
The Almagest 9-1

Ptolemy Last updated: 10/9/97

Chapter 9. Parameters and States

Authors: Joseph T. Buck

Other Contributors: Neil Smyth

A State is a data structure associated with a block, used to remember data values from one in-
vocation to the next. For example, the gain of an automatic gain controller is a state. A state
need not be dynamic; for instance, the gain of fixed amplifier is a state. A parameter is the ini-
tial value of a state. A State actually has two values: the initial value, which is always a char-
acter string, and a current value, whose type is different for each derived class of State: integer
for IntState, an array of real values for FloatArrayState, etc. In addition, states have attributes,
which represent logical properties the state either has or does not have.

9.1 Class State
Class State is derived from class NamedObj. The State base class is an abstract class; you can-
not create a plain State. The base class contains the initial value, which is always aconst
char* ; the derived classes are expected to provide current values of appropriate type. The con-
structor for class State sets the initial value to a null pointer, and sets the state’s attributes to a
value determined by the constant AB_DEFAULT, which is defined in “State.h” to be the bit-
wise or of AB_CONST and AB_SETTABLE. The destructor does nothing extra.

9.1.1 State public members
State& setState(const char* stateName , Block* parent ,
 const char* initValue , const char* desc = NULL);

This function sets the name, parent, initial value, and optionally the descriptor for a state.
The character strings representing the initial value and descriptor must outlive the State.

State& setState(const char* stateName , Block* parent ,
 const char* initValue , const char* desc ,
 Attribute attr);

This function is the same as the othersetState, but it also sets attributes for the state.
The Attribute object represents a set of attribute bits to turn on or off.

void setInitValue(const char* valueString);
This function sets the initial value tovalueString. This string must outlive the State.

const char* initValue () const;

Return the initial value.

virtual const char* type() const = 0;

Return the type name (for use in user interfaces, for example). When states are created
dynamically (by theKnownState or InterpGalaxy class), it is this name that is used to
specify the type.

9-2 Parameters and States

U. C. Berkeley Department of EECS

virtual int size() const;

Return the size (number of distinct values) in the state. The default implementation returns
1. Array state types will return the number of elements.

virtual int isArray() const;

Return TRUE if this state is an array, false otherwise. The default implementation returns
false.

virtual void initialize() = 0;

Initialize the state. Theinitialize function for a state is responsible for parsing the ini-
tial value string and setting the current value appropriately; errors are signaled using the
Error::abortRun mechanism.

virtual StringList currentValue() const = 0;

Return a string representation of the current value.

void setCurrentValue(const char* newval);
Modify the current value, in a type-independent way. Notice that this function is not vir-
tual. It exploits the semantics ofinitialize to set the current value using other func-
tions; the initial value is not modified (it is saved and restored).

virtual State* clone() const = 0;

Derived state classes override this method to create an identical object to the one the
method is called on.

StringList print(int verbose) const;
Output all info. This is NOT redefined for each type of state.

bitWord attributes() const;

Return my attribute bits.

bitWord setAttributes(const Attribute& attr);
bitWord clearAttributes(const Attribute& attr);

Set or clear attributes.

const State* lookup(const char* name, Block* b);

This method searches for a state namedname in Blockb or one of its ancestors, and either
returns it or a null pointer if not found.

int isA(const char*) const;

This function returns true when given the name of the class or the name of any baseclass

9.1.2 The State parser and protected members

Most of the protected interface in the State class consists of a simple recursive-descent parser
for parsing integer and floating expressions that appear in the initial value string. The ParseTo-
ken class represents tokens for this parser. It contains a token type (an integer code) and a token
value, which is a union that represents either a character value, a string value, an integer value,

The Almagest 9-3

Ptolemy Last updated: 10/9/97

a double value, a Complex value, or a State value (for use when the initializer references an-
other state). Token types are equal to the ASCII character value for single-character tokens.
Other possible token values are:

 • T_EOF for end of file,

 • T_ERROR for error,

 • T_Float for a floating value,

 • T_Int for an integer value,

 • T_ID for a reference to a state, and

 • T_STRING for a string value.

For most of these, the token value holds the appropriate value. Most derived State classes use
this parser to provide uniformity of syntax and error reporting; however, it is not a requirement
to use it. DerivedState classes are expected to associate aTokenizer object with their initial
value string. The functions provided here can then be used to parse expressions appearing in
that string.

ParseToken getParseToken(Tokenizer& tok , int stateType = T_Floa t);
This function obtains the next token from the input stream associated with the Tokenizer.
If there is a pushback token, that token is returned instead. If it receives a ’<’ token, then it
assumes that the next string delimited by white space is a file name. It substitutes refer-
ences to other parameters in the filename and then uses the Tokenizer’s include file capa-
bility to insert the contents of the file into the input stream. If it receives a ’!’ token, then it
assumes that that the next string delimited by white space is a command to be evaluated by
an external interpreter. It substitutes references to other parameters in the command, sends
the resulting string to the interpreter defined by interp member described above for evalua-
tion, and inserts the result into the input stream. The information both read from an exter-
nal file and returned from an external interpreter is also parsed by this function. Therefore,
the external interpreter can perform both numeric and symbolic computations. When the
parser hits the end of the input stream, it returns T_EOF.

The characters in the set[]+*-/()^ are considered to be special and the lexical value is
equal to the character value. Integer and floating values are recognized and evaluated to
produce either T_Int or T_Float tokens. However, the decision is based on the value of
stateType; if it is T_Float, all numeric values are returned as T_Float; if it is T_Int, all
numeric values are returned as T_Int. Names that take the form of a C or C++ identifier are
assumed to be names of states defined at a higher level (states belonging to the parent gal-
axy or some ancestor galaxy). They are searched for usinglookup; if not found, an error
is reported usingparseError and an error token is returned. If a State is found, a token
of type T_ID is returned if it is an array state or COMPLEX; otherwise the state’s current
value is substituted and reparsed as a token. This means, for example, that a name of an
IntState will be replaced with a T_Int token with the correct value.

void parseError (const char* part1 , const char* part2 = "");

This method produces an appropriately formatted error message with the name of the state
and the arguments and callsError::abortRun.

9-4 Parameters and States

U. C. Berkeley Department of EECS

static ParseToken pushback();
static void setPushback(const ParseToken&);
static void clearPushback();

These functions manipulate the pushback token, for use in parsing. The first function
returns the current pushback token, the second sets it to be a copy of the argument, the
third clears it. There is only one such token, so the state parser is not reentrant.

ParseToken evalIntExpression(Tokenizer& lexer);
ParseToken evalIntTerm(Tokenizer& lexer);
ParseToken evalIntFactor(Tokenizer& lexer);
ParseToken evalIntAtom(Tokenizer& lexer);

These four functions implement a simple recursive-descent expression parser. An expres-
sion is either a term or a series of terms with intervening ’+’ or ’-’ signs. A term is either a
factor or a series of factors with interventing ’*’ or ’/’ signs. A factor is either an atom or a
series of atoms with intervening ’^’ signs for exponentiation. (Note, C fans! ^ means expo-
nentiation, not exclusive-or!). An atom is any number of optional unary minus signs, fol-
lowed either by a parenthesized expression or a T_Int token. If any of these methods reads
too far, the pushback token is used. AllgetParseToken calls usestateType T_Int, so
any floating values in the expression are truncated to integer. The token types returned
from each of these methods will be one of T_Int, T_EOF, or T_ERROR.

ParseToken evalFloatExpression(Tokenizer& lexer);
ParseToken evalFloatTerm(Tokenizer& lexer);
ParseToken evalFloatFactor(Tokenizer& lexer);
ParseToken evalFloatAtom(Tokenizer& lexer);

These functions have the identical structure as the corresponding Int functions. The token
types returned from each of these methods will be one of T_Float, T_EOF, or T_ERROR.

InvokeInterp interp;

An external interpreter for evaluating commands in a parameter definition preceded by the
! character and surrounded in quotes. By default, no interpreter is defined. If the interpreter
were defined as the Tcl interpreter, then! "expr abs(cos(1.0))" would compute 0.540302.
Other parameters can be referenced as usual by using curly braces, e.g.! "expr
abs(cos({gain}))".

StringList parseFileName(const char*);

This method parses filenames that have been inherited from state values enclosed in curly
braces.

StringList parseNestedExpression(const char* expression);

This method parses nested sub-expressions appearing in theexpression , e.g. {{{Filter-
TapFile}/{File}}}, that might be passed off to another interpreter for evaluation, e.g. Tcl.

Int mergeFileContents(Tokenizer& lexer , char* token);

This method treats the next token on thelexer as a filename.

Int sendToInterpreter(Tokenizer& lexer , char* token);

This method sends the next token on thelexer to be evaluated by an external interpreter.

The Almagest 9-5

Ptolemy Last updated: 10/9/97

Int getParameterName(Tokenizer& lexer , char* token);

This method looks for parameters of the form{name}.

9.2 Types of states

9.2.1 Class IntState and class FloatState

Class IntState , derived fromState , has an integer current value. Itsinitialize() func-
tion uses theevalIntExpression function to read an integer expression from the initial val-
ue string. If successful, it attempts to read another token from the string; if there is another
token, it reports the error “extra text after valid expression”. An assignment operator is provid-
ed that accepts an integer value and loads it into the current value. A cast to integer is also de-
fined for accessing the current value. The virtual functioncurrentValue is overloaded to
return a printed version of the current value. In addition to thesetInitValue from class
State, a second form is provided that takes an integer argument. Standard overrides forisA,
className, andclone are provided. Class FloatState is almost identical to class IntState
except that its data field is a double precision value; where IntState functions have an argument
or return value ofint, FloatState has a corresponding argument or return value ofdouble.
Both are generated from the same pseudo-template files. Thetype() function for IntState re-
turns"INT". For FloatState,"FLOAT" is returned. For both implementations, a prototype ob-
ject is added to the KnownState list.

9.2.2 Class ComplexState

ComplexState is much like FloatState and IntState, except in the expressions it accepts for ini-
tial values. Its data member is Complex and it accordingly defines an assignment operator that
takes a complex value and a conversion operator that returns one. The initial value string for a
ComplexState takes one of three forms: it may be the name of a galaxy ComplexState, a float-
ing expression (of the form accepted byState::evalFloatExpression), or a string of
the form(floatexp1 , floatexp2) where bothfloatexp1 andfloatexp2 are float-
ing expressions. For the second form, the imaginary part will always be zero. For the third
form, the first expression gives the real part and the second gives the imaginary part.

9.2.3 Class StringState

A StringState’s current value is a string (more correctly, of typeconst char*). The current
value is created by theinitialize() function by scanning the initial value string. This string
is copied literally, except that curly braces are special. If a pair of curly braces surrounds the
name of a galaxy state, the printed representation of that state’s current value (returned by the
currentValue function) is substituted. To get a literal curly brace in the current value, prefix
it with a backslash. Class StringState defines assignment operators so that different string val-
ues can be copied to the current value; the value is copied withsaveString and deleted by
the destructor.

9.2.4 Numeric array states

Classes IntArrayState and FloatArrayState are produced from the same pseudo-template. Class
ComplexArrayState has a very similar design. All returnTRUE to isArray, provide an array
element selection operator (operator[](int)), and an operator that converts the state into

9-6 Parameters and States

U. C. Berkeley Department of EECS

a pointer to the first element of its data (much like arrays in C). The expression parser for Floa-
tArrayState accepts a series of “subarray expressions”, which are concatenated together to get
the current value wheninitialize() is called. Subarray expressions may specify a single
element, some number of copies of a single element, or a galaxy array state of the same type
(another FloatArrayState). A single element specifier may either be a floating point value, a
scalar (integer or floating) galaxy state name, or a general floating expression enclosed in pa-
rentheses. A number of copies of this single element can be specified by appending an integer
expression enclosed in square brackets. The expression parsers for IntArrayState and Com-
plexArrayState differ only that where FloatArrayState wants a floating expression, IntArray-
State wants an integer expression and ComplexArrayState wants a complex expression (an
expression suitable for initializing a ComplexState).

9.2.5 Class StringArrayState

As its name suggests, the current value for a StringArrayState is an array of strings. White
space in the initial value string separates “words”, and Each word is assigned byinitial-
ize() into a separate array element. Quotes can be use to permit “words” to have white space.
Current values of galaxy states can be converted into single elements of the StringArrayState
value by surrounding their names with curly braces in the initial value. Galaxy StringArray-
State names will be translated into a series of values. There is currently no provision for mod-
ifying the current value of a StringArrayState other than calling ofinitialize to parse the
current value string.

