
The Almagest 4-1

Ptolemy Last updated: 10/9/97

Chapter 4. Control of Execution and
Error Reporting

Authors: Joseph T. Buck

Other Contributors: John S. Davis II

The principal classes responsible for control of the execution of the universe are the Target and
the Scheduler. The Target has high-level control over what happens when a user typesrun
from the interface. Targets take on particular importance in code generation domains where
they describe all the features of the target of execution, but they are used to control execution
in simulation domains as well. Targets use Schedulers to control the order of execution of
Blocks under their control. In some domains, the Scheduler does almost everything; the Target
simply starts it up. In others, the Scheduler determines an execution order and the Target takes
care of many other details, such as generating code in accordance with the schedule, download-
ing the code to an embedded processor, and executing it. The Error class provides a means to
format error messages and optionally to halt execution. The interface is always the same, but
different user interfaces typically provide different implementations of the methods of this
class. The SimControl class provides a means to register actions for execution during a simu-
lation, as well as facilities to cleanly halt execution on an error.

4.1 Class Target
Class Target is derived from class Block; as such, it can have states and a parent (the fact that
it can also have portholes is not currently used). A Target is capable of supervising the execu-
tion of only certain types of Stars; thestarClass argument in its constructor specifies what
type. A Universe or InterpUniverse is run by executing its Target. Targets have Schedulers,
which as a rule control order of execution, but it is the Target that isin control. A Target can
have children that are other Targets; this is used, for example, to represent multi-processor sys-
tems for which code is being generated (the parent target represents the system as a whole, and
child targets represent each processor).

4.1.1 Target public members
Target(const char* name, const char*starClass ,const char*desc = "");

This is the signature of the Target constructor.name specifies the name of the Target and
desc specifies its descriptor (these fields end up filling in the corresponding NamedObj
fields). ThestarClass argument specifies the class of stars that can be executed by the
Target. For example, specifyingDataFlowStar for this argument means that the Target
can run any type of star of this class or a class derived from it. TheisA function is used to
perform the check. See the description ofauxStarClass below.

4-2 Control of Execution and Error Reporting

U. C. Berkeley Department of EECS

const char* starType() const;

Return the supported star class (thestarClass argument from the constructor).

Scheduler* scheduler() const;

Return a pointer to my scheduler.

Target* cloneTarget() const;

This simply returns the result of theclone function as a Target. It is used by the Known-
Target class, for example to create a Target object corresponding to a name specified from
a user interface.

virtual StringList displaySchedule();

The default implementation simply passes this call along to the scheduler; derived classes
may modify this.

virtual StringList pragma () const;

A Target may understand certain annotations associated with Blocks calledpragmas. For
example, an annotation may specify how many times a particular Star should fire. Or it
could specify that a particular Block should be mapped onto a particular processor. Or it
could specify that a particular State of a particular Block should be settable on the com-
mand line that invokes a generated program. The above method returns the list of named
pragmas that a particular target understands (e.g.firingsPerIteration or proces-
sorNumber). In derived classes, each item in the list is a three part string, "name type
value ", separated by spaces. Thevalue will be a default value. The implementation in
class Target returns a StringList with only a single zero-length string in it. Thetype can
be any type used in states.

virtual StringList pragma (const char* parentname ,
const char* blockname) const;

To determine the value of all pragmas that have been specified for a particular block, call
this method. In derived classes, it returns a list of "name value " pairs, separated by
spaces. In the base class, it returns an empty string. Theparentname is the name of the
parent class (universe or galaxy master name).

virtual StringList pragma (const char* parentname ,
const char* blockname ,
const char* pragmaname) const;

To determine the value of a pragma of a particular type that has been specified for a partic-
ular block, call this method. In derived classes, it returns a value. In the base class, it
returns a zero-length string.

virtual StringList pragma (const char* parentname ,
const char* blockname ,
const char* pragmaname ,
const char* value) const;

To specify a pragma to a target, call this method. The implementation in the base class
“Target” does nothing. In derived classes, the pragma will be registered in some way. The
return value is always a zero-length string.

The Almagest 4-3

Ptolemy Last updated: 10/9/97

Target* child(int n);
Return thenth child Target, null if no children or ifn exceeds the number of children.

Target* proc(int n);
This is the same aschild if there are children. If there are no children, an argument of 0
will return a pointer to the object on which it is called, otherwise a null pointer is returned.

int nProcs() const;

Return the number of processors (1 if no children, otherwise the number of children).

virtual int hasResourcesFor(Star& s ,const char*extra =0);
Determine whether this target has the necessary resources to run the given star. It is virtual
in case this is necessary in child classes. The default implementation usesresources
states of the target and the star.

virtual int childHasResources(Star& s ,int childNum);
Determine whether a particular child target has resources to run the given star. It is virtual
in case later necessary.

virtual void setGalaxy(Galaxy& g);
Associate a Galaxy with the Target. The default implementation just sets its galaxy pointer
to point tog.

virtual void setStopTime(double when);
Set the stopping condition. The default implementation just passes this on to the scheduler.

virtual void resetStopTime(double when);
Reset the stopping condition for the wormhole containing this Target. The default imple-
mentation just passes this on to the scheduler. In addition to the action performed byset-
StopTime, this function also does any synchronization required by wormholes.

virtual void setCurrentTime(double now);
Set the current time tonow.

virtual int run();
virtual void wrapup();

The following methods are provided for code generation; schedulers may call these. They may
move to class CGTarget in a future Ptolemy release.

virtual void beginIteration(int repetitions , int depth);
Function called to begin an iteration (default version does nothing).

virtual void endIteration(int repetitions , int depth);
Function called to end an iteration (default version does nothing).

virtual void writeFiring(Star& s , int depth);
Function called to generate code for the star, with any modifications required by this par-

4-4 Control of Execution and Error Reporting

U. C. Berkeley Department of EECS

ticular Target (the default version does nothing).

virtual void beginIf(PortHole& cond , int truthdir ,
 int depth , int haveElsePart);
virtual void beginElse(int depth);
virtual void endIf(int depth);
virtual void beginDoWhile(PortHole& cond , int truthdir , int depth);
virtual void endDoWhile(PortHole& cond);

These above functions are used in code generation to generate conditionals. The default
implementations do nothing.

virtual int commTime(int sender ,int receiver ,int nUnits , int type);
Return the number of time units required to sendnUnits units of data whose type is the
code indicated bytype from the child Target numberedsender to the child target num-
beredreceiver. The default implementation returns 0 regardless of the parameters. No
meaning is specified at this level for the type codes, as different languages have different
types; all that is required is that different types supported by a particular target map into
distinct type codes.

Galaxy* galaxy();

Return my galaxy pointer (0 if it has not been set).

4.1.2 Target protected members
virtual void setup();

This is the main initialization function for the target. It is called by theinitialize func-
tion, which by default initializes the Target states. The default implementation callsgal-
axySetup(), and if it returns a nonzero value, then callsschedulerSetup().

virtual int galaxySetup();

This method (and overloaded versions of it) is responsible for checking the galaxy belong-
ing to the target. In the default implementation, each star is checked to see if its type is
supported by the target (because theisA function reports that it is one of the supported
star classes). If a star does not match this condition an error is reported. In addition,set-
Target() is called for each star with a pointer to the Target as an argument. If there are
errors, 0 is returned, otherwise 1.

virtual int schedulerSetup();

This method (and overloaded versions of it) are responsible for initializing an execution of
the universe. The default implementation initializes the scheduler and callssetup() on it.

void setSched(Scheduler* sch);
The target’s scheduler is set tosch, which must either point to a scheduler on the heap or
be a null pointer. Any preexisting scheduler is deleted. Also, the scheduler’ssetTarget
member is called, associating the Target with the Scheduler.

void delSched();

This function deletes the target’s scheduler and sets the scheduler pointer to null.

The Almagest 4-5

Ptolemy Last updated: 10/9/97

void addChild(Target& child);
Add child as a child target.

void inheritChildren(Target* parent , int start , int stop);
This method permits two different Target objects to share child Targets. The child targets
numberedstart throughstop of the Target pointed to byparent become the children
of this Target (the one on which this method is called). Its primary use is in multi-proces-
sor scheduling or code generation, in which some construct is assigned to a group of pro-
cessors. It has a big disadvantage; the range of child targets must be continuous.

void remChildren();

Remove thechildren list. This does not delete the child targets.

void deleteChildren();

Delete all thechildren . This assumes that the child Targets were created withnew.

virtual const char* auxStarClass() const;

Auxiliary star class: permits a second type of star in addition to the supported star class
(seestartType()). The default implementation returns a null pointer, indicating no aux-
iliary star class. Sorry, there is no present way to support yet a third type.

const char* writeDirectoryName(const char* dirName = 0);
This method returns a directory name that is intended for use in writing files, particularly
for code generation targets. If the directory does not exist, it attempts to create it. Returns
the fully expanded path name (which is saved by the target).

const char* workingDirectory() const;

Return the directory name previously set bywriteDirectoryName.

char* writeFileName(const char* fileName = 0);
Method to set a file name for writing.writeFileName prependsdirFullName (which
was set bywriteDirectoryName) to fileName with "/ " between. Always returns a
pointer to a string in new memory. It is up to the user to delete the memory when no longer
needed. IfdirFullName or fileName is NULL then it returns a pointer to a new copy of
the string/dev/null .

4.2 Class Scheduler
Scheduler objects determine the order of execution of Stars. As a rule, they are created and
managed by Targets. Some schedulers, such as those for the SDF domain, completely deter-
mine the order of execution of blocks before any blocks are executed; others, such as those for
the DE domain, supervise the execution of blocks at run time. The Scheduler class is an abstract
base class; you can’t have an object of class Scheduler. All schedulers have a pointer to the Tar-
get that controls them as well as to a Galaxy. Usually the Galaxy will be the same one that the
Target points to, but this is not a requirement. The Scheduler constructor just zeros its target,
galaxy pointers. The destructor is virtual and do-nothing.

4-6 Control of Execution and Error Reporting

U. C. Berkeley Department of EECS

4.2.1 Scheduler public members
virtual void setGalaxy(Galaxy& g);

This function sets the galaxy pointer to point tog.

Galaxy* galaxy();

This function returns the galaxy pointer.

virtual void setup() = 0;

This function (in derived classes) sets up the schedule. In compile-time schedulers such as
those for SDF, a complete schedule is computed; others may do little more than minimal
checks.

virtual void setStopTime(double limit) = 0;
Set the stop time for the scheduler. Schedulers have an abstract notion of time; this deter-
mines how long the scheduler will run for.

virtual double getStopTime() = 0;

Retrieve the stop time.

virtual void resetStopTime(double limit);
Reset the stopping condition for the wormhole containing this Scheduler. The default
implementation simply callssetStopTime with the same argument. For some derived
types of schedulers, additional actions will be performed as well by derived Scheduler
classes.

virtual int run() = 0;

Run the scheduler until the stop time is reached, an error condition occurs, or it stops for
some other reason.

virtual void setCurrentTime(double val);
Set the current time for the scheduler.

virtual StringList displaySchedule();

Return the schedule if this makes sense.

double now() const;

Return the current time (the value of the protected membercurrentTime).

int stopBeforeDeadlocked() const;

Return the value of thestopBeforeDeadFlag protected member. It is set in timed
domains to indicate that a scheduler inside a wormhole was suspended even though it had
more work to do.

virtual const char* domain() const;

Return the domain for this scheduler. This method is no longer used and will be removed
from future releases; it dates back to the days in which a given scheduler could only be
used in one domain.

The Almagest 4-7

Ptolemy Last updated: 10/9/97

void setTarget(Target& t);
Set the target pointer to point tot.

Target& target ();

Return the target.

virtual void compileRun();

Call code-generation functions in the Target to generate code for a run. In the base class,
this just causes an error.

The following functions now forward requests to SimControl, which is responsible for control-
ling the simulation.

static void requestHalt();

CallsSimControl::declareErrorHalt. NOTE:SimControl::requestHalt
only sets the halt bit, not the error bit.

static int haltRequested();

CallsSimControl::haltRequested. Returns TRUE if the execution should halt.

static void clearHalt();

CallsSimControl::clearHalt. Clears the halt and error bits.

4.2.2 Scheduler protected members

The following two data members are protected.

// current time of the scheduler
double currentTime;
// flag set if stop before deadlocked.
// for untimed domain, it is always FALSE.
int stopBeforeDeadlocked;

4.3 Class Error
Class Error is used for error reporting. While the interfaces to these functions are always the
same, different user interfaces provide different implementations:ptcl connects to the Tcl er-
ror reporting mechanism,pigi pops up windows containing error messages, andinter-
preter simply prints messages on the standard error stream. All member functions of Error
are static. There are four “levels” of messages that may be produced by the error facility:Er-
ror::abortRun is used to report an error and cause execution of the current universe to halt.
Error::error reports an error.Error::warn reports a warning, andError::message
prints an information message that is not considered an error. Each of these four functions is
available with two different signatures. For example:

static void abortRun (const char*, const char* = 0, const char* = 0);
static void abortRun (const NamedObj& obj , const char*, const char* = 0,
 const char* = 0);

The first form produces the error message by simply concatenating its arguments (the second

4-8 Control of Execution and Error Reporting

U. C. Berkeley Department of EECS

and third arguments may be omitted); no space is added. The second form prepends the full
name of theobj argument, a colon, and a space to the text provided by the remaining argu-
ments. If the implementation provides a marking facility, the object named byobj is marked
by the user interface (at present, the interface associated withpigi will highlight the object if
its icon appears on the screen). The remaining static Error functionserror, warn, andmes-
sage have the same signatures as doesabortRun (there are the same two forms for each func-
tion). In addition, the Error class provides access to the marking facility, if it exists:

static int canMark();

This function returns TRUE if the interface can mark NamedObj objects (generally true
for graphic interfaces), and FALSE if it cannot (generally true for text interfaces).

static void mark (const NamedObj& obj);
This function marks the objectobj, if marking is implemented for this interface. It is a
no-op if marking is not implemented.

4.4 Class SimControl
The SimControl class controls execution of the simulation. It has some global status flags that
indicate whether there has been an error in the execution or if a halt has been requested. It also
has mechanisms for registering functions to be called before or after star executions, or in re-
sponse to a particular star’s execution, and responding to interrupts. This class interacts with
the Error class (which sets error and halt bits) and the Star class (to permit execution of regis-
tered actions when stars are fired). Schedulers and Targets are expected to monitor the Sim-
Control halt flag to halt execution when errors are signaled and halts are requested. Once
exceptions are commonplace in C++ implementations, a cleaner implementation could be pro-
duced.

4.4.1 Access to SimControl status flags.

SimControl currently has four global status bits: the error bit, the halt bit, the interrupt bit, and
the poll bit. These functions set, clear, or report on these bits.

static void requestHalt ();

This function sets the halt bit. The effect is to cause schedulers and targets to cease execu-
tion. It is important to note that this function does not alter flow of control; it only sets a
flag.

static void declareErrorHalt ();

This is the same asrequestHalt except that it also sets the error bit. It is called, for
example, byError::abortRun.

static int haltRequested ();

This function returns true if the halt bit is set, false otherwise. If the poll or interrupt bits
are set, it calls handlers for them (see the subsection describing these).

static void clearHalt ();

This function clears the halt and error flags.

The Almagest 4-9

Ptolemy Last updated: 10/9/97

4.4.2 Pre-actions and Post-actions

SimControl can register a function that will be called before or after the execution of a partic-
ular star, or before or after the execution of all stars. A function that is called before a star is a
preaction; on that is called after a star is apost-action. The functions that can be registered have
take two arguments: a pointer to a Star (possibly null), and aconst char* pointer that points
to a string (possibly null). The type definition

typedef void (*SimActionFunction)(Star*,const char*);

gives the name SimActionFunction to functions of this type; several SimControl functions
take arguments of this form.

static SimAction* registerAction(SimActionFunction action, int pre,
 const char* textArg = 0, Star* which = 0);

Register a pre-action or post-action. Ifpre is TRUE it is a preaction. IftextArg is given,
it is passed as an argument when the action function is called. Ifwhich is 0, the function
will be called unconditionally bydoPreActions (if it is a preaction) ordoPostAc-
tions (if it is a post-action; otherwise it will only be called if the star being executed has
the same address aswhich. The return value represents the registered action; class
SimAction is treated as if it is opaque (I’m not telling you what is in it) which can be used
for cancel calls.

static int doPreActions(Star * which);
static int doPostActions(Star * which);

Execute all pre-actions, or post-actions, for a the particular Starwhich. Thewhich
pointer is passed to each action function, along with any text argument declared when the
action was registered. Return TRUE if no halting condition arises, FALSE if we are to
halt.

static int cancel(SimAction* action);
Cancelaction. Warning: argument is deleted. Future versions will provide more ways
of cancelling actions.

4.4.3 SimControl interrupts and polling

Features in this section will be used in a new graphic interface; they are mostly untested at this
point. The SimControl class can handle interrupts and can register a polling function that is
called for every star execution. It only provides one handler.

static void catchInt(int signo = -1, int always = 0);

This static member function installs a simple interrupt handler for the signal with Unix
signal numbersigno. If always is true, the signal is always caught; otherwise the signal
is not caught if the current status of the signal is that it is ignored (for example, processes
running in the background ignore interrupt signals from the keyboard). This handler sim-
ply sets the SimControl interrupt bit; on the next call tohaltRequested, the user-speci-
fied interrupt handler is called.

static SimHandlerFunction setInterrupt(SimHandlerFunction f);
Set the user-specified interrupt handler tof, and return the old handler, if any. This func-

4-10 Control of Execution and Error Reporting

U. C. Berkeley Department of EECS

tion is called in response to any signals specified incatchInt.

static SimHandlerFunction setPoll(SimHandlerFunction f);

Register a function to be called byhaltRequested if the poll flag is set, and set the poll
flag. Returns old handler if any.

