
te
rly
er

he

dic
ite
y.
ctor
a
 For

, a

al

he
 the
an
th
al
ce
e
F
 be

F

he
s in

Presented at the Twenty-Ninth Annual Asilomar Conference on Signals, Systems, and Computers - October 1995
A Hierarchical Multiprocessor Scheduling System for DSP Applications

José Luis Pino†, Shuvra S. Bhattacharyya‡ and Edward A. Lee†

{pino,shuvra,eal}@EECS.Berkeley.EDU

†Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley
‡Semiconductor Research Laboratory, Hitachi America, Ltd.

Abstract

This paper discusses a hierarchical scheduling
framework which reduces the complexity of scheduling
synchronous dataflow (SDF) graphs onto multiple
processors. The core of this framework is a clustering
algorithm that decreases the number of nodes before
expanding the SDF graph into a precedence directed
acyclic graph (DAG). The internals of the clusters are then
scheduled with uniprocessor SDF schedulers which can
optimize for memory usage. The clustering is done in such
a manner as to leave ample parallelism exposed for the
multiprocessor scheduler. We have developed the SDF
composition theorem for testing if a clustering step is valid.
The advantages of this framework are demonstrated with
several practical, real-time examples.

1 Motivation

Dataflow is a natural representation for signal
processing algorithms. One of its strengths is that it
exposes parallelism by expressing only the actual data
dependencies that exist in an algorithm. Applications are
specified by a dataflow graph in which the nodes represent
computations, and data tokens flow between them along
the arcs of the graph. Ptolemy [1] is a framework that
supports dataflow programming (as well as other
computational models, such as discrete event).

There are several forms of dataflow defined in Ptolemy.
In synchronous dataflow (SDF) [2], the number of tokens
produced or consumed in one firing of a node is constant.
This property makes it possible to determine execution
order and memory requirements at compile time. Thus
these systems do not have the overhead of run-time
scheduling, and have very predictable run-time behavior.

Figure 1 shows a simple SDF graph. In this graph, node
A produces two tokens and nodeB consumes three tokens
for each firing. In aperiodic SDF schedule, the first-in/

first-out (FIFO) buffer on each arc returns to its initial sta
after one schedule period. For each node in a prope
constructed SDF graph, there exists a positive integ

 such that node must be invoked at least
times in a each period of a periodic schedule [2]. For t
example in figure 1, and .

Given an SDF specification, we can construct a perio
schedule at compile-time that can be iterated an indefin
number of times without requiring unbounded memor
Such a schedule can be constructed by invoking each a

 exactly t imes, and ensuring that the dat
precedences defined by the SDF graph are respected.
figure 1, one such schedule is .

To schedule SDF graphs onto multiple processors
precedence DAG(or simply “DAG”) is constructed from
the original SDF graph. For each node in the origin

SDF graph, there are corresponding nodes in t
precedence graph. Unfortunately, this expansion due to
repetit ion count of each SDF node can lead to
exponential growth of nodes in the DAG [3]. Such grow
is undesirable, especially considering that known optim
multiprocessor scheduling algorithms under preceden
constraints have complexity that is exponential in th
number of nodes in the DAG [4]. Most uniprocessor SD
schedulers, on the other hand, do not require a DAG to
generated.

To limit the explosion of nodes when translating an SD
graph into a DAG graph, we applyclustering of connected
subgraphs into larger graincomposite nodes. The
composite nodes will then be scheduled with one of t
available uniprocessor schedulers. We cluster the node

x

x()q x x()q

q A() 3= q B() 2=

2 3
BA

Figure 1: A simple SDF graph.

x q x()

AABAB

x

x()q

arc

F

ed

n:

in-

at
nd
se

e

ce

s

e
h if

e
th
a manner that simplifies the DAG without hiding much
exploitable parallelism.

It is important to note that each resultant cluster is
mapped onto a single processor. This observation motivates
the modification of execution time minimizing clustering
heuristics [5, 6, 7, 8] for use on the SDF graph. With these
multiprocessor scheduling clustering heuristics, the
resultant clusters are to be mapped onto a single processor.
By clustering the SDF graph we also have the opportunity
to use specialized uniprocessor SDF schedulers, which can
optimize for such parameters as code size, buffer memory,
and context switch overhead [9, 10, 11].

The structure of the paper is as follows. First, we
introduce theSDF composition theorem, which allows us
to test when it is legal to cluster two adjacent nodes the
SDF graph. Next, we discuss the clustering heuristics that
are used in the framework. Finally, we detai l the
hierarchical scheduling algorithm and present some
performance measures on practical DSP examples that
have been scheduled using the framework.

2 SDF composition

Unfortunately, not all clusterings of adjacent nodes in an
SDF graph are possible. In fact, some clusterings will alter
the SDF graph semantics by introducingdeadlock into the
graph. An SDF graph does not deadlock if and only if it has
anacyclic precedence graph. Likewise, an SDF graph that
does deadlock must have at least one cycle in the
precedence graph. Therefore, we must not introduce cycles
into the precedence graph by the clusterings we do. SDF
precedence graph expansion is detailed in [7].

We have developed a theorem, cal led theSDF
composition theorem, which establishes four clustering
criteria that together provide a sufficient condition that a
given clustering operation involving two adjacent nodes
does not introduce deadlock. The first condition prevents
the introduction of new cycles into both the SDF graph and
the precedence graph. The last three conditions prevent the
introduction of cycles into the precedence graph. These
criteria are significantly more general than those that have
been used in previous work on SDF clustering [9, 12], and
can be tested efficiently. Due to lack of space, we refer the
to [3] for the proof of the SDF composition theorem.

2.1 Notation

We use the following notational conventions when
working with SDF graphs.
• : A directed graph,G, made up of the set of

nodesV, and set of arcsE.

• : The number of samples consumed on the SDF

α, per sink invocation.
• : The number of samples produced on SDF arcα,

per source invocation.
• : The number of initial samples (“delay”) on the SD

arcα.
• : The node that produces the tokens on arcα.
• : The node that consumes the tokens produc

on arcα.
• If and are adjacent nodes in an SDF graph, the

. We can view

as the number of times that node is invoked in a s

gle invocation of the cluster .

Figures 2, 3 and 4 illustrate SDF graph clusterings th
violate the conditions of the SDF composition theorem a
thereby introduce deadlock. For the SDF graphs in the

figures, and for all arcs , with the

exception that in figure 4. In each of thes

figures, the cycle that is introduced into the preceden
graph is depicted with wider arcs.

2.2 The SDF composition theorem

Suppose thatG is a connected SDF graph, and i
an ordered pair of distinct, adjacent nodes inG. Then the
graph that results from clustering into a singl
node, does not introduce cycles in the precedence grap
the following four conditions all hold.
1. Cycle introduction condition: There is nosimple path

from to that contains more than one arc. A simpl
path is one which does not visit any node along the pa
more than once. (Figure 2 depicts a clustering that
violates this condition.)

G V E,()=

κα

ρα

δα

α()src

α()snk

x y

Q x y,() x()q
x()q y()q,{ }()gcd

--= Q x y,()

x

x y,{ }

ρα 1= κα 1= α

κ x y,() 3=

y

zx

Figure 2: Example in violation of condition 1. A
cycle is introduced in both the SDF and
precedence graphs.

y

zx

SDF Graph Precedence Graph

x y,()

x y,{ }

x y

n
en

al,
ing

or

e
to

 the
ve
as
ns
ing

nt
nto
 may
ere,
 we

 a

 An
al
the
2. Hidden delay condition: If and are in the same
strongly connected component, then botha andb must
hold true. (Figure 3 depicts a clustering that violates
this condition.)
a. at least one arc fromx to y has zero delay
b. for some positive integer , or

.

3. First precedence shift condition: If is in a nontrivial

strongly connected component , then eithera or b
must hold true. (Figure 4 depicts a clustering that
violates this condition.)

a. for each , there exists

integers and such that

 and .

b. for each , there

exists integers and such that

 and .

4. Second precedence shift condition: If is in a

nontrivial strongly connected component , then either
a or b must hold true.

a. for each , there exists

integers and such that

 and

b. for each , there

exists integers and such that

 and .

Note that the conditions given in the SDF compositio
theorem may be satisfied for the ordered pair , ev

though they are not satisfied for . Thus, in gener
both orderings should be tried before declaring a cluster
operation valid.

3 Clustering Techniques

In this section we review our clustering techniques f
SDF graphs.

The first clustering technique is by far the simplest: w
allow the user to specify clusters that will be mapped on
a single processor. This clustering technique empowers
user with fundamental scheduling decisions. We ha
implemented this technique in Ptolemy, where it h
enabled the development of multiprocessor applicatio
that have previously been impossible to synthesize us
other SDF multiprocessing techniques.

The next clustering technique takes into accou
resource constraints. When mapping SDF graphs o
heterogeneous processors, a group of connected nodes
be required to be mapped onto a particular processor. H
we are free to cluster these SDF subgraphs as long as
do not introduce artificial deadlock.

The third clustering technique groups the nodes in
well-ordered, uniform repetition count (URC)SDF
subgraph where the nodes do not have internal state.
acyclic graph is well ordered if it has only one topologic
sort, and a URC SDF subgraph is a subgraph in which

x y

k q x() kq y()=

q y() kq x()=

SDF Graph Precedence Graph

y

x z

y

x z

D

Figure 3: Example in violation of condition 2. A
cycle is introduced in the precedence graph.

x

C

α α′

α′()snk x=

and

α′()src C∈
and

α′()src x y,{ }∉ 
 
 
 
 
 
 

 
 
 
 
 
 
 

∈

k1 0> k2 0≥
ρα k1Q x y,()κα= δα k2Q x y,()κα=

α α′

α′()src x=

and

α′()snk C∈
and

α′()snk x y,{ }∉ 
 
 
 
 
 
 

 
 
 
 
 
 
 

∈

k1 0> k2 0≥
κα k1Q x y,()ρα= δα k2Q x y,()ρα=

y

C

α α′

α′()snk y=

and

α′()src C∈
and

α′()src x y,{ }∉ 
 
 
 
 
 
 

 
 
 
 
 
 
 

∈

k1 0> k2 0≥

ρα k1Q x y,()κα= δα k2Q x y,()κα=

α α′

α′()src y=

and

α′()snk C∈
and

α′()snk x y,{ }∉ 
 
 
 
 
 
 

 
 
 
 
 
 
 

∈

k1 0> k2 0≥
κα k1Q x y,()ρα= δα k2Q x y,()ρα=

y

x z

3

y1

x1 z1

x2

x3

z2

z3

SDF Graph Precedence Graph
D

Figure 4: Example in violation of condition 3. A
cycle is introduced in the precedence graph.

y x,()
x y,()

g

r
3].

ized
SC
ser

ne
ot

or
-values of all nodes are identical. This clustering does
not hide any of the available parallelism that will be
exposed in the final DAG.

Finally, the last clustering technique is based on an
adaptation of Sarkar’s multiprocessor DAG scheduling
heuristic to SDF graphs [6]. This is outlined in section 4.2
below.

4 Hierarchical Scheduling Algorithm

In this section, we detail the hierarchical scheduling
algorithm. The algorithm is made up into three stages. The
first stage isinitialization, where some simple clustering
heuristics are used which will not hide exploitable
parallelism. The next stage is themain loop, where most of
the clustering occurs. Finally in thewrap up stage, the
individual schedulers are invoked.

4.1 Initialization

1. Cluster nodes that are on SDF well-ordered URC
subgraphs without internal state [13].

2. Cluster nodes that share resource constraints which
satisfy the SDF composition theorem.

3. Compute for each node .
4. Construct theacyclic SDF graph, which involves

removing each arc,α, where and

then cluster the strongly connected components [3].
5. Compute the total IPC cost for each arc on theacyclic

SDF graph.

4.2 Main Loop

1. Apply one step of Sarkar’s multiprocessor clustering
heuristic on theacyclic SDF graph.

2. Using the SDF composition theorem, test the resultin
cluster candidate to make sure it does not introduce
deadlock.

3. If the cluster candidate does not introduce deadlock,
then perform the corresponding clustering operation,
and update accordingly.

4. Repeat 1,2 until the precedence graph is limited to a
certain size or there are no more legal candidate
clusters. A stopping condition that limits the
precedence graph to a tractable size is:

. In this equationK is a user-

settable constant, is the number of nodes in the
original SDF graph andP is the number of processors
the target architecture.

4.3 Wrap up

1. Schedule SDF uniprocessor clusters with the loop
scheduler of reference [9].

2. Schedule user specified clusters with the given
scheduler.

3. Schedule clustered system with the user-specified
multiprocessor scheduler.

5 Performance

The hierarchical scheduling framework for use
specified clustering has been implemented in Ptolemy [1
Four signal processing applications have been synthes
for a heterogeneous multiprocessor consisting of a RI
and a DSP processor. A table comparing the results of u
specified hierarchical scheduling versus full DAG
expansion multiprocessor scheduling is given in table 1.

In the four examples the scheduling time improved o
to two orders of magnitude, while the makespan was n
significantly increased. Through use of uniprocess

q

q x() x

δα κα q α()snk()×≥

q

q vi() Kmax V P,()<
vi V∈
∑

V

.

System
SDF

Graph Size DAG Size

Scheduling
Time in CPU

Seconds Makespan

P1: DSP
Code Size
Assembly

P2: Sparc
Code Size

C
FM-Synthesis

128 pt. spectrum
44 14 / 806

57 x smaller
0.47 / 4.35

9.25 x faster
28832 / 28832
no difference

408 / 408
same

34K / 420K
12 x smaller

bpsk (530 bps)
31 9 / 2628

292 x smaller
0.37 / 14.71
40 x faster

41566 / 41368
< 1% difference

424 / 32045
75 x smaller

14K / 56K
4 x smaller

4-QAM (320 bps)
eye diagram

59 15 / 9267
618 x smaller

0.91 / 80.87
87 x faster

150123 / 150123
no difference

1421 / 87533
62 x smaller

38K / 63K
1.7 x smaller

4-QAM (640 bps)
52 10 / 3490

349 x smaller
0.69 / 20.1
29 x faster

40037 / 39707
< 1% difference

848 / 29720
35 x smaller

35K / 56K
1.6 x smaller

Table 1: Performance of the hierarchical scheduling framework for user-specified clustering.

t,

e

,”

r

at
u/

g
n

ng
s,”

.

ty

g

e,
of

P
s
h
,

n

y

f

nal
schedulers on the final clusters, we are able to realize a
signi ficant improvement in memory usage. This
improvement in memory is particularly evident in the
acoustic 320 bps quadrature amplitude modulation (4-
QAM) acoustical modem, where the multiprocessor
schedule generated from the fully expanded DAG has one
function call (or in-lined procedure) for each of its 9267
nodes as compared to only 59 function calls for the
hierarchical schedule. In the case of all three modem
examples, where the DSP card only has access to 16K of
memory, this framework enabled the synthesis of
applications previously not possible using full DAG
expansion multiprocessor scheduling techniques.

6 Conclusions

We have developed a hierarchical scheduling framework
for SDF graphs being mapped onto multiple processors.
Using user specified clustering, this framework has
dramatically improved the scheduling time and reduced the
memory requirements needed in the generated system. In
some cases, the hierarchical scheduling framework enabled
the synthesis of applications previously impossible.

To test whether a given clustering step is valid, we have
developed the SDF composition theorem. This theorem is
significantly more general than those that have been
developed in previous work and can be tested efficiently.

We plan to implement more automated clustering
heuristics for use on the SDF graph before the SDF to DAG
translation. As with the adaptation of Sarkar’s clustering
heuristic, these will be inspired by the DAG clustering
heuristics found in other multiprocessor schedulers. The
objective is to hide only the parallelism that would not be
exploited in final multiprocessor scheduling phase, and in
doing so, simplifying the DAG.

Acknowledgments

This research is part of the Ptolemy project, which is
supported by the Advanced Research Projects Agency and
the U.S. Air Force (under the RASSP program, contract
F33615-93-C-1317), Semiconductor Research Corporation
(project 94-DC-008), National Science Foundation (MIP-
9201605), Office of Naval Technology (via Naval Research
Laboratories), the State of California MICRO program,
and the following companies: Bell Northern Research,
Cadence, Dolby, Hitachi, Mentor Graphics, Mitsubishi,
NEC, Pacific Bell, Philips, Rockwell, Sony, and Synopsys.

José Luis Pino is also supported by AT&T Bell
Laboratories as part of the Cooperative Research
Fellowship Program.

References

[1] J. Buck, S. Ha, E.A. Lee, and D.G. Messerschmit
“Ptolemy: A framework for simulating and prototyping
heterogeneous systems,”International Journal of Computer
Simulat ion, special issue on Simulat ion Softwar
Development, vol. 4, 1994.
http://ptolemy.eecs.berkeley.edu/papers/JEurSim

[2] E.A. Lee and D.G. Messerschmitt, “Synchronous data flow
Proceedings of the IEEE, vol. 75, no. 9, 1987.

[3] J. L. Pino, S. S. Bhattacharyya, and E. A. Lee,A
hierarchical multiprocessor scheduling framework fo
synchronous dataflow graphs, UCB/ERL M95/36,
Electronics Research Laboratory, University of California
Berkeley, May 30, 1995. http://ptolemy.eecs.berkeley.ed
papers/erl-95-36

[4] A. Gerasoulis and T. Yang, “A comparison of clusterin
heuristics for scheduling directed acyclic graphs o
multiprocessors,”Journal of Parallel and Distributed
Computing, vol. 16, no. 4, 1992.

[5] S.J. Kim and J.C. Browne, “A general approach to mappi
of parallel computations upon multiprocessor architecture
International Conference on Parallel Processing, vol. 3,
University Park, PA, USA, Pennsylvania State Univ, 1988

[6] V. Sarkar,Partitioning and scheduling parallel programs
for multiprocessors, Cambridge, Mass.: MIT Press, 1989.

[7] G. C. Sih,Multiprocessor scheduling to account for
interprocessor communication, Ph.D. Dissertation, UCB/
ERL M91/29, Electronics Research Laboratory, Universi
of California at Berkeley, 1991.

[8] H. Printz,Automatic mapping of large signal processin
systems to a parallel machine, Ph.D. Dissertation CMU-CS-
91-101, Carnegie Mellon, 1991.

[9] S. S. Bhattacharyya, J. T. Buck, S. Ha, and E. A. Le
“Generating compact code from dataflow specifications
multirate signal processing algorithms,”IEEE Transactions
on Circuits and Systems — I: Fundamental Theory and
Applications, March, 1995.

[10] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee,Two
complementary heuristics for translating graphical DS
programs into minimum memory implementation,
Memorandum UCB/ERL M95/3, Electronics Researc
Laboratory, University of California at Berkeley, January
1995.

[11] S. Ritz, M. Pankert, and H. Meyr, “Optimum vectorizatio
of scalable synchronous dataflow graphs,”Proceedings of
the International Conference on Application-Specific Arra
Processors, October, 1993.

[12] S.S. Bhattacharyya,Compiling dataflow programs for
digital signal processing, Ph.D. Dissertation UCB/ERL
M94/52, University of California at Berkeley, 1994.

[13] J.L. Pino and E.A. Lee, “Hierarchical static scheduling o
dataflow graphs onto mult ip le processors,”IEEE
International Conference on Acoustics, Speech, and Sig
Processing, Detroit, Michigan, IEEE, 1995.
http://ptolemy.eecs.berkeley.edu/papers/hierStaticSched

	Abstract
	1 Motivation
	2 SDF composition
	2.1 Notation
	2.2 The SDF composition theorem

	3 Clustering Techniques
	4 Hierarchical Scheduling Algorithm
	4.1 Initialization
	4.2 Main Loop
	4.3 Wrap up

	5 Performance
	6 Conclusions
	Acknowledgments
	References

