Presented at the Twenty-Ninth Annual Asilomar Conference on Signals, Systems, and Computers - October 1995

A Hierarchical Multiprocessor Scheduling System for DSP Applications

José Luis Pinh Shuvra S. Bhattacharyyand Edward A. Leke
{pino,shuvra,eal}@EECS.Berkeley.EDU

TDept. of Electrical Engineering and Computer Sciences, University of California, Berkeley
*sSemiconductor Research Laboratory, Hitachi America, Ltd.

Abstract first-out (FIFO) buffer on each arc returns to its initial state
after one schedule period. For each ngde in a properly

This paper discusses a hierarchical scheduling constructed SDF graph, there exists a positive integer
framework which reduces the complexity of scheduling q(x) such that nodec must be invoked at leqék)

synchronous dataflow (S.DF) graphs qnto mult|ple times in a each period of a periodic schedule [2]. For the
processors. The core of this framework is a clustering o
xample in figure 1q(A) = 3 and(B) = 2

algorithm that decreases the number of nodes before®
expanding the SDF graph into a precedence directed Given an SDF specification, we can construct a periodic
acyclic graph (DAG). The internals of the clusters are then Schedule at compile-time that can be iterated an indefinite
scheduled with uniprocessor SDF schedulers which canfumber of times without requiring unbounded memory.
optimize for memory usage. The clustering is done in suchouch a schedule can be constructed by invoking each actor
a manner as to leave ample parallelism exposed for thex exactly q(x) times, and ensuring that the data
multiprocessor scheduler. We have developed the SDprecedences defined by the SDF graph are respected. For
composition theorem for testing if a clustering step is valid. figure 1, one such scheduleAABAB

The advantages of this framework are demonstrated with 14 schedule SDF graphs onto multiple processors, a

several practical, real-time examples. precedence DAG(or simply “DAG”) is constructed from
the original SDF graph. For each noxle in the original
SDF graph, there arg(x) corresponding nodes in the

Dataflow is a natural representation for signal precedgnce graph. Unfortunately, this expansion due to the
processing algorithms. One of its strengths is that itr€petition count of each SDF node can lead to an
exposes parallelism by expressing only the actual datgXPonential growth of nodes in the DAG [3]. Such growth
dependencies that exist in an algorithm. Applications arelS undesirable, especially considering that known optimal
specified by a dataflow graph in which the nodes r(_:‘presenfnuItiprocessor scheduling algorithms under precedence
computations, and data tokens flow between them a|ongconstraints have complexity that is exponential in the
the arcs of the graph. Ptolemy [1] is a framework that number of nodes in the DAG [4]. Most uniprocessor SDF
supports dataflow programming (as well as other schedulers, on the other hand, do not require a DAG to be
computational models, such as discrete event). generated. _ _

There are several forms of dataflow defined in Ptolemy. 10 I|_m|t the explosion of nodes when_translatlng an SDF
In synchronous dataflow (SDF) [2], the number of tokens 9raph into a DAG graph, we apptjusteringof connected
produced or consumed in one firing of a node is constantSubgraphs into larger graicompositenodes. The
This property makes it possible to determine executionCOmMposite nodes will then be scheduled with one of the
order and memory requirements at compile time. Thusavailable uniprocessor schedulers. We cluster the nodes in
these systems do not have the overhead of run-time 5 5
scheduling, and have very predictable run-time behavior.

Figure 1 shows a simple SDF graph. In this graph, node
A produces two tokens and noBeonsumes three tokens
for each firing. In geriodic SDF schedule, the first-in/

1 Motivation

Figure 1: A simple SDF graph.

a manner that simplifies the DAG without hiding much
exploitable parallelism.

It is important to note that each resultant cluster is
mapped onto a single processor. This observation motivates
the modification of execution time minimizing clustering
heuristics [5, 6, 7, 8] for use on the SDF graph. With these
multiprocessor scheduling clustering heuristics, the
resultant clusters are to be mapped onto a single processor.
By clustering the SDF graph we also have the opportunity

SDF Graph

Precedence Graph

to use specialized uniprocessor SDF schedulers, which carf 9U€ 2: Example in violation of condition 1. A
optimize for such parameters as code size, buffer memoryCycle is introduced in both the SDF and

and context switch overhead [9, 10, 11].

The structure of the paper is as follows. First, we
introduce theéSDF composition theoremvhich allows us
to test when it is legal to cluster two adjacent nodes the
SDF graph. Next, we discuss the clustering heuristics that
are used in the framework. Finally, we detail the °
hierarchical scheduling algorithm and present some
performance measures on practical DSP examples that
have been scheduled using the framework.

2 SDF composition

Unfortunately, not all clusterings of adjacent nodes in an
SDF graph are possible. In fact, some clusterings will altere
the SDF graph semantics by introducdepdlockinto the
graph. An SDF graph does not deadlock if and only if it has
anacyclic precedence graph. Likewise, an SDF graph that
does deadlock must have at least one cycle in the
precedence graph. Therefore, we must not introduce cycles
into the precedence graph by the clusterings we do. SDF
precedence graph expansion is detailed in [7].

We have developed a theorem, called SiRF

precedence graphs.

Ky : The number of samples consumed on the SDF arc
a, per sink invocation.

Py : The number of samples produced on SDFagrc
per source invocation.

9, : The number of initial samples (“delay”) on the SDF
arca.

src(a) : The node that produces the tokens oroarc

snk(a) : The node that consumes the tokens produced
on arca.

If x and y are adjacent nodes in an SDF graph, then:

_ a9
Q%Y = SeaT a0, amn)

as the number of times that noxe

We can viev(x, ¥)

is invoked in a sin-
gle invocation of the clustdrx, y}

Figures 2, 3 and 4 illustrate SDF graph clusterings that

violate the conditions of the SDF composition theorem and

composition theoremwhich establishes four clustering therepy introduce deadlock. For the SDF graphs in these

criteria that together provide a sufficient condition that a
given clustering operation involving two adjacent nodes

does not introduce deadlock. The first condition preventsexception thak, ,, = 3

figures,p, = 1 andk, =1

for all arcet , with the

in figure 4. In each of these

the introduction of new cycles into both the SDF graph andfigures, the cycle that is introduced into the precedence
the precedence graph. The last three conditions prevent thgraph is depicted with wider arcs.

introduction of cycles into the precedence graph. These

criteria are significantly more general than those that havep o The SDF composition theorem

been used in previous work on SDF clustering [9, 12], and
can be tested efficiently. Due to lack of space, we refer the
to [3] for the proof of the SDF composition theorem.

Suppose thdb is a connected SDF graph, afd y) is

an ordered pair of distinct, adjacent node&iThen the

2.1 Notation

graph that results from clusteriqg, v}

into a single

node, does not introduce cycles in the precedence graph if
We use the following notational conventions when the following four conditions all hold.

working with SDF graphs. 1.

* G = (V, E): Adirected graphG, made up of the set of
nodesV, and set of arck.

Cycle introduction condition: There is nsimple path
from x toy that contains more than one arc. A simple
path is one which does not visit any node along the path
more than once. (Figure 2 depicts a clustering that
violates this condition.)

Precedence Graph

SDF Graph

Figure 3: Example in violation of condition 2. A
cycle is introduced in the precedence graph.

this condition.)
a. atleast one arc fromtoy has zero delay

b. for some positive integét q(x) = kg(y) or

q(y) = kq(x).

violates this condition.)
O O snk(a') = X o
o o and 0

Hidden delay condition If x andy are in the same
strongly connected component, then tendb must
hold true. (Figure 3 depicts a clustering that violates

First precedence shift condition If x is in a nontrivial

strongly connected compone@t , then either b
must hold true. (Figure 4 depicts a clustering that

SDF Graph

Precedence Graph

Figure 4: Example in violation of condition 3. A
cycle is introduced in the precedence graph.

pa = le(X, wKu andéa = sz(Xa Y)Ka
0 o src(a') =y oo
o O o0
s and s
b. foreacha O m'|0 snk(a')d C OO, there
o O o0
0 0O and a0
0 Ssnkay 0 x ¢
exists integerk, >0 ank, >0 such that
Ke = KiQ(X Y)Ppg andd, = kQ(X)P, -
Note that the conditions given in the SDF composition
theorem may be satisfied for the ordered ggirx) , even

g] _ .
a. foreacha O Ep('lD src(a’)d C D% ,there exists though they are not satisfied féx, y) . Thus, in general,
o 0O

0 and EB

O
0 Ssre(a) 0% -
integersk; >0 andk,=0 such that
Py = KiQ(X YKy andd, = k,Q(X, YK, -
O E src(a') = X HD
O O
sl and s
b. foreacha O m’'|0 snk(a')d C 07, there
O
o o and 00
0 Bsnkay 0 x yHo
exists integer&, >0 ank,>0 such that
Ko(= le(X! y)pa andao{ = k2Q(X5 y)pq .
4. Second precedence shift conditiarif y is in a

nontrivial strongly connected componéht |, then either

aor b must hold true.
0o O snk(a') = vy oo
g du and uo

o 0O 0 .
a. foreacha O '|0 src(a') 0 C OO, there exists
o o

0 and E%

O
O |:Erc(cn(') O{x y}DD
integersk; >0 andk,=0 such that

both orderings should be tried before declaring a clustering
operation valid.

3 Clustering Techniques

In this section we review our clustering techniques for
SDF graphs.

The first clustering technique is by far the simplest: we
allow the user to specify clusters that will be mapped onto
a single processor. This clustering technique empowers the
user with fundamental scheduling decisions. We have
implemented this technique in Ptolemy, where it has
enabled the development of multiprocessor applications
that have previously been impossible to synthesize using
other SDF multiprocessing techniques.

The next clustering technique takes into account
resource constraints. When mapping SDF graphs onto
heterogeneous processors, a group of connected nodes may
be required to be mapped onto a particular processor. Here,
we are free to cluster these SDF subgraphs as long as we
do not introduce artificial deadlock.

The third clustering technique groups the nodes in a
well-ordered uniform repetition count (URC$DF
subgraph where the nodes do not have internal state. An
acyclic graph is well ordered if it has only one topological
sort, and a URC SDF subgraph is a subgraph in which the

Using the SDF composition theorem, test the resulting
cluster candidate to make sure it does not introduce
deadlock.

If the cluster candidate does not introduce deadlock,
then perform the corresponding clustering operation,
and updatey accordingly.

Repeat 1,2 until the precedence graph is limited to a
certain size or there are no more legal candidate
clusters. A stopping condition that limits the
precedence graph to a tractable size is:

qu(vi) <Kmax(V/|, P). In this equatioiK is a user-
vI

g -values of all nodes are identical. This clustering does2.
not hide any of the available parallelism that will be
exposed in the final DAG.

Finally, the last clustering technique is based on an3-
adaptation of Sarkar’s multiprocessor DAG scheduling
heuristic to SDF graphs [6]. This is outlined in section 4.2
below. 4,

4 Hierarchical Scheduling Algorithm

In this section, we detail the hierarchical scheduling
algorithm. The algorithm is made up into three stages. The
first stage ignitialization, where some simple clustering
heuristics are used which will not hide exploitable
parallelism. The next stage is timain loop where most of
the clustering occurs. Finally in tiverap upstage, the
individual schedulers are invoked.

settable constanfy| is the number of nodes in the

original SDF graph ang is the number of processors
the target architecture.

4.3 Wrap up

4.1 Initialization

1. Schedule SDF uniprocessor clusters with the loop
scheduler of reference [9].

2. Schedule user specified clusters with the given
scheduler.

3. Schedule clustered system with the user-specified
multiprocessor scheduler.

1. Cluster nodes that are on SDF well-ordered URC
subgraphs without internal state [13].

2. Cluster nodes that share resource constraints which
satisfy the SDF composition theorem.

3. Computeq(x) for each node

4. Construct thexcyclic SDF graphwhich involves 5
removing each ara@, whered, = K, x q(snk(a)) and
then cluster the strongly connected components [3].

5. Compute the total IPC cost for each arc onatlic
SDF graph.

Performance

The hierarchical scheduling framework for user
specified clustering has been implemented in Ptolemy [13].
Four signal processing applications have been synthesized
for a heterogeneous multiprocessor consisting of a RISC
and a DSP processor. A table comparing the results of user
specified hierarchical scheduling versus full DAG
expansion multiprocessor scheduling is given in table 1.

In the four examples the scheduling time improved one
to two orders of magnitude, while the makespan was not
significantly increased. Through use of uniprocessor

4.2 Main Loop

1. Apply one step of Sarkar’'s multiprocessor clustering
heuristic on theacyclic SDF graph.

Scheduling P1: DSP P2: Sparc
SDF Time in CPU Code Size | Code Size
System Graph Size| DAG Size Seconds Makespan | Assembly C
FM-Synthesis 44 147806 0.47/4.35 | 28832/28832| 408/408 | 34K /420K
128 pt. spectrum 57 x smaller | 9.25 x faster| no difference same 12 x smaller
31 9/2628 0.37/14.71| 41566 /41368| 424 / 32045 14K /56K
bpsk (530 bps) 292 x smaller| 40 x faster | < 1% differenceg 75 x smaller| 4 x smaller
4-QAM (320 bps) 59 15/9267 | 0.91/80.87|150123 /1501281421 /87533 38K /63K
eye diagram 618 x smaller| 87 x faster | no difference | 62 x smaller| 1.7 x smalle
52 10/ 3490 0.69/20.1 | 40037 /39707| 848 /29720, 35K /56K
4-QAM (640 bps) 349 x smaller| 29 x faster | < 1% differencg 35 x smaller| 1.6 x smaller

Table 1. Performance of the hierarchical scheduling framework for user-specified clustering.

schedulers on the final clusters, we are able to realize a
significant improvement in memory usage. This
improvement in memory is particularly evident in the [1]
acoustic 320 bps quadrature amplitude modulation (4-
QAM) acoustical modem, where the multiprocessor
schedule generated from the fully expanded DAG has one
function call (or in-lined procedure) for each of its 9267
nodes as compared to only 59 function calls for the[z]
hierarchical schedule. In the case of all three modem
examples, where the DSP card only has access to 16K o[g]
memory, this framework enabled the synthesis of
applications previously not possible using full DAG
expansion multiprocessor scheduling techniques.

6 Conclusions
[4]

We have developed a hierarchical scheduling framework
for SDF graphs being mapped onto multiple processors.
Using user specified clustering, this framework has [5]
dramatically improved the scheduling time and reduced the
memory requirements needed in the generated system. In
some cases, the hierarchical scheduling framework enabled
the synthesis of applications previously impossible. [6]

To test whether a given clustering step is valid, we have
developed the SDF composition theorem. This theorem ig7]
significantly more general than those that have been
developed in previous work and can be tested efficiently.

We plan to implement more automated clustering
heuristics for use on the SDF graph before the SDF to DA
translation. As with the adaptation of Sarkar’'s clustering
heuristic, these will be inspired by the DAG clustering 9]
heuristics found in other multiprocessor schedulers. The
objective is to hide only the parallelism that would not be
exploited in final multiprocessor scheduling phase, and in
doing so, simplifying the DAG.

[10]
Acknowledgments

This research is part of the Ptolemy project, which is
supported by the Advanced Research Projects Agency and
the U.S. Air Force (under the RASSP program, contract 11]
F33615-93-C-1317), Semiconductor Research Corporatior{
(project 94-DC-008), National Science Foundation (MIP-
9201605), Office of Naval Technology (via Naval Research
Laboratories), the State of California MICRO program, [12]
and the following companies: Bell Northern Research,
Cadence, Dolby, Hitachi, Mentor Graphics, Mitsubishi,
NEC, Pacific Bell, Philips, Rockwell, Sony, and Synopsys. [13]

José Luis Pino is also supported by AT&T Bell
Laboratories as part of the Cooperative Research
Fellowship Program.

References

J. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt,
“Ptolemy: A framework for simulating and prototyping
heterogeneous systembjternational Journal of Computer
Simulation, special issue on Simulation Software
Developmentvol. 4, 1994.
http://ptolemy.eecs.berkeley.edu/papers/JEurSim

E.A. Lee and D.G. Messerschmitt, “Synchronous data flow,”
Proceedings of the IEERoIl. 75, no. 9, 1987.

J. L. Pino, S. S. Bhattacharyya, and E. A. Lee,
hierarchical multiprocessor scheduling framework for
synchronous dataflow graph&JCB/ERL M95/36,
Electronics Research Laboratory, University of California at
Berkeley, May 30, 1995. http://ptolemy.eecs.berkeley.edu/
papers/erl-95-36

A. Gerasoulis and T. Yang, “A comparison of clustering
heuristics for scheduling directed acyclic graphs on
multiprocessors,'Journal of Parallel and Distributed
Computing vol. 16, no. 4, 1992.

S.J. Kim and J.C. Browne, “A general approach to mapping
of parallel computations upon multiprocessor architectures,”
International Conference on Parallel Processingl. 3,
University Park, PA, USA, Pennsylvania State Univ, 1988.
V. Sarkar,Partitioning and scheduling parallel programs
for multiprocessorsCambridge, Mass.: MIT Press, 1989.

G. C. Sih,Multiprocessor scheduling to account for
interprocessor communicatip®h.D. Dissertation, UCB/
ERL M91/29, Electronics Research Laboratory, University
of California at Berkeley, 1991.

H. Printz, Automatic mapping of large signal processing
systems to a parallel machireh.D. Dissertation CMU-CS-
91-101, Carnegie Mellon, 1991.

S. S. Bhattacharyya, J. T. Buck, S. Ha, and E. A. Lee,
“Generating compact code from dataflow specifications of
multirate signal processing algorithmeEE Transactions
on Circuits and Systems- I: Fundamental Theory and
Applications March, 1995.

S. S.Bhattacharyya, P. K. Murthy, and E. A. Lelyo
complementary heuristics for translating graphical DSP
programs into minimum memory implementatipns
Memorandum UCB/ERL M95/3, Electronics Research
Laboratory, University of California at Berkeley, January,
1995.

S. Ritz, M. Pankert, and H. Meyr, “Optimum vectorization
of scalable synchronous dataflow grapi&fceedings of
the International Conference on Application-Specific Array
ProcessorsOctober, 1993.

S.S. Bhattacharyya&ompiling dataflow programs for
digital signal processingPh.D. Dissertation UCB/ERL
M94/52, University of California at Berkeley, 1994.

J.L. Pino and E.A. Lee, “Hierarchical static scheduling of
dataflow graphs onto multiple processorsEEE
International Conference on Acoustics, Speech, and Signal
ProcessingDetroit, Michigan, IEEE, 1995.
http://ptolemy.eecs.berkeley.edu/papers/hierStaticSched

	Abstract
	1 Motivation
	2 SDF composition
	2.1 Notation
	2.2 The SDF composition theorem

	3 Clustering Techniques
	4 Hierarchical Scheduling Algorithm
	4.1 Initialization
	4.2 Main Loop
	4.3 Wrap up

	5 Performance
	6 Conclusions
	Acknowledgments
	References

