The Ptolemy Project

g
Edward A. Lee
- Professor and
Principal Investigator

.

Dept. of EECS

Wk, i — I Copyright © 1997, The Regents of the University of California
ptolemy.doc Al rights reserved.

UNIVERSITY OF CALIFORNIA AT BERKELEY

Organizational

Staff

Diane Chang, administrative assistant
Kevin Chang, programmer
Christopher Hylands, programmer analyst
Edward A. Lee, professor and PI
Mary Stewart, programmer analyst

Postdocs
Praveen Murthy
Seehyun Kim
John Reekie
Dick Stevens (on leave from NRL)

Students
Cliff Cordeiro
John Davis
Stephen Edwards
Ron Galicia
Mudit Goel
Michael Goodwin
Bilung Lee
Jie Liu
Michael C. Williamson
Yuhong Xiong

Undergraduate Students
Sunil Bhave
Luis Gutierrez

Key Outside Collaborators

Shuvra Bhattacharyya (Hitachi)
Joseph T. Buck (Synopsys)
Brian L. Evans (UT Austin)
Soonhoi Ha (Seoul N. Univ.)

Tom Lane (SSS)
Thomas M. Parks (Lincoln Labs)
José Luis Pino (Hewlett Packard)

Sponsors
DARPA
MICRO

The Alta Group of Cadence
Hewlett Packard
Hitachi
Hughes
LG Electronics
NEC
Philips
Rockwell
SRC

ptolemy.doc

© 1997, p. 2 of 32

UNIVERSITY OF CALIFORNIA AT BERKELEY

Types of Computational Systems

Transformational

 transform a body of input data into a body of output data
Interactive

* interact with the environment at their own speed
Reactive

e react continuously at the speed of the environment

This project focuses on design of reactive syste
e real-time

 embedded

e concurrent

network-aware
adaptive

ptolemy.doc © 1997, p. 3 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Adaptive Systems

Classical adaptive signal processing
e system identification

* Interference nulling

* reversing distortion

Resource adaptive signal processing

e conserving power

* meeting changing latency and QOS requirements

e using available sensor data

e using network resources (memory, cycles, bandwidth)

ptolemy.doc © 1997, p. 4 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Interactive, High-Level Simulation and Specification

Author: Uwe

Trautwelin,

An Adaptive Amay Processor with & 4 Elemernt S i
Unifarn Circulas Aray suppresses three My TeChn ICaI

Cochannel Inerferers | e University of
i ' limenau,
Germany

A Urigal i .ﬁ.l.-hl:.r:\ll L Chd £F] foeam Fl {1}

E“ﬂﬂ ' — Output Signal
Pl | s Okl o h-hl.ﬂl Resvim il (2 et {1} 1 : 1 -

Beam Pattern

¥

Cooenkrold paa | boe &rray USRearad{yS0
| Bz il | Dedug

Wi n b mtog |1 oa]

0 <Ferfuras PRISE Sgmca= ABOET Escapes

EMNE 128E | |

BT 1A |

MM -5

SN - -8R0 |

pfolemy.doc a © 1997, p. 5 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Properties of Such Specifications

Modular

» Large designs are composed of smaller designs
* Modules encapsulate specialized expertise
Hierarchical

» Composite designs themselves become modules
* Modules may be very complicated
Concurrent

* Modules logically operate simultaneously

* Implementations may be sequential or parallel or distributed

Abstract

e The interaction of modules occurs within a “model of computation”
* Many interesting and useful MoCs have emerged

ptolemy.doc © 1997, p. 6 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Typical Implementation

: controller
real-time —
I ™ operating w/
system
. \/N user interface
ASIC microcontroller

Process

—prooess |

host port

FPGA
Network programmable
Interface DSP CODEC

I memory interface

I | control panel I I |

network DSP analog

assembly interface

Heterogeneity is a major source code
of complexity in such systems. TN

ptolemy.doc © 1997, p. 7 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Two Approaches to the Design of Such Systems

 The grand-unified approach

* Find a common representation language for all components

» Develop techniques to synthesize diverse implementations from this
 The heterogeneous approach

* Find domain-specificmodels of computatioiiMoC)
» Hierarchically mix and match MoCs to define a system
» Retargettable synthesis techniques from MoCs to diverse implementations

The Ptolemy project is pursuing the latter approach

* Domain specific MoCs match the applications better

* Choice of MoC can profoundly affect system architecture
* Choice of MoC can limit implementation options
» Synthesis from specialized MoCs is easier than from GULSs.

ptolemy.doc © 1997, p. 8 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Some Concurrent Models of Computation

Gears

Threads

Petri nets

Synchronous dataflow
Dynamic dataflow
Process networks
Concrete data structures
Discrete-events

Synchronous/Reactive languages

Communicating sequential processes
Hierarchical communicating finite state machines

ptolemy.doc © 1997, p. 9 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Example — Process Networks

Note: Dataflow is
a special case. °

pProcess

e channel

stream of tokens

Strengths:

« Good match for signal processing
Loose synchronization (distributable)
Determinate

Maps easily to threads
Dataflow special cases map well to hardware and embedded software

Weakness:
« Control-intensive systems are hard to specify

ptolemy.doc © 1997, p. 10 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Example — Synchronous/Reactive Models

A discrete model of time
module progresses as a sequence of
“ticks.” At a tick, the signals are

_ defined by a fixed point equation:
signal

fo (1)]
5 1(2)

Strengths: e (X y)

« Good match for control-intensive systems

» Tightly synchronized
* Determinate
« Maps well to hardware and software

Weaknesses:

o Computation-intensive systems are overspecified
* Modularity is compromised

ptolemy.doc © 1997, p. 11 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Example — Discrete-Event Models

Events occur at discrete points
on a time line that is usually a
continuum. The entities react to
events in chronological order.

Strengths:

« Natural description of hardware
» Global synchronization
« Can be made determinate (often is not, however)

Weaknesses:

« Expensive to implement in software
« May over-specify and/or over-model systems (global time)

© 1997, p. 12 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

ptolemy.doc

Sequential Example — Finite State Machines

states
Guards determine when a tran-
sition may be made from one
transitions state to another, in terms of
events that are visible, and out-
puts assert other events.

guard/action

Strengths:

» Natural description of sequential control

» Behavior is decidable

e Can be made determinate (often is not, however)

e Good match to hardware or software implementation

Weaknesses:

« Awkward to specify numeric computation
» Size of the state space can get large

ptolemy.doc © 1997, p. 13 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Essential Differences — Models of Time

] .

|
continuous time

discrete time

_ Salvador Dali, The Persistence of Memory , 1931
totally-ordered discrete events
A

El — E2_> E3_> E4 1

J_I_I_> F1<:F27F3_'F4 |D||D|E|D|DD>

g 0

multirate discrete time Gi— Gy G3— Gy synchronous/reactive
partially-ordered discrete events

ptolemy.doc © 1997, p. 14 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Key Issues in these Models of Computation

Maintaining determinacy.

Supporting nondeterminacy.

Bounding the queueing on channels.

Scheduling processes.

Synthesis: mapping to hardware/software implementations.

Providing scalable visual syntaxes.

Resolving circular dependencies.

Modeling causality.

Achieving fast simulations.

Supporting modularity (gray box model for modules).
Composing multiple models of computation.

ptolemy.doc © 1997, p. 15 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Validation

By construction

e property is inherent.

By verification

* theorem proving or algorithm.
By simulation

» check behavior for all inputs.

By testing

» observation of a prototype.

By In'[UI'[IOI’] Meret Oppenheim, Object, 1936
e property is true, | think.

By assertion

* property is true. That’s an order.

It is generally better to be higher in this list

ptolemy.doc © 1997, p. 16 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Usefulness of Modeling Frameworks

The following objectives are at odds with one another:

e EXpressiveness

o Generality

VS.

 Verifiability

o Compilability/Synthesizability

The Conclusion?
Heterogeneous modeling.

ptolemy.doc © 1997, p. 17 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

A Mixed Design Flow

system-level modeling cosimulation <—" symbolic

‘ discrete

event

‘ Imperative dataflow

/

/

synthes /

partltlonlng

Y
| software ASIC logic
compiler yntheS|s yntheS|s ynthesis

y
executlon executlon ASIC logic
model model model model

\@Imulat@/

detail modeling and simulation

ptolemy.doc © 1997, p. 18 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

An Example of Hiearchical Heterogeneity: *Charts

Choice of MoC here determines concurrent semantics

Hierarchy is free

ptolemy.doc © 1997, p. 19 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Example: DE, Dataflow, and FSMs

T I Y

¥ no puEh

This is a one-player reflax game:

1. Press "Coin” to start the game.

2. Press "Ready” when you are ready and
watch for tha light changing.

3. Press "Stop” when you are told to do so0.

When time elapsed (9 Brger than a randam member,
batween 1 and 3, generated by the "RanConst”, it
will emit the go signal. (ie, g9 == 1)

Trrmswiil | error

ey
ﬂ'rl:wlrurrl:r_| Wik Hlop |

-\"_ -

ptolemy.doc © 1997, p. 20 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Metamodeling

metamodeling framework

metamodel
metamodel

_ semantic framework
semantic framework

del model
[1ode component
component

ptolemy.doc © 1997, p. 21 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Constraint-Based Metamodeling Frameworks

set of possible
behaviors of
system A
composed with
system B

set of possible
behaviors of
system A

set of possible
behaviors of
system B

These sets might be deterministic or random, exact or
approximate.

ptolemy.doc © 1997, p. 22 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Uses for Metamodeling

Heterogeneous mixtures of semantic frameworks

* heterogeneous systems
* multiple views of the same system

Design analysis

» check aspects of correctness
 discover opportunities for optimization
Design refinement

» the set of all possible design refinements gives the concretization operator
Run-time modeling
* reflection

* model discovery and adaptation
* model-driven control

ptolemy.doc © 1997, p. 23 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Ptolemy Software as a Tool and as a Laboratory

Allows for experiments with:

e Models of computation

e Heterogeneous design

e Domain-specific tools
Design methodology
Software synthesis
Hardware synthesis
Cosimulation
Cosynthesis
Visual syntaxes (Tycho)

Ptolemy software Is

« Extensible

e Publicly available

< An open architecture
e Object-oriented

ptolemy.doc © 1997, p. 24 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Modular Deployable Design Tools

Past design software:
e Monolithic

e Huge

e Back-room use

Future design software:
 Modular

* Deployable
 In-the-field evolution

ptolemy.doc © 1997, p. 25 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Initial Strategy

Toolkit approach to design, creating an environment that is
safe (no core dumps)

extensible

distributable

concurrent

portable

Deployed designs must minimize the use of
C, C++

Thus, most of the existing Ptolemy kernel

ptolemy.doc © 1997, p. 26 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Initial Languages

In addition to satisfying all the above,
Tcl/Tk/ltcl
scripting language
high-level, object-oriented
universal, communicable data type (strings)
extensive graphical user interface toolkits
Java

faster (we have measured up to 8x)

lower-level, object-oriented

modularity built in

concurrent (threads), although at a very low level

ptolemy.doc © 1997, p. 27 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Modular Itcl class library
e system control

« configuration

e user interface

Current facilities:
e context-sensitive text editors
scripting shells (Tcl, Matlab, Mathematica)
graphics toolkit (the Tycho Slate)
Integrated, interactive, HTML documentation
preferences manager, version control, widget library

ptolemy.doc © 1997, p. 28 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

A Portion of the Class Hierarchy (displayed in Tycho)

Fle Edit

Window Format

o

—
k_\\k‘_\-\‘—-\

A

|
\

PreferenceEditor
Exec

EditSearch
PreferenceDialog

FontDialog E

HTMLMessage
ErrorMessage

ListBrowser

Edit

GraphicsT

ColorBrowser
FileBrowser
IndexBrowser
WelcomeMessage
TcIShelli
HTML

EditStack

Mathematica
hatlab

EditEsterel

Ecii'cciEdm:ppi

EditHTML EditTcl—Editltcl
ItclClassList EditMake
EditBubbleAndArc—EditSTD
EditDAG—EditForestT

EditPtlang
EditJava
EditPtcl

EditProgram

ProfileTcl
EditPalette

= R |

[P

| Close |

ptolemy.doc

© 1997, p. 29 of 32

UNIVERSITY OF CALIFORNIA AT BERKELEY

The Tycho Slate

Extends the Tk canvas supporting
e creating complex items,
e re-using common patterns of user interaction.

There are two key uses of the Slate:

* As a higher-level canvas for building graphical displays and
editors. The Slate is used this way within the Graphics class
and subclasses.

As a toolbox for rapidly building custom widgets. The Slate
IS used this way to create some of the custom widgets used
Ptolemy C-code-generated systems.

ptolemy.doc © 1997, p. 30 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Integrated, Interactive Documentation

D[R Wedre gl e Lt
uk|m|nﬂm ez Fiinl Hip

Lise i |1 s sl e hip il orals Mla e iala el aidr g

Introduction to drawing

The Slate is an extension of the Tk canvas, and is, as far as possible,
fully upwards—-compatible with the canvas —— any code that works with
the canvas should work if a Slate 15 substituted for the canvas.

The Slate (like the canvas) has a large number of operations, and this
document only gives a cursory overview of most of them. For more
detailed information on the kinds of operations supparted by the canvas
and the Slate, see the Tk canvas documentation and the slate code
documentation.

To illustrate the operation of the slate, we will create a slate in a blank
toplevel window, Naormally, however, you will use the slate inside the
Graphics widget, or within your own custom widget. To create the slate,
call the s1ate procedure:

ek

In the above example, clicking on the Tcl code at the bottom
executes the code, creating the example slate on the right.

ptolemy.doc © 1997, p. 31 of 32
UNIVERSITY OF CALIFORNIA AT BERKELEY

Further Information

Py P Py pay evy P
Lowsten; [Fitto fpbnley secs barkeley mier

Whafs Wew? Whafs Conl? Bucustons | Mot Search | Paopls | Sefeears|

Welcome to the Plolemy Project

DSEF Design Groap
1! Demign, Modeling, and Specification of Sytems Seninar -
DSF Semimar - Education — coe i

Extractor — Hearistic Search Packoges — Beloted pesearch -
Signal Procesing Packages — Thath - Tycho - X Pole
Plolemy is a research project and stware eovironment focused on design
mmﬁf@ﬂm' me e bk o
ran and simu] to parallelizing a s,
dﬁmmmm?m,mm&dhuﬁmum?nﬁ‘rmmdnﬂ
demm_mmkhmmmm;m of
LRt of ERcirical Ehpiiring anl Commiier Se) st L ¥

http://ptolemy.eecs.berkeley.edu

ptolemy.doc

Software distribution
Small demonstration version
Project overview

The Almagest (the manual)
Current projects summary
Project publications
Keyword searching
Project participants
Sponsors

Copy of the FAQ
Newsgroup info

Mailing lists info

© 1997, p. 32 of 32

UNIVERSITY OF CALIFORNIA AT BERKELEY

