Spread/Collect stars are not supported, all ASM multiprocessor targets should set the
oneStarOneProc state TRUE.

(4) The scheduling optiomdjustSchedule is not implemented yet since the cur-
rent graphical editor does not support "cont" function.

(5) Overlapped communication is not supported since we haven't had any machine of
that sort.

18.9 References

[1] G.C.Sih and E.A.Lee, "Dynamic-level scheduling for heterogeneous processor net-
works," Second IEEE Symposium on Parallel and Distributed Processing, pp. 42-49, 1990

[2] G.C.Sih and E.A.Lee, "Declustering: A New Multiprocessor Scheduling Tech-
nique," IEEE Transactions on Parallel and Distributed Systems, 1992.

[3] S. Ha, Compile-time Scheduling of Dataflow Program Graphs with Dynamic Con-
structs, Ph.D. dissertation, U.C.Berkeley, 1992.

[4] J.L.Pino, S.Ha, E.A.Lee, J.T.Buck, "Software Synthesis for DSP Using Ptolemy,"
invited paper, Journal of VLSI Signal Processing, 1993.

[5] W.S.Wang, et al, "Assignment of Chain-Structured Tasks onto Chain-structured
Distributed Systems," source unknown.

U. C. Berkeley Department of EECS

