
The Almagest 11-1

Ptolemy Last updated: 10/9/97

Chapter 11. I/O classes

Authors: Joseph T. Buck

Other Contributors: Bilung Lee

11.1 StringList, a kind of String class
ClassStringList provides a mechanism for organizing a list of strings. It can also be used
to construct strings of unbounded size, but the classInfString is preferred for this. It is pri-
vately derived fromSequentialList . Its internal implementation is as a list ofchar*
strings, each on the heap. AStringList object can be treated either as a single string or as a
list of strings; the individual substrings retain their separate identity until the conversion oper-
ator to typeconst char* is invoked. There are also operators that add numeric values to the
StringList ; there is only one format available for such additions. WARNING: if a function
or expression returns aStringList , and that value is not assigned to aStringList variable
or reference, and the(const char*) cast is used, it is possible (likely under g++) that the
StringList temporary will be destroyed too soon, leaving theconst char* pointer point-
ing to garbage. Always assign a temporaryStringList to aStringList variable or refer-
ence before using theconst char* conversion. Thus, instead of

function_name(xxx ,(const char*) functionReturningStringList (), yyy);

one should use

StringList temp_name = (const char*) functionReturningStringList ();
function_name(xxx , temp_name, yyy);

This includes code like

strcpy(destBuf , functionReturningStringList ());

which uses theconst char* conversion implicitly.

11.1.1 StringList constructors and assignment operators

The default constructor makes an emptyStringList . There is also a copy constructor and
five single-argument constructors that can function as conversions from other types to type
StringList ; they take arguments of the typeschar, const char * , int, double, and
unsigned int . There are also six assignment operators corresponding to these constructors:
one that takes aconst StringList& argument and also one for each of the five standard
types:char, const char * , int, double, andunsigned int . The resulting object has
one piece, unless initialized from anotherStringList in which case it has the same number
of pieces.

11.1.2 Adding to StringLists

There are six functions that can add a printed representation of an argument to aStringList :
one each for arguments of typeconst StringList& , char, const char * , int, dou-

11-2 I/O classes

U. C. Berkeley Department of EECS

ble, andunsigned int . In each case, the function can be accessed in either of two equiva-
lent ways:

StringList& operator += (type arg);
StringList& operator << (type arg);

The second “stream form” is considered preferable; the “+=” form is there for backward
compatibility. If aStringList object is added, each piece of the addedStringList is
added separately (boundaries between pieces are preserved); for the other five forms, a
single piece is added.

11.1.3 StringList information functions
const char* head() const;

Return the first substring on the list (the first “piece”). A null pointer is returned if there
are none.

int length() const;

Return the length in characters.

int numPieces() const;

Return the number of substrings in theStringList .

11.1.4 StringList conversion to const char *
operator const char* ();

This function joins all the substrings in theStringList into a single piece, so that after-
wardsnumPieces will return 1. A null pointer is always returned if there are no charac-
ters. Warning: if this function is called on a temporaryStringList , it is possible that the
compiler will delete theStringList object before the last use of the returnedconst
char * pointer. The result is that the pointer may wind up pointing to garbage. The best
way to work around such problems is to make sure that anyStringList object “has a
name” before this conversion is applied to it; e.g., assign the results of functions returning
StringList objects to localStringList variables or references before trying to con-
vert them.

char* newCopy() const;

This function makes a copy of theStringList ’s text in a single piece as achar* in
dynamic memory. The object itself is not modified. The caller is responsible for deletion
of the returned text.

11.1.5 StringList destruction and zeroing
void initialize();

This function deallocates all pieces of theStringList and changes it to an empty
StringList .

~StringList();

The destructor calls theinitialize function.

The Almagest 11-3

Ptolemy Last updated: 10/9/97

11.1.6 Class StringListIter

ClassStringListIter is a standard iterator that operates onStringLists . Its next()
function returns a pointer of typeconst char* to the next substring of theStringList . It
is important to know that the operation of converting aStringList to aconst char* string
joins all the substrings into a single string, so that operation should be avoided if extensive use
of StringListIter is planned.

11.2 InfString, a class supporting unbounded strings
ClassInfString provides a mechanism for building strings of unbounded size. It provides a
subset of the functions in a typical C++ String class. Strings can be built up piece by piece. As
segments are added, they are copied, so the caller need not keep the segments around. Upon
casting to(char*), the strings are collapsed into one continuous string, and a pointer to that
string is returned. The calling function can treat this as an ordinary pointer to an ordinary array
of characters, and can modify the characters. But the length of the string should not be changed,
nor should the string be deleted. TheInfString destructor is responsible for freeing the allo-
cated memory.InfString is publically derived fromStringList , adding only the cast
char* . Its internal implementation is as a list ofchar* strings, each on the heap. The individ-
ual substrings retain their separate identity until the conversion cast to typechar* is invoked,
although if access to the individual strings is needed, thenStringList should be used. There
are also operators that add numeric values to theStringList ; there is only one format avail-
able for each such addition. WARNING: if a function or expression returns anInfString ,
and that value is not assigned to anInfString variable or reference, and the(char*) cast is
used, it is possible (likely under g++) that theInfString temporary will be destroyed too
soon, leaving thechar* pointer pointing to garbage. Always assign temporaryInfString to
InfString variables or references before using thechar* conversion. Thus, instead of

function_name(xxx ,(char*) functionReturningInfString (), yyy);

one should use

InfString temp_name = (char*) functionReturningInfString ();
function_name(xxx , temp_name, yyy);

This includes code like

strcpy(destBuf , functionReturningInfString ());

which uses thechar* conversion implicitly.

11.2.1 InfString constructors and assignment operators

The default constructor makes an emptyInfString . There is also a copy constructor and six
single-argument constructors that can function as conversions from other types to typeInf-
String ; they take arguments of the typeschar, const char* , int, double, unsigned
int , andconst StringList& . There are also seven assignment operators corresponding to
these constructors: one that takes aconst InfString& argument and also one for each of
the six standard types:char, const char* , int, double, unsigned int , andconst
StringList& .

11-4 I/O classes

U. C. Berkeley Department of EECS

11.2.2 Adding to InfStrings

There are seven functions that can add a printed representation of an argument to a InfString:
one each for arguments of typeconst InfString& , char, const char* , int, double,
unsigned int , andconst StringList& . In each case, the function can be accessed in ei-
ther of two equivalent ways:

InfString& operator += (type arg);
InfString& operator << (type arg);

The second “stream form” is considered preferable; the “+=” form is there for backward
compatibility. If aInfString object is added, each piece of the addedInfString is
added separately (boundaries between pieces are preserved); for the other five forms, a
single piece is added.

11.2.3 InfString information functions
int length() const;

Return the length in characters.

11.2.4 InfString conversion to char *
operator char* ();

This function joins all the substrings in theInfString into a single piece, a returns a
pointer to the resulting string. A null pointer is always returned if there are no characters.
Warning: as pointed out above, if this function is called on a temporaryInfString , it is
possible that the compiler will delete theInfString object before the last use of the
returnedchar* pointer. The result is that the pointer may wind up pointing to garbage.
The best work-around for such problems is to make sure that anyInfString object “has
a name” before this conversion is applied to it; e.g. assign the results of functions returning
InfString objects to localInfString variables or references before trying to convert
them.

char* newCopy() const;

This function makes a copy of theInfString ’s text in a single piece as achar* in
dynamic memory. TheInfString object itself is not modified. This is useful when the
caller wishes to be responsible for deletion of the returned text.

11.2.5 InfString destruction and zeroing
void initialize();

This function deallocates all pieces of theInfString and changes it to an emptyInf-
String .

~InfString();

The destructor calls theinitialize function.

11.2.6 Class InfStringIter

ClassInfStringIter is a standard iterator that operates onInfStrings . However, theIn-
fString class is not intended for use when access to the individual components of the string
is desired. UseStringList for this.

The Almagest 11-5

Ptolemy Last updated: 10/9/97

11.3 Tokenizer, a simple lexical analyzer class
TheTokenizer class is designed to accept input for a string or file and break it up into tokens.
It is similar to the standard istream class in this regard, but it has some additional facilities. It
permits character classes to be defined to specify that certain characters are white space and
others are “special” and should be returned as single-character tokens; it permits quoted strings
to override this, and it has a file inclusion facility. In short, it is a simple, reconfigurable lexical
analyzer.Tokenizer has a public const data member nameddefWhite that contains the de-
fault white space characters: space, newline, and tab. It is possible to change the definition of
white space for a particular constructor.

11.3.1 Initializing Tokenizer objects

Tokenizer provides three different constructors:

Tokenizer();

The default constructor creates aTokenizer that reads from the standard input stream,
cin. Its special characters are simply \key (and \key).

Tokenizer(istream& input ,const char* spec ,
 const char* w = defWhite);

This constructor creates aTokenizer that reads from the stream named byinput. The
other arguments specify the special characters and the white space characters.

Tokenizer(const char* buffer ,const char* spec ,
 const char* w = defWhite);

This constructor creates aTokenizer that reads from the null-terminated string in
buffer. Tokenizer ’s destructor closes any include files associated with the constructor
and deletes associated internal storage. The following operations change the definition of
white space and of special characters, respectively:

const char* setWhite(const char* w);
const char* setSpecial(const char* s);

In each case, the old value is returned. By default, the line comment character forToken-
izer is #. It can be changed by

char setCommentChar(char n);

Use an argument of 0 to disable the feature. The old comment character is returned.

11.3.2 Reading from Tokenizers

The next operation is the basic mechanism for reading tokens from theTokenizer :

Tokenizer& operator >> (char* pBuffer);
HerepBuffer points to a character buffer that reads the token. There is a design flaw:
there isn’t a way to give a maximum buffer length, so overflow is a risk. By analogy with
streams, the following operation is provided:

operator void*();

It returns null ifEOF has already been reached and non-null otherwise. This permits loops

11-6 I/O classes

U. C. Berkeley Department of EECS

like

Tokenizer tin;
while (tin) { ... do stuff ... }
int eof() const;

Returns true if the end of file or end of input has been reached on theTokenizer . It is
possible that there is nothing left in the input but write space, so in many situationsskip-
white should be called before making this test.

void skipwhite();

Skip white space in the input.

void flush();

If in an include file, the file is closed. If at the top level, discard the rest of the current line.

11.3.3 Tokenizer include files

Tokenizer can use include files, and can nest them to any depth. It maintains a stack of in-
clude files, and asEOF is reached in each file, it is closed and popped off of the stack. The meth-
od

int fromFile(const char* name);
opens a new file and theTokenizer will then read from that. When that file ends,
Tokenizer will continue reading from the current point in the current file.

const char* current_file() const;
int current_line() const;

These methods report on the file name and line number whereTokenizer is currently
reading from. This information is maintained for include files. At the top level,
current_file returns a null pointer, butcurrent_line returns one more than the
number of line feeds seen so far.

int readingFromFile() const;

Returns true (1) if theTokenizer is reading from an include file, false (0) if not.

11.4 pt_ifstream and pt_ofstream: augmented fstream classes
The classespt_ifstream andpt_ofstream are derived from the standard stream classes
ifstream andofstream , respectively. They are defined in the header filept_fstream.h.
They add the following features: First, certain special “filenames” are recognized. If the file-
name used in the constructor or anopen call iscin>, cout>, cerr>, or clog> (the angle
brackets must be part of the string), then the corresponding standard stream of the same name
is used for input (pt_ifstream) or output (pt_ofstream). In addition, C standard I/O fans
can specifystdin>, stdout>, or stderr> as well. Second, the PtolemyexpandPath-
Name is applied to the filename before it is opened, permitting it to start with~user or $VAR.
Finally, if a failure occurs when the file is opened,Error::abortRun is called with an ap-
propriate error message, including the Unix error condition. Otherwise these classes are iden-
tical to the standard ifstream and ofstream classes and can be used as replacements.

The Almagest 11-7

Ptolemy Last updated: 10/9/97

11.5 XGraph, an interface to the xgraph program
TheXGraph class provides an interface for thexgraph program for plotting data on an X win-
dow system display. The modifiedxgraph program provided with the Ptolemy distribution
should be used, not the contributed version from the X11R5 tape. The constructor forXGraph
does not completely initialize the object; initialization is completed by theinitialize()
method:

void initialize(Block* parent , int noGraphs ,
 const char* options , const char* title ,
 const char* saveFile = 0, int ignore = 0);

Theparent argument is the name of aBlock that is associated with theXGraph object;
thisBlock is used inError::abortRun messages to report errors.noGraphs specifies
the number of data sets that the graph will contain. Each data set is a separate stream and
is plotted in a different color (a different line style for B/W displays).options is a series
of command line options that will be passed unmodified to thexgraph program. It is sub-
ject to expansion by the Unix shell.title is the title for the graph; it can contain special
characters (it isnot subjected to expansion by the Unix shell).saveFile is the name of a
file to save the graph data into, in ASCII form. If it is not given, the data are not saved, and
a faster binary format is used.ignore specifies the number of initial points to ignore from
each data set.

void setIgnore(int n);

Reset the “ignore” parameter ton.

void addPoint(float y);
Add a single point to the first data set whose X value is automatically generated (0, 1, 2,
3... on successive calls) and whose Y value isy.

void addPoint(float x,float y);

Add the point (x, y) to the first data set.

void addPoint(int dataSet ,float x,float y);

Add the point (x, y) to the data set indicated bydataSet. Data sets start with 1.

void newTrace(int dataSet = 1);

Start a new trace for the nth dataset. This means that there will be no connecting line
between the last point plotted and the next point plotted.

void terminate();

This function flushes the data out to disk, closes the files, and invokes thexgraph pro-
gram. If the destructor is called beforeterminate, it will close and delete the temporary
files.

11.6 Histogram classes
The Histogram class accepts a stream of data and accumulates a histogram. TheXHisto-
gram class uses aHistogram to collect the data and anXGraph to display it.

11-8 I/O classes

U. C. Berkeley Department of EECS

11.6.1 Class Histogram

TheHistogram class accumulates data in a histogram. Its constructor is as follows:

Histogram(double width = 1.0, int maxBins = HISTO_MAX_BINS);

The default maximum number of bins is 1000. The bin centers will be at integer multiples
of the specified bin width. The total width of the histogram depends on the data; however,
there will always be a bin that includes the first point.

void add(double x);

Add the pointx to the histogram.

int numCounts() const;
double mean() const;
double variance() const;

Return the number of counts, the mean, and the variance of the data in the histogram.

int getData(int binno , int& count , double& binCenter);

Get counts and bin centers by bin number, where 0 indicates the smallest bin. ReturnTRUE
if this is a valid bin. Thus the entire histogram data can be retrieved by stepping from 0 to
the first failure.

11.6.2 Class XHistogram

An XHistogram object has a privateXGraph member and a privateHistogram member. The
functions

int numCounts() const;
double mean() const;
double variance();

simply pass through to theHistogram object, and

void addPoint(float y);

adds a point to the histogram and does other bookkeeping. There are two remaining meth-
ods:

void initialize(Block* parent , double binWidth ,
 const char* options , const char* title ,
 const char* saveFile , int maxBins = HISTO_MAX_BINS

This method initializes the graph and histogram object.parent is the parentBlock , used
for error messages.binWidth andmaxBins initialize theHistogram object.options
is a string that is included in the command line to thexgraph program; other options,
including-bar -nl -brw value, are passed as well.title is the graph title, and
saveFile, if non-null, gives a file in which the histogram data is saved (this data is the
histogram counts, not the data that was input withaddPoint).

void terminate();

This method completes the histogram, flushes out the temporary files, and executes
xgraph .

