
The Almagest 8-1

Ptolemy Last updated: 10/9/97

Chapter 8. The incremental linker

Authors: Joseph T. Buck
Christopher Hylands

The incremental linker permits user written code to be added to the system at runtime. Two dif-
ferent mechanisms are provided, called a temporary link and a permanent link. With either a
temporary link or a permanent link, code is linked using the incremental linking facilities of the
Unix linker, the new code is read into the Ptolemy executable, and symbols corresponding to
C++ global constructors are located and called. This means that such code is expected to reg-
ister objects on Ptolemy’s known lists (e.g. KnownBlock, KnownState, or KnownTarget) so
that new classes become usable.Warning: if the executable containing the Linker class is
stripped, the incremental linker will not work!

8.1 ld -A style linking vs. dlopen() style linking
There are two ways incremental linking is implemented: “ld -A” and “dlopen()” style linking.

The first type of implementation uses a BSD Sun-style loader with the -A flag to load in .o
files. Usually, binaries that are to be dynamically linked must be built with the -N option. This
is the older style of linking present in Ptolemy0.5 and earlier.

The second type of implementation uses the System V Release 4dlopen() call to load in
shared objects (.so files). SunOS4.1.x, Solaris2.x and Irix5.x support this style of dynamic
linking. In Ptolemy0.6, only the sol2, sol2.cfront, and hppa architectures support dynamic
linking of shared objects.

The interface to both styles of linking is very similar, though there are differences.

8.2 Temporary vs. Permanent Incremental Linking
Code that is linked in by the “temporary link” technique does not alter the symbol table in use.
For that reason, subsequent incremental links, whether temporary or permanent, cannot “see”
any code that was linked in by previous temporary links. The advantage is that the same sym-
bols (for example, a Ptolemy star definition) may be redefined, which is useful in code devel-
opment, as buggy star definitions can be replaced by valid ones without exiting Ptolemy. Code
that is linked in by the “permanent link” method has the same status as code that was linked
into the original executable. With “ld -A” style incremental linking, a permanent link creates
or replaces the.pt_symtable file in the directory in which Ptolemy was started. This file
contains the current symbol table for use by subsequent links, temporary or permanent. This
file is deleted when the Ptolemy process exits normally. It is left around when the process
crashes, as it is useful for debugging (as it contains symbols for object files that were incremen-
tally linked using the permanent method as well as those in the original executable). With
dlopen() style incremental linking, we keep track of all the files that have been permanently
linked in. After a file has been permanently linked in, each successive link (permanent or not)
includes all the permanently linking in files. That is, if we permanently link in foo.o, then when

8-2 The incremental linker

U. C. Berkeley Department of EECS

we link in bar.o, we will generate a shared object file that includes both foo.o and bar.o, and
then calldlopen() on that shared object file. Note that withdlopen() style linking it is pos-
sible to relink in stars that have been permanently linked. When a file is to be linked in, we
check against the list of permanently linked in file names and remove any duplicates. This
method of checking will fail if one permanently links in a file, and then links in the same file
as a different name, perhaps through the use of symbolic links. That is, if we permanently link
in ./foo.o and./bar.o is a link to./foo.o, when we link in./bar.o, we will have
multiple symbols defined, and we will get an error. In other words, we only check for duplicate
file names, we do not check for duplicate symbols in any files, the loader does this for us. Cur-
rently eachdlopen() style link generates a temporary shared object in/tmp. If you are doing
a large number ofdlopen() style permanent links, you will have many files in/tmp. We
hope to resolve this potential problem in a later release. Eventually, it would be nice if the code
read the value of an optional environment variable, such asTMPDIR.

8.3 Linker public members
static void init(const char* execName);

This function initializes the linker module by telling it where the executable for this pro-
gram is. For most purposes, passing it the value ofargv[0] passed to themain function
will suffice.

static int linkObj(const char* objName);
Link in a single object module using the temporary link mechanism (this entry point is
provided for backward compatibility).

static int multiLink(const char* args , int permanent);
static int multiLink(int argc , char** argv);

Both of these functions give access to the main function for doing an incremental link.
They permit either a temporary or a permanent link of multiple files; flags to the Unix
linker such as-l to specify a library or-L to specify a search directory for libraries are
permitted. For the first form,args are passed as part of a linker command that is
expanded by the Unix shell. A permanent link is performed ifpermanent is true (non-
zero); otherwise a temporary link is performed. The second form is provided for ease of
interfacing to the Tcl interpreter, which likes to pass arguments to commands in this style.
In this case,argv[0] indicates the type of link: if it begins with the characterp, a per-
manent link is performed; otherwise a temporary link is performed. The remaining argu-
ments are concatenated (separated by spaces) and appear in the argument to the Unix
linker.

static int isActive();

This function returns TRUE if the linker is currently active (so objects can be marked as
dynamically linked by the known list classes). Actually the flag it returns is set while con-
structors or other functions that have just been linked are being run.

static int enabled();

Returns true if the linker is enabled (it is enabled by callingLinker::init if that func-
tion returns successfully). On platforms that do not support dynamic linking, this function

The Almagest 8-3

Ptolemy Last updated: 10/9/97

always returns false (zero).

static const char* imageFileName();

Return the fully-expanded name of the executable image file (set byLinker::init).

static void setDefaultOpts(const char* newValue);
static const char* defaultOpts();

These functions set or return the linker’s default options, a set of flags appended to the end
of the command line by all links.

8.4 Linker implementation
For each port of Ptolemy to a particular release, the Linker is implemented in one of two styles:
“ld -A” style or “dlopen()” style. We discuss each style below.

8.4.1 Shared Objects and dlopen() style linking

If a Ptolemy release on a platform supportsdlopen style dynamic linking, then the ptcllink
command can be called with either a.o file or a.so file. If the link ptcl command is passed
a .o file, then a.so file will be generated. If link ptcl command is passed a.so file, then the
.so file will be loaded. If the.so file does not exist, then an error message will be produced
and the link will return. There are several ways to specify the path to a shared object.

1. Using just a file namelink foo.so will not work unless LD_LIBRARY_PATH
includes the directory wherefoo.so resides. The man pages fordlopen() and
ld discuss LD_LIBRARY_PATH Interestingly, usingputenv() to set
LD_LIBRARY_PATH from within ptcl has no effect on the runtime loader.

2. 2If the file name begins with./ , then the current directory is searched.link ./
foo.so should work, as willlink ./mydir/foo.so .

3. If the file name is an absolute path name, then the shared object will be loaded.
link /tmp/foo.so should work.

4. Dynamic programs can have a run path specified at link time. The run path is the
path searched at runtime for shared object. (Under Solaris2.3, the-R option told
controls the run path. Under Irix5.2, the-rpath option to ld controls the run
path). If ptcl or pigiRpc has been compiled with a run path built in, and the shared
object is in that path, then the shared object will be found. The Sun Linker Manual
says: “To locate the shared object foo.so.1, the runtime linker will use any
LD_LIBRARY_PATH definition presently in effect, followed by any runpath spec-
ified during the link-edit of prog and finally, the default location /usr/lib. If the file
name had been specified ./foo.so.1, then the runtime linker would have searched
for the file only in the present working directory.”

8.4.2 Porting the Dynamic Linking capability

This section is intended to assist those that attempt to port the Linker module to other platforms.
The Linker class is implemented in three files:Linker.h, specifying the class interface,
Linker.cc, specifying the implementation, andLinker.sysdep.h, specifying all the ma-

8-4 The incremental linker

U. C. Berkeley Department of EECS

chine dependent parts of the implementation. To turn on debugging, compileLinker.cc with
the DEBUG flag defined. One way to do this would be:

cd $PTOLEMY/obj.$PTARCH/kernel; rm -f Linker.o; make OPTIMIZER=-DDEBUG

The Linker class currently uses “ld -A” style dynamic linking on the Sun4 (Sparc) run-
ning SunOS4.1 andg++, the Sun4 (Sparc) running SunOS4.1 and Sun’scfront port, DEC-
Stations running Ultrix, HP-PA runningg++ or HP’scfront port. The Linker class currently
uses “dlopen()” style dynamic linking on the Sun4 (Sparc) running Solaris2.4 andg++, the
Sun4 (Sparc) running Solaris2 and Sun’scfront port (SunCC-3.0), the Sun4 (Sparc) run-
ning Solaris2 and Sun’s native C++ compilerCC-4.0, and SGI Indigos running IRIX-5.2 and
g++. The intent is to structure the code in such a way that no#ifdefs appear in
Linker.cc; they should all be inLinker.sysdep.h.

8.4.3 ld -A Style Dynamic Linking

The linker reads all new code into a pre-existing large array, rather than creating blocks of the
right size withnew, because the right size is not known in advance but a starting location must,
as a rule, be passed to the loader in advance. This means that there is a wired-in limit to how
much code can be linked in. The symbolLINK_MEMORY, which is set to one megabyte by de-
fault, is easily changed if required. Here are the steps taken by the linker to do its work:

1. Align the memory as required.

2. Form the command line and execute the Unix linker. Only certain flags in the com-
mand line will be system-dependent.

3. Read in the object file. This is heavily system-dependent.

4. Make the read-in text executable. On most systems this is a do-nothing step. On
some platforms (such as HP) it is necessary to flush the instruction cache and that
would be done at this point.

5. Invoke constructors in the newly read in code. Constructors are found by use of the
nm program; the output is parsed to search for constructor symbols, whose form
depends on the compiler used.

6. If this is a permanent link, copy the linker output to file.pt_symtable; other-
wise delete it.

8.4.4 dlopen() Style Dynamic Linking

Here’s how we link in an object usingdlopen() style linking.

1. Generate a list of files to be linked in. If we have not yet done a permanent link,
then the list of files to be linked in will consist of only the files in this link or mul-
tilink command. If the link is a permanent link, then we save the object name. For
each successive link, we check the name of the object to be linked in against the
list of objects permanently linked for duplicate file names. For each link after a
permanent link, we include the names of all the unique permanently linked in
objects in the generation of a temporary shared object file.

The Almagest 8-5

Ptolemy Last updated: 10/9/97

2. Generate a shared object.so file from all the objects to be linked in. The.so file
is created in /tmp.

3. Do adlopen() on the shared object.

4. Most architectures usenm to search for constructors, which are then invoked. Cur-
rently, sol2.cfront does not need to search for, or invoke constructors. gcc-2.5.8 has
patches that allow similar functionality, but apparently these patches are not in
gcc-2.6.0. Shared libraries in the SVR4 implementation contain optional__init
and__fini functions, called when the library is first connected to (at startup or
dlopen()) and when the library is disconnected from (atdlclose() or program
exit), respectively. Some C++ implementations can arrange for these__init and
__fini functions to contain calls to all the global constructors or destructors. On
platforms where this happens, such as sol2.cfront, there is no need for the Linker
class to explicitly call the constructors, as this will happen automatically.

8-6 The incremental linker

U. C. Berkeley Department of EECS

